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We investigate the physical mechanisms for achieving an electrical control of conventional spin-singlet su-
perconductivity in thin films by focusing on the role of surface orbital polarization. Assuming a multi-orbital
description of the metallic state, due to screening effects the electric field acts by modifying the strength of the
surface potential and, in turn, yields non-trivial orbital-Rashba couplings. The resulting orbital polarization at
the surface and in its close proximity is shown to have a dramatic impact on superconductivity. We demonstrate
that, by varying the strength of the electric field, the superconducting phase can be either suppressed, i.e. turned
into normal metal, or undergo a 0−π transition with the π phase being marked by non-trivial sign change of
the superconducting order parameter between different bands. These findings unveil a rich scenario to design
heterostructures with superconducting orbitronics effects.

I. INTRODUCTION

Because of the screening effect, a static electric field (EF)
cannot penetrate inside a metal deeper than a few Thomas-
Fermi lengths (0.1−1 nm)1–3. As a consequence, the behav-
iors and features of a metal, e.g., its transport properties, are
practically unaffected by the application of static EFs.

Analogously, when dealing with the interaction of a static
EF with a superconductor (SC)4–7, for standard metallic SCs,
that are well described by the Bardeen-Cooper-Schrieffer
theory8,9, the penetration length of an EF is roughly un-
changed with respect to the normal metal phase10. In this
context, recent experiments have shown that a strong static
EF can dramatically affect the properties of superconduct-
ing wires and planes11–15 suppressing the supercurrent, and
inducing a superconductor-to-normal metal transition. This
superconducting field effect (SFE) is quite ubiquitous since
it has been observed in different materials11,16, in Dayem
bridges12,13, in superconductor-normal metal-superconductor
mesoscopic junctions14, and in superconducting quantum in-
terference devices15. Hence, these experimental evidences
suggest that the SFE is a genuine phenomenon which cannot
be explained in terms of well-known effects such as charge
accumulation or depletion13,15.

A basic remark is that the Cooper pairs are correlated over
distances (ξ0) much longer than the EF screening length and
thus a perturbation occurring at the edge of the supercon-
ductor may affect the system within a distance comparable
to ξ0. This expectation seems to be confirmed by the fact
that the SFE is observable only on structures with character-
istic dimensions of a few coherence lengths, and then van-
ishes exponentially11. Besides this, our understanding of the
physics at the origin of the SFE is somewhat limited11,13,15,
and a fully microscopic theory is still missing.

Motivated by the above experimental results11–15, in this
paper we propose a theoretical model which is able to grasp
some of the observed features typical of the SFE and to pro-
vide a microscopic physical scenario to account for the mod-
ification of the superconducting order parameter (OP) due

to the applied EF at the surface. Our key idea is to con-
sider the effects of the EF as a source of inversion sym-
metry breaking at the surfaces of the superconductor and to
focus on the consequences of the induced orbital polariza-
tion on the electron pairing. It has been recently recognized
that an orbital analogue of the spin Rashba effect17 can be
achieved on the surfaces18–20 even in the absence of atomic
spin-orbit coupling21. The orbital Rashba (OR) interaction al-
lows for mixing of orbitals on neighboring atoms that would
not overlap in an inversion symmetric configuration. Such
coupling leads to non-vanishing orbital polarization that form
chiral patterns in the momentum space. Remarkably, the OR
coupling is quite ubiquituous in metals and semiconductors
since it occurs either in pure p- and d-orbitals18–20 or sp-
or pd-hybridized systems21. Evidences of anomalous elec-
tronic splitting and of the role played by the orbital degrees
of freedom have been found on a large variety of surfaces22,
Bi/Ag(111)23, etc. as well as in oxide interfaces24–26.

Here, we consider how the induced orbital polarization at
the surface is able to significantly modify the amplitude and
phase of conventional spin-singlet superconducting OP in thin
films. Through a multi-orbital description we show that the
EF can suppress the superconducting state at the surface by
inducing a substantial orbital polarization close to the Fermi
level. Then, the occurrence of orbitally polarized surface
states can guide a complete breakdown of the superconduct-
ing state in the whole system or an unconventional 0-π tran-
sition with a non-trivial sign change of the superconducting
OP between different bands. Although this phase resembles
the unconventional s± pairing proposed in iron based super-
conductors27,28, our analysis has a completely different root
since it demonstrates that the EF can stabilize a π-phase in
conventional s−wave superconductors. The resulting phase
transitions manifest themselves as a consequence of the inter-
play of two fundamental electronic processes which we mi-
croscopically demonstrate to arise from the surface electro-
static potential (Appendix A): i) intra-layer αOR, ii) inter-layer
λ OR interactions, respectively (Fig. 1). Both αOR and λ are
proportional to the strength of electric field, Es, with λ being
generally smaller than αOR and activated by in-plane atomic
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FIG. 1. (a) Schematic view of multilayered spin-singlet supercon-
ductor (SC) with nz layers labelled by the index iz. The electric field
penetrates only at the surface layers (blue) by inducing processes
with intra and inter-layer orbital mixing. In the remaining layers (or-
ange), the electric field is absent. (b) Sketch of the surface electronic
hybridization due to orbital Rashba coupling, αOR, between xy and
(xz,yz) orbitals along the symmetry allowed directions. The standard
nearest neighbor hopping between d-orbitals is mainly relevant for
homologue orbitals along x,y,z axes, e.g. in (c) xz orbitals hybridize
along x and z directions, with t|| and t⊥, respectively. Panel (d) de-
picts the effect of λ with orbital mixing involving xy and xz,yz states.
The term λ is active only between the first two surface layers (blue).
The orbital Rashba coupling is considered to be non vanishing only
at the surface layers.

distortions or strain effects. Our study thus uncovers funda-
mental mechanisms for an electrical control of conventional
superconductors based on the modification of the orbital po-
larization at the surface.

The paper is organized as follows. In Sect. II we provide
the basic elements of the modelling and of the methodology.
Sect. III is devoted to the main results including the phase di-
agram and the role of pairing interaction, inter-orbital mixing
and inter-layer hopping. In Sect. IV we have the conclud-
ing remarks and the discussion. Finally, in the Appendix we
provide the derivation of the orbital Rashba couplings due to
the surface electrostatic potential and the impact of the or-
bital Rashba coupling on superconductivity for a monolayer.
Furthermore, we also present the character of the phase tran-
sitions by inspecting the free energy profile in the various
regimes, and the behavior of the layer dependent orbital po-
larization.

II. MODEL AND METHODOLOGY

We assume a conventional s−wave spin-singlet pairing for
a geometry with nz layers (Fig. 1). The electronic descrip-
tion is based on d-orbitals, i.e. (yz,xz,xy). Since Es on the
surface is parallel to ẑ, it can be described by a potential
Vs = −Esz. Following the approach already applied to de-
rive the surface orbital Rashba coupling29–31, the matrix ele-
ments of Vs in the Bloch basis yield an intra- (αOR ∼ Es) and
inter-layer (λ ∼ Es) inversion asymmetric interactions, whose

ratio depends only on the inter-atomic distances and distor-
tions at the surface. For convenience we indicate as (a,b,c)
the (yz,xz,xy) d−orbitals. Then, we introduce the creation
d†

α,σ (k, iz) and annihilation dα,σ (k, iz) operators with momen-
tum k, spin (σ = [↑,↓]), orbital (α = (a,b,c)), and layer iz, to
construct a spinorial basis Ψ†(k, iz) = (Ψ†

↑(k, iz),Ψ↓(−k, iz))
with Ψ

†
σ (k, iz) = (d†

a,σ (k, iz),d†
b,σ (k, iz),d

†
c,σ (k, iz)). In this

representation, the Hamiltonian can be expressed in a com-
pact way as:

H =
1
N ∑

k,iz, jz
Ψ

†(k, iz)Ĥ(k)Ψ(k, jz) , (1)

with

Ĥ(k) = ∑
α={a,b,c}

[τzεα(k)+∆α(iz)τx]⊗ (L̂2−2L̂2
α)]δiz, jz +

+αORτz⊗ (sinkyL̂x− sinkxL̂y)[δiz, jz(δiz,1 +δiz,nz)]+

+t⊥,α τz⊗ (L̂2−2L̂2
α)δiz, jz±1 +

+λ
[
(L̂x + L̂y)(δiz,1δ jz,2 +δiz,nz δ jz,nz−1)+h.c.

]
, (2)

where the orbital angular momentum operators L̂ have com-
ponents

L̂x =

0 0 0
0 0 i
0 −i 0

 , L̂y =

0 0 −i
0 0 0
i 0 0

 , L̂z =

0 −i 0
i 0 0
0 0 0


within the (yz,xz,xy) subspace, τi (i = x,y,z) are the Pauli
matrices for the electron-hole sector, and δi, j the Kronecker
delta function. The kinetic energy for the in-plane electron
itinerancy is due to the symmetry allowed32 nearest neigh-
bor hopping, thus, one has that εa(k) = −2t||[η cos(kx) +
cos(ky)], εb(k) = −2t||[cos(kx) + η cos(ky)], and εc(k) =
−2t||[cos(kx)+ cos(ky)], with η being a term that takes into
account deviations from the ideal cubic symmetry. The role
of inter-orbital hopping that are activated by distortions has
been explicitly evaluated. We assume that the layer depen-
dent spin-singlet OP is non-vanishing only for electrons be-
longing to the same band and it is expressed as ∆α(iz) =
1
N ∑k g〈dα,↑(k, iz)dα,↓(−k, iz)〉 with 〈...〉 being the expecta-
tion value on the ground state. Here, N = nx × ny sets the
dimension of the layer in terms of the linear lengths nx and ny,
while we assume translation invariance in the xy-plane and nz
layers along the z−axis (Fig. 1). We point out that g is not
modified by the electric field. This is physically consistent
with the fact that due to screening effects the EF cannot induce
an inversion asymmetric potential inside the thin film beyond
the Thomas-Fermi length. The analysis is performed by de-
termining the superconducting OPs corresponding to the min-
imum of the free energy employing a self-consistent iterative
procedure until the desired accuracy is achieved. The planar
hopping is the energy unit, t|| = t, while the interlayer one is
orbital independent, i.e. t⊥,α = t⊥. Within the same scheme of
computation we also consider the role of amplitude’s variation
of the intra-orbital pairing interaction and of the inter-orbital
superconducting interaction, god , with the corresponding OPs
∆αβ with α 6= β . Here, the inter-orbital OPs are expressed as
∆αβ (iz) =

1
N ∑k god 〈dα,↑(k, iz)dβ ,↓(−k, iz)〉.
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FIG. 2. (a) Phase diagram in the (αOR,λ )-plane with conventional superconducting (0-SC), unconventional (π-SC), and normal state. The
parameters are: nz = 6,µ =−0.4t, t⊥ = 1.5t,η = 0.1. (b)-(c) Behavior of the order parameter ∆̄α (α = a,b,c) in the central layer at iz = nz/2,
as function of λ in the regimes of weak (panel (b)) and strong (panel (c)) orbital Rashba interaction, namely αOR = 0.2t and αOR = 3.0t,
respectively. In (b) we observe a sharp transition to the π-SC, with a sign change in ∆c and hence a relative π-phase between c and a,b OPs.
In (c) we demonstrate that all the OPs go to zero. Insets: ∆c along the ẑ direction is shown for different values of λ . In (d) and (e) we show
the analogous transitions of (b) and (c), but for nz = 12. In (f) and (g) we present the profile of ∆c for nz = 30, for weak and strong αOR,
respectively. In (f) we show the sign change (for λ = 0.3t and 0.4t), while in (g) the OP is suppressed by increasing λ . In (b)-(g) ∆0 is the
superconducting OP for a monolayer without the OR and sets its scale (Appendix B).

III. RESULTS

In this Section we present the phase diagram as due to the
OR couplings and analyze the impact of the pairing interac-
tion, the inter-orbital mixing and the inter-layer hopping. The
effect of the OR couplings is to induce an orbital polarization
at the surface and to form chiral orbital textures in the Bril-
louin zone close to the Fermi level (Appendix D). Moreover,
the orbital polarization is generally associated to a configura-
tion with non vanishing angular momentum components and
thus it tends to reduce the superconducting OP amplitude (Ap-
pendix B) assuming that the pairing interaction preserves in-
version symmetry. Both interlayer electronic processes, i.e. λ

and t⊥, allow for a transfer of orbital polarization into the inner
layers of the superconducting films. Further, due to the sym-
metry of the orbital processes induced by λ , there is a drive
to develop an orbital dependent phase of the superconducting
OP. This aspect can be deduced by evaluating and deducing
the behavior of the inter-orbital superconducting OP when λ

and αOR are the only orbital mixing terms.

A. Phase diagram

To get more insight into the role of the electric field it is
instructive to start with the phase diagram of the heterostruc-
ture for the nz = 6 multilayer in the absence of hoppings and
pairing terms that mix the orbitals. Considering that a varia-

tion of the electric field Es tunes the interactions αOR and λ

(Fig. 2(a)) we scan the whole amplitude phase space. The
outcome is presented for a representative value of the out-of-
plane hopping (t⊥ = 1.5t). The conventional superconduct-
ing state (0−SC), depending on the ratio αOR/λ , undergoes
a transition into two distinct phases: i) an unconventional
π−phase with non-trivial superconducting phase relation be-
tween the orbital dependent OPs for a ratio about smaller than
one-half, otherwise ii) a normal metal configuration with a
vanishing superconducting OP. The nature of the phase tran-
sitions can be tracked by following the layer and orbital de-
pendent behavior of ∆α(iz). In the regime of weak αOR the
increase of λ leads to a complete reconstruction of the super-
conducting phase. We find that there is a first order phase
transition (Appendix C) between two superconducting phases
with a reorganization of the relative phase between the orbital
dependent OPs. As demonstrated in Fig. 2(b), at a critical
value of λ the superconducting OP for the c-band undergoes
a first order phase transition with an abrupt sign change of
∆c(iz) in all the layers (see inset Fig. 2(b)) while the other
two OPs exhibit a discontinuous variation of the amplitude
which is sign conserving. The sign change of the OP for
one of the band implies an inter-orbital π-phase between the
electron pairs within the (a,b) and c orbitals. Such an or-
bital reconstruction is an evidence of an unconventional pair-
ing which can directly manifest in an anomalous Josephson
coupling with non-standard current-phase relations. The fact
that the band c undergoes a sign change of the OP with re-
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spect to the a,b bands is a consequence of the structure of the
asymmetric inversion couplings at the interface which allow
for orbital mixing between c and (a,b) bands. The presence
of competing phases is also evident if one considers the free
energy dependence of the superconducting OP. Indeed, in or-
der to catch the main competing mechanisms, one can assume
a uniform spatial profile as a function of the layer index by
allowing for an orbital dependent phase reconstruction of the
type ∆α(iz) = exp[iφα ]∆0. Hence, one can directly observe
two distinct minima in the free energy, associated with the 0-
and π phases, whose relative energy difference can be tuned
by varying the amplitude of λ (Appendix C).

Moving to a larger value of the OR coupling (i.e. αOR/t ≥
1) the surface inter-layer coupling λ is able to suppress the
superconducting state by vanishing the OP amplitude (Fig.
2(c)). The value of the critical λ setting the 0-SC/normal
boundary has a maximum at αOR/t ∼ 1 and then stays about
unchanged by further increasing the OR coupling. Such be-
havior is accompanied by a qualitative change of the super-
conducting OP at the surface which starts to get reduced once
αOR induces a sufficiently large orbital polarization nearby
the Fermi level. The breakdown of the superconductivity in
this regime is linked to the character of the Cooper pairs hav-
ing non-vanishing L̂2

α (i.e. inversion symmetry is preserved),
while the EF leads to a large orbital polarization at the surface
whose leaking into the inner layers suppresses the pairing am-
plitude. The 0-SC/normal metal phase transition appears to
be continuous and it occurs about simultaneously for all the
orbitals involved in the pairing close to the Fermi level (Fig.
2(c)). It is interesting to notice that a closer inspection of the
free energy profile with suitably selected boundary conditions
of the OPs at the surfaces and uniform spatial profile in the
other layers indicates a smeared type of phase transition from
superconductor-to-normal state with weak first order precur-
sors due to the competition between OP configurations with
inequivalent amplitude (see Appendix C for details). This
implies that the breakdown of the superconducting state, as
driven by λ , is different from that which can be obtained in a
standard BCS thermal evolution of the OP.

After having fully addressed the most favorable supercon-
ducting configurations in a thin film with nz = 6 layers, we
consider whether the orbital asymmetric potential at the sur-
face is able to be also effective in thicker layered films. Such
issue is accounted by simulating the cases with nz = 12 and
nz = 30. In Figs. 2(d),(e) we demonstrate that for two rep-
resentative values of αOR, corresponding to weak and strong
orbital Rashba couplings, the surface interlayer interaction is
able to induce the 0-π and superconductor-normal metal phase
transitions. The phase diagram and the effects are then con-
firmed and observable either for doubling the system size,
nz = 12 (Figs. 2(d),(e) or for superconducting thin film with
nz = 30 layers (Figs. 2(f),(g)). However, one remark is rele-
vant here concerning the amplitude of the kinetic energy along
the z-axis. Indeed, the change of the superconducting state is
related to the inter-layer hopping amplitude and one needs a
slighlty larger t⊥ to get critical boundaries occurring in the
same range of strengths for λ as for thinner SCs (Sect. III E).

B. Role of the pairing interaction strength

We have followed the evolution of the phase diagram to un-
derstand the role of the superconducting pairing strength. In
Fig. 3 we report the overall effect of the pairing strength go-
ing from g/t = 2.0 to g/t = 1.0 as a function of λ for a pair
of representative values for the orbital Rashba coupling αOR.
We find that the critical λ to induce the 0-π transition is prac-
tically unaffected when the pairing coupling g is varied from
2 t to 1.2 t (Fig. 3 (a)-(c)). On the other hand, for g/t = 1.0
we have that the transition from 0- to π-phase does not occur
and a change in the inter-layer λ coupling directly brings the
superconducting into the normal state at αOR = 0.2 t. How-
ever, if one assumes that the orbital Rashba coupling is scaled
to αOR = 0.1 t than one recovers the 0-π phase transition as
demonstrated in Fig. 3 (e). This result clearly indicates that
the potential to drive the superconducting phase into a π- or
normal state is a robust effect and that the relative ratio be-
tween the intra- and inter-layer asymmetric interactions can
set out whether the 0-normal phase transition is obtained with
an intermediate π-phase or without passing through this state.
Finally, we show that such delicate interplay between the 0-,
π- and normal phases is also imprinted into the evolution of
the superconducting order parameters as reported in Fig. 3 (f)-
(j). For completeness, we have also demonstrated that the 0-π
transition can be obtained at g/t = 1.2 within a self-consistent
analysis that is able to capture the non-uniform spatial depen-
dence of the order-parameter along the z-direction (Fig. 4).

C. Role of inter-orbital mixing for the single-particle
electronic states

We point out that the employed tight-binding electronic
structure has realistic features if one considers that the bands
at the Fermi level are formed out of anisotropic atomic or-
bitals of p or d type for instance. Due to symmetry argu-
ments it is known that in a cubic or tetragonal environment
the (dxy,dxz,dyz) orbitals belonging to the so-called t2g sector
have only directional non-vanishing nearest-neighbor hopping
amplitudes. Within a tight-binding formulation of the elec-
tronic structure one can apply the Slater-Koster rules32 and
determine the allowed hopping amplitude between Wannier
configurations on different atoms whose distance is parame-
terized in terms of the bond angle. This approach yields that,
for instance, dxy atomic state can hybridize only with dxy con-
figurations in the x− y plane along the [100] and [010] cubic
directions and similarly for the other orbitals. Thus, it is also
suited for elemental materials like Ti, V, Nb, etc., and it can
also apply to more complex metals as those occurring in the
realm of transition metal oxides.
Apart from these general considerations, since distortions
would lead to deviations from ideal electronic structure above
discussed, we have included extra terms in the single particle
part of the Hamiltonian which lead to mixing of orbitals along
the symmetry direction. This analysis has been performed to
further investigate the role of the orbital mixing on the phase
diagram.
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FIG. 3. (a-e) Plots of the superconducting free-energy as a function of the inversion-asymmetric interlayer parameter λ for the two most
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a direct changeover into a normal state. Taking a smaller value of αOR (see panel (e)), we recover again the intermediate 0-π transition also
for pairing strength g = 1.0 t.

■

■

■
■

■
■ ■

■
■

■

■

■

◆

◆

◆

◆
◆

◆ ◆
◆

◆

◆

◆

◆

● Δa

■ Δb

◆ Δc

2 4 6 8 10 12
0.0

0.5

1.0

1.5

2.0

iz

1
0

2
Δ
/t

αOR=0.2t; λ=0.05t; g=1.2t

(a)

●

●

● ●
●

● ●
●

● ●

●

●■

■

■ ■
■

■ ■
■

■ ■

■

■

◆
◆

◆
◆ ◆ ◆ ◆ ◆ ◆

◆
◆

◆

● Δa

■ Δb

◆ Δc

2 4 6 8 10 12

-0.5

0.0

0.5

1.0

1.5

iz

1
0

2
Δ
/t

αOR=0.2t; λ=0.15t; g=1.2t

(b)

●

●

● ●
●

● ●
●

● ●

●

●■

■

■ ■
■

■ ■
■

■ ■

■

■

◆
◆

◆
◆ ◆ ◆ ◆ ◆ ◆

◆
◆

◆

● Δa ■ Δb ◆ Δc

2 4 6 8 10 12

-0.5

0.0

0.5

1.0

1.5

iz

1
0

2
Δ
/t

αOR=0.2t; λ=0.22t; g=1.2t

(c)

FIG. 4. We report the spatial profile of the superconducting order parameter ∆α (α = a,b,c) along the z-direction for a slab with nz = 12 layers,
pairing strength g = 1.2 t, and orbital Rashba coupling α = 0.2 t. The OP has been calculated self-consistently described in the main text. In
panel (a) for λ = 0.05 t we find that all the three components of the OP have the same sign (hence the system is in the conventional 0−SC
phase), in (b) and (c) for λ = 0.15 t and λ = 0.22 t, ∆c has opposite sign with respect to ∆a,b thus realizing the unconventional π−SC phase).

Additional terms in the Hamiltonian are: (1) intra-layer
hopping terms,

Hm,‖ =
1
N

nz

∑
iz=1

∑
k

∑
α,β

∑
σ=↑,↓

d†
α,σ (k, iz)εαβ (k)dβ ,σ (k, iz) (3)

where the diagonal terms (εαα ≡ εα ) are those of Sect. II, and

εab(k) =−2tmβ (cos(kx)+ cos(ky))

εac(k) =−2tm(cos(kx)+β cos(ky))

εbc(k) =−2tm(β cos(kx)+ cos(ky))

(2) inter-layer hopping terms

Hm,⊥ =− 1
N ∑
〈iz, jz〉

∑
k

∑
α,β

∑
σ=↑,↓

d†
α,σ (k, iz)t

αβ

⊥ dβ ,σ (k, jz) (4)

where tαβ

⊥ = t⊥ when α = β and tαβ

⊥ = tm,⊥ when α 6= β

(α,β = a,b,c), and 〈...〉 is restricted to adjacent layers.

The results are reported in Fig. 5 for a representative case
of tm = 0.2t and two values of the orbital Rashba coupling
αOR which allow to drive the superconductor into the π-phase
and into the normal metal state as a function of the inter-layer
interaction λ . As one can see, the effects of the inter-orbital
mixing are negligible and the 0-π or 0-Normal phase transi-
tions occur at the same values of the λ coupling as in the case
with tm = 0. This analysis confirms that the phenomenology
is robust to changes in the electronic structure.
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FIG. 5. We compare the results obtained in Figs. 2 b-c (which
are here reproduced as gray lines) with those obtained adding or-
bital mixing hopping terms. We see that the 0-SC to π-SC transi-
tion and the 0-SC to normal state one are unaffected by the inclu-
sion of orbital mixing terms. Specifically, we show the behavior
of the order parameter in the inner side of the system ∆̄ as func-
tion of the surface interlayer coupling λ in the regimes of weak (a)
and strong (b) orbital Rashba interaction, namely αOR = 0.2 t and
αOR = 3.0 t, respectively. In both cases the critical value of λ is
not changed with the inclusion of an orbital mixing hopping term
tm = tm⊥ = 0.2t, the other parameters are as in Fig.2 b-c of main
paper, i.e. nz = 6, t⊥ = 1.5t,µ =−0.4 t,η = 0.1,and β = 0.1.

D. Inter-orbital pairing interaction

Here, we consider the role of the inter-orbital pairing inter-
action. The aims are to assess whether the inter-orbital pairing
influences the phase diagram and the potential link with the
π−phase. The analysis has been performed with and with-
out the inter-orbital hopping. Additionally, we follow a repre-
sentative case of αOR = 0.2t and scan the phase diagram for
different values of λ .

We start by pointing out that the inter-orbital pairing ampli-
tude is expected to be anisotropic in the momentum space,
due to the orbital Rashba terms, and to have a major role
only nearby the points where Fermi lines with different or-
bital character cross each other. Another important aspect is
that the mixing of the orbitals can arise both from the orbital
Rashba couplings and from the inter-orbital hoppings with a
different impact on the inter-orbital pairing. On such basis, we
have taken into account these aspects and analyzed the role of
the inter-orbital pairing interaction on the phase diagram.

The overall outcome is quite clear. Firstly, we find that the
presence of an inter-orbital pairing interaction does not affect
the character and the structure of the phase diagram. This is
confirmed by the fact that the critical λ for the transition into
the π-phase is substantially unaffected by the presence of the
inter-orbital order parameters (Figs. 6 -7).

It is instructive to start considering the nature of the inter-
orbital pairing for the case of vanishing inter-orbital mixing
in the single particle spectrum. Indeed, for such physical cir-
cumstance, we remark that non-vanishing ∆ac and ∆bc occur
only when the inter-layer λ term is non zero and the order pa-
rameters have always a π-phase difference (Fig. 6). This be-
havior clearly indicates that the λ term tends to favour a phase
difference between the inter-orbital order parameters that are
mainly inolved in the π-phase. Thus, the λ coupling shapes
the pair correlations to drive an orbital-dependent phase rear-
rangement of the superconducting state.

FIG. 6. Behavior of the superconducting order parameter compo-
nents ∆αβ = |∆αβ |exp(iφαβ ) (with α,β = a,b,c) [(a) amplitude and
(b) phase] in the central layer (iz = nz/2) as a function of the inter-
layer asymmetric interaction λ for a fixed value of the orbital Rashba
coupling αOR = 0.2t. The other parameters used are the same as in
Fig.2(b) of main paper (i.e. nz = 6, t⊥ = 1.5 t,µ = −0.4t,η = 0.1),
with the additional inclusion of the inter-orbital pairing interaction
god . The amplitude of the inter-orbital OP have been multiplied by
a factor of 10 to be visible in the same plot. ∆aa,∆bb and ∆ab are
real and positive, thus their phases are zero for any λ . We stress that
the values of the diagonal OP, ∆αα ≡ ∆α (with α = a,b,c), do not
change appreciably, if compared with Fig.2(b) of main text, in the
self-consistent evaluation upon the inclusion of the interorbital pair-
ing, hence the onset of the π-phase remain unchanged. We point out
that here the inter-orbital hopping amplitude is zero.

For this physical case, it is also interesting to touch on sym-
metry aspects behind the fact that the order parameters ∆ac
and ∆bc develop a π-phase difference. We argue that their be-
havior reflects the symmetry properties of the λ term. Since
λ coupling breaks the mirror symmetries with respect to the
xz and yz planes ∆ac and ∆bc have to be non-vanishing. How-
ever, we argue that, due to the preservation of one of the mir-
ror symmetry with respect to the diagonal in the xy plane, the
superposition of the order parameters can be conserved thus
favoring a π-phase difference (i.e. their combination cancels
out). Hence, we also argue that the inter-orbital pair corre-
lations act like a seed for inducing a phase rearrangement in
the intra-band superconducting order parameter that optimally
lowers the energy.

Finally, as demonstrated in Fig. 7, the inclusion of the inter-
orbital hoppings indicates that the inter-band π-phase differ-
ence do not occur at small λ and one needs to overcome a
critical threshold for the λ coupling to stabilize a complete
orbital reconstruction of the superconducting state (Fig. 7 (b)-
(c)) that indeed corresponds to the identified π-phase in the
phase diagram.

E. Effects of interlayer hopping

Here, we analyze the influence of the interlayer hopping
t⊥ on the order parameter in the superconducting phase. In
Fig. 8 we show the profile of ∆α(iz) along the z direction for a
superconductor with nz = 6, considering two different values
of OR coupling and several values of t⊥, in absence of the
surface interlayer interaction λ .

The effects of t⊥ can be relevant and indeed the phase dia-
gram reported in the Fig.2 (a) of the main text gets modified.
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FIG. 7. Behavior of the superconducting order parameter components ∆αβ = |∆αβ |exp(iφαβ ) (with α,β = a,b,c) [(a) amplitude and (b-
c) phase of the OP] in the central layer (iz = nz/2) as a function of the inter-layer asymmetric interaction λ for fixed value of the orbital
Rashba coupling αOR = 0.2t. In this analysis orbital mixing hoppings and interorbital pairing are included. The value of the interorbital
hopping parameter here used is tm = tm⊥ = 0.2t, while other parameters are the same as in Fig.2(b) of main paper (i.e. nz = 6, t⊥ = 1.5t,µ =
−0.4t,η = 0.1). It is evident that, even if the amplitudes of the several components have changed from the case with absence of inter-orbital
hoppings and pairing, a π-phase it is still present and its onset occurs at the same value of the parameter λ .

FIG. 8. Spatial profile of the superconducting order parameter
∆α (α = a,b,c) along the z direction at nz = 6 for five different values
of t⊥, in the case of weak (panels (a) and (b)) and strong (panels (c)
and (d)) orbital Rashba coupling. The surface interlayer interaction
λ is set to zero.

A large amplitude of t⊥ with respect to t can destroy the su-
perconducting state, even for small values of αOR and λ . On
the other hand, in the opposite regime of small t⊥ one needs
a significantly large amplification of λ to get into the normal
state. For this circumstance, one can typically obtain only 0-
π superconducting transition. In Fig. 9(a)-(c) we show the
behavior of the order parameter in the inner side the system
∆̄α (i.e. in the central layer iz = nz/2) for t⊥ = 0.9t. We see
that both for weak and strong values of the OR interaction the
0−π SC transition can be achieved.

It is plausible to expect that the effective coherence length
along ẑ is proportional to the out-of-plane Fermi velocity, and
thus one can argue that it scales with the amplitude of the
inter-layer hopping. Such observation implies that the size
of the SC is relevant for observing the SFE. Since the reduc-
tion of t⊥ can alter the phase diagram with the normal state
region being replaced by the π-SC configuration for the same
strength of applied electric field, we predict that the inter-layer
kinetic energy can be a suitable parameter to control the elec-

tric field effects on the superconductivity.

FIG. 9. (a)-(c) Behavior of the order parameter ∆̄α inside the sys-
tem (i.e. in the central layer iz = 3) for t⊥ = 0.9t. In the insets a
schematic phase diagram in the (αOR,λ )-plane is shown, where the
blu line mark the path followed in the figure and the red dot denotes
the transition point. Specifically, in (a) we present the results for
αOR = 0.5t, in (b) for αOR = 3.0t, while in (c) we follow a horizon-
tal path in the (αOR,λ )-plane, with λ = 0.6t varying αOR. Finally,
in (d) we report the spatial profile of ∆c along the z-direction corre-
sponding to the analysis performed in panel (c). Here we see that
while ∆̄c is always negative, ∆c becomes positive in the outer layers
for αOR & 1.3t.

IV. CONCLUSIONS AND DISCUSSION

We have demonstrated that by electrically tuning the sur-
face orbital-polarization one can control both amplitude and
phase of the superconductor. We have explicitly derived the
microscopic origin of the surface couplings as due to the elec-
trostatic potential. The induced interactions generally drive
a complete reconstruction of the superconducting state with
inter-band π−phase as well as superconducting-normal metal
transition. The 0-π phase change is mainly first-order like,
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while the transition from superconductor to normal metal has
weakly first-order precursors of the OP before it continously
goes to zero. Concerning the π-phase, we expect that the
sign frustration leads to an anomalous Josephson coupling in
the case of inhomogeneous thin films. Indeed, in the pres-
ence of non-magnetic disorder, the inter-orbital scattering be-
tween bands having opposite sign in the superconducting OP
will result into a cancellation of the supercurrents and a be-
havior of an unconventional metal. Evidences of this state
can be directly observed by phase sensitive superconducting
interferometry15. Remarkably, the π-phase is compatible with
the magnetic field dependence of the critical electric field that
identifies the tansition from the superconducting state to a
phase with vanishing critical supercurrent33.
The obtained phase transitions are also linked to the character
of the electron itinerancy of the superconducting thin film and,
consequently, to its thickness. We have verified that the EF is
more effective in a regime where the inter-layer kinetic en-
ergy is comparable to the planar one. Furthermore, the energy
scales of the inversion asymmetric potentials at the surface for
achieving the transitions are comparable to the bare hopping.
This observation sets a clear reference for the electrical and
orbital tunability of the superconducting phase. We point out
that, since λ and αOR are proportional to the EF, with t|| ∼ 100
meV, we predict that an electric field ∼ 30 mV/Å would suf-
fice to observe the superconducting phase transitions, which is
in the range of the experimental observations11–15. We prove
that the proportionality factor is a function of inter-atomic dis-
tances and of the distortions/strains at the surface. Our find-
ings thus indicate relevant paths for designing devices with
electrically tunable superconducting orbitronics effects. In
particular, central of our proposal is that the bands at the Fermi
level can develop a non-vanishing orbital momentum, a fact
that is ubiquituous in SCs with p- and d-bands at the Fermi
level. Along this line, we predict that heterostructures with
few layers of strong strainable and orbitally polarizable mate-
rials deposited on the surface of conventional superconductors
would magnify the EF effects.
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Appendix A: Microscopic derivation of the interactions induced
by the surface electric field

The external electric field on the surface of the supercon-
ductor is parallel to the ẑ− direction and can be described
by a potential Vs = −Esz with Es being constant in ampli-
tude (assuming the electric charge e is unit). Following the
approach that has been already applied to derive the surface
orbital Rashba coupling29–31 we consider a Bloch state rep-

resentation and explicitly evaluate the matrix elements of the
electrostatic potential Vs. Since the translational symmetry is
broken along the z− direction, both for the finite thickness of
the thin film and for the presence of the electric potential, the
momentum is not a good quantum number. Thus, a represen-
tation with a Bloch wave function associated to each layer is
suitable to evaluate the effects of the electric field and the way
it enters in the tight-binding modelling. Hence, we introduce
the index iz to label different Bloch wave functions along the
z− direction as follows

ψk,β (r, iz) =
1√
N ∑

ν

exp[ik ·Rν ,iz ]φβ (r−Rν ,iz) (A1)

with the Bravais vector Rν ,iz identifying the position of the
atoms in the x− y plane for the layer labelled by iz, β indi-
cating the atomic Wannier orbitals, and N the total number of
atomic sites. Here, it is central that the atomic Wannier func-
tions span a manifold with non-vanishing angular momentum
L. To proceed further, we demonstrate how orbitally driven
Rashba-like splitting occur in a d- (or equivalently p-) mani-
fold restricting to the three-orbital subspace {dxy,dxz,dyz} (or
{px, py, pz}) due to the presence of the inversion symmetry
breaking potential Vs by evaluating the corresponding matrix
elements for the above introduced Bloch states.
For the derivation and the computation it is useful to introduce
the following functions for the d-orbitals, for a given atomic
position Rν ,iz

φxy(r) = f (r)xy exp
[
− Zr

naM

]
φxz(r) = f (r)xz exp

[
− Zr

naM

]
φyz(r) = f (r)yz exp

[
− Zr

naM

]
(A2)

with f (r)= 1
4

√
15
π

(
−
[(

2Z
naM

)3 (n−3)!
2n[(n+2)!]3

]1/2
)(

2Z
naM

)2
L5

n+2(t),

Z being the atomic number, n the principal quantum number,
t = 2Zr/(naM), aM = a0(1+me/M) with a0 the Bohr radius,
me and M the mass of the electron and nucleus, and Lq

p(t)
the associated Laguerre polynomials. These d-orbitals can be
linked with the eigenstates {|0〉, |1〉, |1̄〉} of the Lz component
of an effective L = 1 angular momentum with quantum
numbers {0,1,−1} by the following relations

〈r|0〉 → φxy(r)

〈r|1〉 → 1√
2
[−iφxz(r)−φyz(r)]

〈r|1̄〉 → 1√
2
[−iφxz(r)+φyz(r)] . (A3)

As done in the main text, (a,b,c) will be used to indicate the
(dyz,dxz,dxy) orbitals.

Now, in order to evaluate the consequence of the electro-
static potential, we need to determine the matrix elements in
the Bloch state representation within the same layer and in the
neighbors layers along the z-direction. These terms will pro-
vide, in turn, the amplitude of the orbital Rashba coupling αOR
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FIG. 10. Schematic figure describing the atomic positions for the determination of the electrostatic energy associated to the intra- and inter-
layer electronic processes. (a) sketch of the nearest neighbor atomic positions along the (x,y,z) symmetry directions. (b) and (c) describe
schematically the in-plane displacements that are related with the inter-layer orbital Rashba coupling.

and λ , respectively. Let us start by calculating the intra-layer
interaction

A||p,q =cψ〈ψk,p(r, iz)|(−Esz)|ψk,q(r, iz)〉

=cψ(−Es)
1
N ∑

ν ,γ

exp[ik ·
(
Rν ,iz −Rγ,iz

)
]×

×
∫

d3rφ
∗
p(r−Rν ,iz)zφq(r−Rγ,iz) (A4)

with p and q spanning the orbital index, and cψ the normaliza-
tion factor of the Bloch state. Since the functions φp(r−Rγ,iz)
are strongly localized around each atomic position one can
restrict the summation to leading terms which are those cor-
responding to the same site, i.e. Rν ,iz = Rγ,iz , and to nearest-
neighbor sites, i.e. Rν ,iz = Rγ,iz±ax,y, with ax,y being the con-
necting vectors of nearest-neighbor atoms in the x− y plane.
The term for Rν ,iz = Rγ,iz is zero due to the odd-parity sym-
metry of the atomic functions. Then, assuming that the dis-
tance between two in-plane nearest-neighbor atoms is R||, the
amplitude A|| can be expressed in a matrix form as

Â|| = cψ(−Es)R|| I||(R||;Z,n)
[
sin(kxR||)Ly− sin(kyR||)Lx

]
(A5)

with I||(R||;Z,n) being a function of the relative atomic dis-
tance R||, the atomic number Z and the principal quantum
number of the Wannier functions n, respectively. Hence, com-
paring A|| with the term of the Hamiltonian associated with the
orbital Rashba coupling, we conclude that the strength of the
orbital Rashba coupling αOR is expressed as

αOR = (−Es)R|| I||(R;Z,n)cψ (A6)

and it is proportional to the intensity of the applied elec-
tric field Es and to the amplitude I||(R||;Z,n). The form
of Â|| in Eq. A5 is due to the structure of the expectation
values of the electrostatic potential between neighbors Wan-
nier functions. If we consider schematically the atomic po-
sitions PA = [0,0,−R⊥

2 ], PB = [0,0, R⊥
2 ], PC = [R||,0,−R⊥

2 ],
PD = [0,R||,−R⊥

2 ], for a cubic geometry in Fig. 10(a), we
have that

〈φA,m|Esz|φC,m〉= 0 for m = a,b,c (A7)
〈φA,a|Esz|φC,b〉= 〈φA,b|Esz|φC,c〉= 0 (A8)
〈φA,a|Esz|φC,c〉=−EsR||I||(R||;Z,n) (A9)
〈φA,c|Esz|φC,a〉=+EsR||I||(R||;Z,n) . (A10)

The same expressions are obtained along the y directions for
the orbitals b and c. In a similar way, one can proceed for the
matrix elements of the electrostatic potential between Bloch
states in adjacent layers expressed as

A⊥p,q =cψ〈ψk,p(r, iz)|(−Esz)|ψk,q(r, iz±1)〉 . (A11)

As for the in-plane amplitude, one can expand the summation
over all the Bravais lattice. However, in this case there are
contributions which are non-vanishing for Rν ,iz =Rγ,iz±1 and,
thus, we focus on these contributions

A⊥p,q = cψ(−Es)
∫

d3rφ
∗
p(r−Rν ,iz)zφq(r−Rν ,iz±1) .(A12)

To proceed further we notice that the amplitude A⊥p,q is in gen-
eral complex because the electric field induces a time depen-
dent vector potential along the z-direction that affects the rel-
ative phase of the Bloch functions in neighbor layers. This
implies that one cannot fix the gauge in a way that the Bloch
states in adjacent layers at the surface, e.g. ψk,p(r, iz = 1)
and ψk,p(r, iz = 2), have the same phase. This is an over-
all phase factor that does not influence the amplitude of the
term A⊥p,q. Below, we proceed by considering the contribu-
tion which leads to a coupling between the electric field and
the orbital polarization. The form of A⊥ is due to the strucure
of the matrix elements of the electrostatic potential between
Wannier functions in neighbor layers along the z−direction.
Hence, one has to evaluate the following integrals∫

d3rφ
∗
p(r−Rν ,iz)zφq(r−Rν ,iz±1) . (A13)

for nearest neighbor atoms along the z-direction as schemati-
cally shown in Fig. 10.

For the inter-layer term, it turns out that the electric field can
induce an orbital polarization on nearest neighbors atoms only
if one allows for displacements/distortions of the atoms in the
plane with respect to the high-symmetry positions. This phys-
ical scenario is sketched in Fig. 10(b,c). The analysis is per-
formed by considering the following positions for the atoms
A
′

and B
′

in the plane, PA′ = [− d||
2 ,0,−R⊥

2 ], PA′ = [
d||
2 ,0, R⊥

2 ].
As for the intra-plane case, we have that the relevant non-
vanishing integrals are those related to the Lx and Ly com-
ponents of the angular momentum, namely we have the Ly
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component that is active for an atomic displacement along the
x-direction. Within a first order expansion in d||/R⊥ one ob-
tains

〈φA′,a|Esz|φB′,a〉= 〈φA′,b|Esz|φB′,b〉= 〈φA′,c|Esz|φB′,c〉= 0
〈φA′,a|Esz|φB′,b〉= 0
〈φA′,c|Esz|φB′,a〉=−〈φA′,a|Esz|φB′,c〉= Esd||I⊥(R⊥;Z,n)
〈ψA′,b|Esz|ψB′,c〉= 0 . (A14)

A similar analysis for a distortive mode along the y-direction
would give a non-vanishing amplitude only for the wave func-
tions φc and φb. Assuming that the atomic distorsions along
the x- and y-directions have the same amplitude (Fig. 10(c)),
the resulting expression for the matrix Â⊥ is

Â⊥ = Esd||I⊥(R⊥;Z,n)cψ(Lx +Ly) . (A15)

Hence, comparing the structure of Â⊥ with the inter-layer
asymmetric interaction introduced in the Hamiltonian, we
have that

λ = Esd||I⊥(R⊥;Z,n)cψ . (A16)

There are various observations that can be made from the
achieved result. Firstly, the inter-layer λ coupling is pro-
portional to the applied electric field. Moreover, the electric
field penetrating in the skin of the metallic film can couple to
the electronic structure by enhancing the orbital polarization
through an induced in-plane strain modes. The relative sign
of the coefficient in front of the angular momentum operators
is not relevant and can be absorbed in the form of the wave
function. Moreover, having derived the microscopic expres-
sion for λ and αOR one can obvserve that their ratio is given
by

rE =
αOR

λ
=

R||
d||

I||(R||;Z,n)
I⊥(R⊥;Z,n)

(A17)

For a cubic geometry (i.e. R⊥=R||=R) and for n= 3 one can
demonstrate that I⊥(R;Z,n) = I||(R;Z,n). However, in thin
films R|| is typically larger than R⊥ due to the vertical con-
finement and thus the coefficient I⊥(R;Z,n) can be larger than
I||(R;Z,n) due to the exponential dependence on the inter-
atomic distance. Furthermore, since the electric field can in-
duce surface strains of the order of 2% with applied electric
field of about 0.3V/Å ,34 and assuming the differences in the
atomic distances, one can estimate rE to have a magnitude
varying from about 2 to 20. A detailed quantitative assess-
ment in term of the atomic number and of the inter-atomic
distances is beyond the scope of the present manuscript.

Appendix B: Monolayer superconductivity with orbital Rashba
coupling

For a monolayer configuration, the presence of the orbital
Rashba (OR) coupling tends to reduce the strength of the su-
perconductivity by inducing a suppression of the order param-
eter (OP). This behavior is explicitly demonstrated in Fig. 11,

where the superconducting OP amplitude for each band, self-
consistently determined, exhibits a monotonous decrease as a
function of αOR. We have also considered the self-consistent
value of ∆α while changing αOR assuming different values of
the pairing coupling g. We find that the amplitudes are in gen-
eral scaled by means of the pairing coupling g and thus in the
following and in the main text we have performed the calcu-
lation assuming g = 2.0 t. The scaling behavior is reported in
the Fig. 12.

FIG. 11. Plot of the self-consistent superconducting order parameter
∆α (α = a,b,c) as function of αOR/t for g = 2.0t in a monolayer
system. ∆0 is the pairing amplitude in absence of OR effect (i.e for
αOR = 0) for the orbitally isotropic case (∆a = ∆b = ∆c).

The behavior of the order parameter is almost collapsing
on the same curve as a function of αOR/g. This result implies
that the amplitude of the superconducting gap on the surface
substantially depends on the ratio between the orbital Rashba
coupling and the pairing interaction strength.

FIG. 12. Behavior of the superconducting order parameter (OP) ∆ in
a monolayer as a function of the orbital Rashba interaction parameter
(αOR), for different values of the pairing strenght g. The OP is here
assumed orbitally-uniform, i.e. with ∆a = ∆b = ∆c. We observe that
the smaller the value of g the stronger the effect of suppression and
reduction of the OP due to the orbital Rashba effect. Inset: Behavior
of the SC OP in a monolayer in absence of OR effects (∆0) as a
function of g. This value is used as a scale for ∆.
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Appendix C: Competing phases and character of the phase
transitions

In this section, we study the free energy of the examined
model Hamiltonian by considering the order parameter ∆α(iz)
as uniform through the layers and isotropic in the orbital
channels. The analysis is done by introducing the variable
∆ which is the common amplitude of the OPs in the vari-
ous orbital channels, i.e. |∆a| = |∆b| = |∆c| = ∆, while the
sign is added when evaluating the π-SC configuration (i.e.
∆c =−∆a,b =−∆).
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FIG. 13. (a)-(b) Plot of the value of ∆ that minimizes the free energy
varying λ (with |∆a| = |∆b| = |∆c| = ∆), for weak (panel (a)) and
strong (panel (b)) orbital Rashba strength. The blue line corresponds
to the analysis in which ∆α (α = a,b,c) have all the same sign, the
magenta line instead refers to a configuration with ∆c having an op-
posite sign with respect to ∆a,b. We observe that in (a) we have a
transition (around λ ' 0.16t to the π-SC state). (c)-(f) Plots of the
free energy as a function of ∆ for several values of λ in different
cases, namely: (c) for weak αOR and ∆α > 0 with λ/t ∈ [0,0.4]; (d)
for strong αOR and ∆α > 0 and λ/t ∈ [0,0.24]; (e) for weak αOR
and ∆c < 0 and λ/t ∈ [0,0.4]; and finally in (f) for strong αOR and
∆c < 0 and λ/t ∈ [0,0.12]. For the four free energy plots the differ-
ent lines refer to inequivalent values of λ , for the reported ranges,
starting from λ = 0 (red bottom line), up to the highest value of λ

analyzed, following the rainbow colors with step 0.02t.

Representative cases of weak and strong OR effect, namely
with αOR = 0.3t and αOR = 3.0t respectively, are reported in
Figs. 13. We have considered a system with nz = 6 layers and
with interlayer hopping t⊥ = 1.5t. Similarly to the full self-
consistent analysis (see Fig. 2 in the main text), we find that
the increase of λ drives a transition between 0-SC and π-SC
states for weak αOR (see Fig. 13(a)), and a transition from SC
to normal state for strong αOR (see Fig. 13(b))). Indeed, for

αOR = 0.3t comparing the panels (c) and (e) of Fig. 13, we
see that for λ > 0.16t the case with ∆c < 0 has an energeti-
cally more favorable solution. This transition if of first order,
since we have a discontinouity in the first derivative of the free
energy.

For larger values of αOR, the free energy of the case with
∆c < 0 has a minimum only for ∆ = 0 (i.e. normal state
solution) as can be easily deduced from Fig. 13(f). Hence,
for αOR = 3.0t the system never reaches the π-SC phase and
we observe a continuous transition from SC to normal state
by following the free energy minima, as shown in Fig. 13(b)
and (d), for λ ' 0.21t. The values of the transition points
are slighlty different from those reported in the phase diagram
(Fig. 2(a) of the main paper), since in the present analysis we
are assuming an uniform and isotropic superconducting OP.

Indeed, for strong OR effect, the uniform profile of the
OP within the whole superconductor is not a good assump-
tion since the values of ∆α(iz) in the outer layers are strongly
suppressed, compared to those in the inner layers, as can be
seen in Fig. 8(c)-(d). Hence, for αOR = 3.0t we have also per-
formed an analysis in which we assume that the order param-
eter is zero in the outer layers and uniform in the remaining
ones. Results are reported in Fig. 14, where we observe the
presence of multiple minima and the increase of λ drives a
weak first order transition before the continuous second order
SC-normal transition is achieved.
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FIG. 14. Plot of the energy difference (E(∆)−E(0)) as a function
of the order parameter ∆ (assuming that |∆a| = |∆b| = |∆c| = ∆) for
several values of λ close to the critical point for strong OR coupling
(αOR = 3.0t). The system has nz = 6 layers and t⊥ = 1.5t. The
analysis has been made by assuming that the superconducting order
parameter is zero in the outer layers and uniform in the inner ones.
In the inset (a) there is a zoom for four values of λ , underlying the
presence of multiple minima and hence the occurrence of a first order
phase transition. (b) Behavior of the order parameter as a function of
the orbital mixing term λ . After the small discontinuity the second
minimum goes smoothly to zero.
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FIG. 15. Vector plots of LLL(kx,ky) per layer in the Brillouin zone, for a superconducting system with 10 layers, in the case of weak (αOR = 0.5t)
and strong (αOR = 3.0t) orbital Rashba effect. Lz = 0 everywhere. In the first and third column we show the vector plots for λ = 0, while in
the second and fourth we show the difference ∆LLL between the vectors LLL for λ = 0.3t and λ = 0. In each row we present the behavior in each
layer labeled by iz. Since the system is symmetric, layers from 6 to 10 are not shown. The arrows are colored according to the magnitude of
the vector field (see the legend at the bottom), with intensities that are scaled to unity. In each panel, the magnitude of LLL is also represented by
the dimension of the arrows.
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Appendix D: Layer dependent orbital polarization

Finally, we present the layer dependent orbital polarization
for a superconducting heterostructure with nz = 10. The anal-
ysis is performed by considering firstly the role of the OR cou-
pling at the surface and how the obtained orbital polarization
in the Brillouin zone is also transferred inside the inner layers
(first and third column of Fig. 15). Starting from the case at
λ = 0, one can observe a chiral texture of the orbital compo-
nents with windings around the high symmetry points of the
Brillouin zone (BZ). In particular the winding around the Γ

point at (kx,ky) = (0,0) is opposite to that occuring around the
M point at (π,π) with a domain wall in between the (0,±π)
and (±π,0) points. We observe that moving from the surface
to the inner layers, the domain walls proliferate and there are

extra structures emerging along the diagonal of the BZ with
opposite orbital chirality. We notice that the presence of the
orbital Rashba coupling at the surface is sufficient to induce
a non-trivial orbital polarization into the inner layers of the
superconductor (see first and third columns of Fig. 15).

The effect of λ is then investigated by evaluating the differ-
ence in the orbital texture with respect to the configurations
with λ = 0 by keeping the samle amplitude of αOR. As one
can see in the second and fourth column of Fig. 15, the effect
of λ is to amplify the formation of pockets of orbital textures
with inequivalent or opposite orientation of the orbital polar-
ization thus indicating an orbital connectivity which is less
regular if compared to the case without λ . Such structure of
the orbital texture in the reciprocal space contributes to re-
duce the superconducting pairing which is maximally favored
for electron pairs without any orbital polarization.
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and M. Bode, A combined experimental and theoretical study of
Rashba-split surface states on the

√
3×
√

3 Pb/Ag(111) R30◦ sur-
face, New J. Phys. 16, 045017 (2014).

23 S. Schirone, E. E. Krasovskii, G. Bihlmayer, R. Piquerel, P. Gam-
bardella, and A. Mugarza, Spin-Flip and Element-Sensitive Elec-
tron Scattering in the BiAg2 Surface Alloy, Phys. Rev. Lett. 114,
166801 (2015).

24 P. D. C. King, S. McKeown Walker, A. Tamai, A. de la Torre,
T. Eknapakul, P. Buaphet, S.-K. Mo,W. Meevasana, M. Bahramy,
and F. Baumberger, Quasiparticle dynamics and spinorbital tex-
ture of the SrTiO3 two-dimensional electron gas, Nat. Communs.
5, 3414 (2014).

25 H. Nakamura, T. Koga, and T. Kimura, Experimental Evidence of
Cubic Rashba Effect in an Inversion-Symmetric Oxide, Phys. Rev.
Lett. 108, 206601 (2012).

26 Y. Fukaya, S. Tamura, K. Yada, Y. Tanaka, P. Gentile, and
M. Cuoco, Spin-orbital hallmarks of unconventional supercon-
ductors without inversion symmetry, Phys. Rev. B 100, 104524
(2019).

27 I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Un-
conventional Superconductivity with a sign reversal in the order



14

paramente of LaFeAsO1−xFxPhys. Rev. Lett. 101, 087004 (2008),
Phys. Rev. Lett. 101, 057003 (2008).

28 K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani,
and H. Aoki, Unconventional pairing originating from the discon-
nected Fermi surfaces of superconducting LaFeAsO1−xFx, Phys.
Rev. Lett. 101, 087004 (2008).

29 S. R. Park, C. H. Kim, J. Yu, J. H. Han, and C. Kim, Orbital-
Angular-Momentum Based Origin of Rashba-Type Surface Band
Splitting, Phys. Rev. Lett. 107, 156803 (2011).

30 J.-H. Park, C. H. Kim, J.-W. Rhim, and J. H. Han, Orbital Rashba
effect and its detection by circular dichroism angle-resolved pho-
toemission spectroscopy, Phys. Rev. B 85, 195401 (2012).

31 B. Kim, P. Kim, W. Jung, Y. Kim, Y. Koh, W. Kyung, J. Park,

M. Matsunami, Shin-ichi Kimura, J. S. Kim, J. H. Han, and C.
Kim, Microscopic mechanism for asymmetric charge distribution
in Rashba-type surface states and the origin of the energy splitting
scale, Phys. Rev. B 88, 205408 (2013).

32 J. C. Slater and G. F. Koster, Simplified LCAO Method for the
Periodic Potential Problem, Phys. Rev. 94, 1498 (1954).

33 L. Bours, M. T. Mercaldo, M. Cuoco, E. Strambini, and F. Gi-
azotto, Unveiling mechanisms of electric field effects on super-
conductors by magnetic field response, Phys. Rev. Research. 2,
033353 (2020).

34 X. Ben and H.S. Park, Atomistic simulations of electric field ef-
fects on the Young’s modulus of metal nanowires, Nanotechnol-
ogy 25, 455704 (2014).


	Electrically Tunable Superconductivity Through Surface Orbital Polarization
	Abstract
	I Introduction
	II Model and methodology
	III Results
	A Phase diagram
	B Role of the pairing interaction strength
	C Role of inter-orbital mixing for the single-particle electronic states
	D Inter-orbital pairing interaction
	E Effects of interlayer hopping

	IV Conclusions and discussion
	 Acknowledgments
	A Microscopic derivation of the interactions induced by the surface electric field
	B Monolayer superconductivity with orbital Rashba coupling
	C Competing phases and character of the phase transitions
	D Layer dependent orbital polarization
	 References


