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Abstract. The Any-World Assumption (AWA) has been introduced for normal
logic programs as a generalization of the well-known notions of Closed World
Assumption (CWA) and the Open World Assumption (OWA). The AWA allows
any assignment (i.e., interpretation), over a truth space (bilattice), to be a de-
fault assumption and, thus, the CWA and OWA are just special cases. To answer
queries, we provide a novel and simple tabling-like top-down procedure, which
focuses on computing all answers to a query.

1 Introduction

The Any-World Assumption (AWA) for normal logic programs [27] is a generalization
of the notions of the Closed World Assumption (CWA) (which asserts that by default
the truth of an atom is false) and the Open World Assumption (OWA) (which asserts
that the truth of the atoms is supposed to be unknown by default). Essentially, the AWA
allows any interpretation over a truth space to be a default assumption. The truth spaces
considered are so-called bilattices [19] and the semantics generalizes the notions of
Kripke-Kleene, well-founded and stable model semantics [13, 14, 16, 38].

The AWA has many applications (see [27]), among which: (i) it covers Extended
Logic Programs (ELPs) (e.g., [1, 2, 17]); (ii) it covers many-valued logic programming
with non-monotone negation (e.g., [8, 35]); and (iii) it allows to represent default rules
by relying on the so-called abnormality theory [30, 31].

In [27] a declarative and a fixed-point characterization for the AWA is presented. As
a consequence, in order to answer queries we have to compute the intended model I of
a logic program P by a bottom-up fixed-point computation and then answer with I(A).
[36] provides a top-down query answering procedure. However, it requires the ground-
ing of the logic program. Furthermore, queries are ground atoms only. This approach
is clearly not satisfactory in case we are looking for all answers to a query atom of the
form q(x). Indeed, the size of the grounded instance of a logic program as well as the
number of query instances q(c) to query may be large and generally exponential with
respect to the size of the non-ground expressions.

The topic of this paper is to further improve the query answering procedure related
to the AWA. We present a simple, yet general tabulation-like top-down query answering
procedure, which focuses on computing all answers of a query. This is important as it is
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quite natural that a user would like the answers c to a query q(x) be ranked according
to the degree of q(c). A distinguishing feature of our query answering procedure is that
we do not determine all answers by discovering all proofs, but rather apply a variant of
so-called memoing techniques developed for classical logic programming – e.g., [39]
for an overview. Essentially, the basic idea of our procedure is to collect, during the
computation, all correct answers incrementally together in a similar way as it is done
for classical Datalog [3, 37, 39]. Hence, for instance, we do not rely on any notion of
atom unification, but rather iteratively access relational tables using relational algebra.
Besides being the procedure novel for the AWA, we get for free a novel top-down
query procedure for many-valued normal logic programs. This is the first time the issue
of computing all answers has been addressed for many-valued normal logic programs
under the OWA, CWA or more generally under the AWA in a many-valued semantics
setting.

We proceed as follows. In the next two sections we recall a minimum of definitions
about the AWA. Then we present our top-down query procedure.

2 Preliminaries

Bilattice. The truth spaces we consider are bilattices [19]. Bilattices play an important
role in (especially in theoretical aspects of) logic programming, and in knowledge rep-
resentation in general, allowing to develop unifying semantical frameworks [13–15]. A
bilattice [19, 14] is a structure B = 〈B,�t,�k〉 where B is a non-empty set and �t

(the truth order) and �k (the knowledge order) are both partial orderings giving B the
structure of a complete lattice. Meet (or greatest lower bound) and join (or least upper
bound) under �t are denoted ∧ and ∨, while meet and join under �k are denoted ⊗
and ⊕. Top and bottom under �t are denoted t and f, and top and bottom under �k

are denoted> and⊥, respectively. We assume that each bilattice has a negation, i.e., an
operator ¬ that reverses the �t ordering, leaves unchanged the �k ordering, and veri-
fies ¬¬x = x 1. We also provide a family F of �k and �t-monotone n-ary functions
over B to manipulate truth values. Furthermore, we assume that bilattices are infinitary
distributive bilattices in which all distributive laws connecting ∧,∨,⊗ and ⊕ hold. Fi-
nally, we also assume that every bilattice satisfies the infinitary interlacing conditions,
i.e., each of the lattice operations ∧,∨,⊗ and ⊕ is monotone w.r.t. both orderings (e.g.,
x �t y and x′ �t y′ implies x⊗ x′ �t y ⊗ y′).

Bilattices have been used in several ways. For instance, the simplest non-trivial bi-
lattice, FOUR [4] (B = {f, t,⊥,>}, f �t ⊥,> �t t,⊥ �k f, t �k >,¬f =
t,¬⊥ = ⊥,¬> = >), allows to deal with incomplete and/or inconsistent informa-
tion. Fitting provided a fixed-point characterisation of stable model semantics on bi-
lattices [13, 14]. Other well-established applications of bilattices can be found in the
context of reasoning under paraconsistency, imprecision and uncertainty (see, e.g. [2,
5, 7, 8, 23–27, 35]). In practice, bilattices come up in natural ways. Indeed, there are

1 The dual operation to negation is conflation i.e., an operator ∼ that reverses the �k ordering,
leaves unchanged the �t ordering, and ∼∼ x = x. We do not deal with conflation in this
paper.
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two general, but different, construction methods, which allow to build a bilattice from
a lattice and are widely used (see also [13, 19]).

Generalized logic programs. We extend logic programs where computable functions
f ∈ F are allowed to manipulate truth values (see [35, 36]). 2 That is, we allow any
f ∈ F to appear in the body of a rule to be used to combine the truth of the atoms
appearing in the body. The language is sufficiently expressive to accommodate almost
all frameworks on many-valued logic programming with or without negation [35].

A term, t, is either a variable or a constant symbol. An atom, A, is an expression
of the form p(t1, . . . , tn), where p is an n-ary predicate symbol and all ti are terms. A
literal, L, is of the form A or ¬A, where A is an atom. A formula, ϕ, is an expression
built up from the literals, the truth values b ∈ B of the bilattice and the functions
f ∈ F . Note that the members of the bilattice may appear in a formula, as well as
functions f ∈ F . A rule is of the form A← ϕ where A is an atom and ϕ is a formula.
For instance, p ← max(0, q + r − 1) is a rule dictating that p is at least as true as the
conjunction of q and r with respect to the Lukasiewicz t-norm x∧y = max(0, x+y−1).
A generalized normal logic program, or simply logic program, P , is a finite set of rules.

The notions of Herbrand universe HP of P and Herbrand base (as the set of all
ground atoms) BP of P are as usual. Additionally, given P , the generalized normal
logic program P∗ is constructed as follows:

1. set P∗ to the set of all ground instantiations of rules in P;
2. replace several rules in P∗ having same head, A ← ϕ1, A ← ϕ2, . . . with A ←

ϕ1 ∨ ϕ2 ∨ . . . (recall that ∨ is the join operator of the bilattice); and
3. if an atom A is not head of any rule in P∗, then add the rule A ← f to P∗ (it

is a standard practice in logic programming to consider such atoms as false). This
already acts as a kind of default assumption on non-derivable facts. We will change
this point once we allow any default value as assumption later one.

Note that in P∗, each atom appears in the head of exactly one rule and that P∗ is finite.
We next recall the usual semantics of logic programs over bilattices (cf. [27]). For

ease, we will rely on the following simple example to illustrate the concepts we intro-
duce in the paper.

Example 1. Consider the logic program P with the following rules.

q(x)← q(x) ∨ ¬r(x)
p(x)← p(x)
r(a)← t r(b)← f

In Table 1 we report three models Ii of P , the Kripke-Kleene and the well-founded
model of P marked by bullets. The other tables will be discussed later on.

2 With computable we mean that for any input, the value of f can be determined in finite time.
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Ii

q(a) q(b) r(a) r(b) p(a) p(b) KK(P) WF (P)

I1 ⊥ t t f ⊥ ⊥ •
I2 f t t f f f •
I3 t t t f t f

Hi

q(a) q(b) r(a) r(b) p(a) p(b)

H1 f f f f f f

H2 f f f f f f

H3 t f f f t f

sHi
P (Ii)

q(a) q(b) r(a) r(b) p(a) p(b) UP(Ii)

I1 f ⊥ ⊥ f f f {q(a), r(b), p(a), p(b)}
I2 f ⊥ ⊥ f f f {q(a), r(b), p(a), p(b)}
I3 ⊥ ⊥ ⊥ f t f −

Table 1. Models, Kripke-Kleene, well-founded and H-founded models of P .

Interpretations. An interpretation I on the bilattice B = 〈B,�t,�k〉 is a mapping
from atoms to members of B. I is extended from atoms to formulae in the usual way:
(i) for b ∈ B, I(b) = b; (ii) for formulae ϕ and ϕ′, I(ϕ ∧ ϕ′) = I(ϕ) ∧ I(ϕ′),
and similarly for ∨,⊗,⊕ and ¬; and (iii) for formulae f(A), I(f(A)) = f(I(A)),
and similarly for n-ary functions. �t,�k are extended from B to the set I(B) of all
interpretations point-wise: (i) I1 �t I2 iff I1(A) �t I2(A), for every ground atom A;
and (ii) I1 �k I2 iff I1(A) �k I2(A), for every ground atom A. With If and I⊥ we
denote the bottom interpretations under �t and �k respectively (they map any atom
into f and ⊥, respectively). 〈I(B),�t,�k〉 is a bilattice as well.

Models. I is a model ofP , denoted I |= P , iff for all A← ϕ ∈ P∗, I(A) = I(ϕ) holds.
Note that usually a model has to satisfy I(ϕ) �t I(A) only, i.e., A← ϕ ∈ P∗ specifies
the necessary condition on A, “A is at least as true as ϕ”. But, as A ← ϕ ∈ P∗ is the
unique rule with head A, the constraint becomes also sufficient (see e.g., [14, 27, 28]).
Among all the models, two models play a special role: namely the Kripke-Kleene model
(KKP ), which is the �k-least model of P , and the Well-Founded model (WFP ) [13,
14, 38]. It is well-know that the WFP is more informative (provides more knowledge)
than KKP . For the definition of the well-founded semantics over bilattices refer to [13,
14, 28]. It is the generalization of the classical well-founded semantics to bilattices. We
obtain it as a special case of the AWA, too. Furthermore, we note that the existence and
uniqueness of KKP is guaranteed by the fixed-point characterization based on the �k-
monotone function ΦP : for an interpretation I , for any ground atom A with (unique)
A← ϕ ∈ P∗,

ΦP(I)(A) = I(ϕ) .

Then all models ofP are fixed-points of ΦP and vice-versa, and KKP can be computed
in the usual way by iterating ΦP over I⊥.

Classical logic programs. In classical logic programs the body is a conjunction of
literals, i.e., for A← ϕ ∈ P∗ (except for the case A← f ∈ P∗) ϕ = ϕ1∨ . . .∨ϕn and
ϕi = Li1∧. . .∧Lin . For a set of literals X , with¬.X we indicate the set {¬L : L ∈ X},
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where for any atom A, ¬¬A is replaced with A. A classical interpretation (total or
partial) can be represented as a consistent set of literals, i.e., I ⊆ BP ∪ ¬.BP and for
all atoms A, {A,¬A} 6⊆ I . Of course, the opposite is also true, i.e., a consistent set of
literals can straightforwardly be turned into an interpretation over FOUR.

The classical WF semantics has been defined in terms of the well-known notion of
unfounded set (see e.g., [20, 38]), which identifies the set of atoms that can safely be
assumed false if the current information about P is given by an interpretation I . Indeed,
given a partial classical interpretation I and a classical logic program P , a set of ground
atoms X ⊆ BP is an unfounded set (i.e.,, the atoms in X can be assumed as false) for
P w.r.t. I iff for each atom A ∈ X , if A ← ϕ ∈ P∗, where ϕ = ϕ1 ∨ . . . ∨ ϕn and
ϕi = Li1 ∧ . . . ∧ Lin

, then ϕi is false either w.r.t. I or w.r.t. ¬.X , for all 1 ≤ i ≤ n.
The greatest unfounded set for P w.r.t. I (which exists) is denoted by UP(I). Then, the
well-founded semantics WFP is defined to be [20]:

WFP = “ �k-least model I of P such that ¬.UP(I) ⊆ I”.

As we will see next, the AWA generalizes this notion.

3 The AWA in logic programming

A hypothesis (denoted H) is always an interpretation over a bilattice and represents our
default assumption over the world.

The principle underlying the Any-World Assumption (AWA) is to regard an hypoth-
esis H as an additional source of default information to be used to complete the implicit
knowledge provided by a logic program. The AWA H dictates that any atom A, whose
truth-value cannot be inferred from the facts and rules, is assigned to the default truth
value H(A). For comparison, under the CWA, H = If is assumed, while under the
OWA, H = I⊥ is assumed. Also note that any ground atom A not appearing in the
head of any rule and, thus, not derivable, is mapped (up to now) into ‘false’. Now, ac-
cording to the AWA, any such atom A should be mapped into H(A). If not specified
otherwise, we change Point 3. of the definition of P∗ by adding A ← H(A) to P∗.
It should be noted that this implicitly affects also all definitions based on P∗, e.g., the
definitions of model and that of ΦP (which now maps such atoms into H(A) rather than
into f). To emphasize the impact of H to ΦP , we denote the immediate consequence
operator with ΦH

P in place of ΦP . Now, we proceed in two steps.

The support. At first, we introduce the notion of support, denoted sH
P (I). The support is

a generalization of the notion of unfounded sets. Indeed, sH
P (I) determines the amount

of default information, taken from H , that can safely be joined to I . The support gen-
eralizes the notion of unfounded sets as it turns out that for classical logic programs P
and H = If (see Table 1), sH

P (I) = ¬.UP(I) [27].
The principle underlying the support can be explained as follows. Consider a ground

atom A and the rule A← ϕ ∈ P∗, an interpretation I , which is our current knowledge
about P , and a hypothesis H . We would like to determine how much default knowledge
can be ‘safely’ taken from H to complete I . So, let us assume that J �k H amounts
to the default knowledge taken from H . J(A) is the default information provided by
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J to the atom A. The completion of I with J is the interpretation I ⊕ J . In order to
accept this completion, we have to ensure that at least the assumed knowledge J(A) is
entailed by P w.r.t. the completed interpretation I⊕J , i.e., for A← ϕ ∈ P∗, J(A) �k

(I ⊕ J)(ϕ) = ΦH
P (I ⊕ J)(A) should hold. Therefore, we say that an interpretation J

is safe w.r.t. P , I and H iff

J �k H and J �k ΦH
P (I ⊕ J) .

Note that safe interpretations correspond to unfounded sets for classical logic pro-
grams [27]. Furthermore, like for unfounded sets, among all possible safe interpre-
tations, we are interested in the �k-maximal (which exists and is unique). The �k-
greatest safe interpretation is called the support provided by H to P w.r.t. I and is
denoted by sH

P (I). Table 1 reports the support for the logic program of Example 1.
Note that by definition under the OWA H = I⊥, sH

P (I) = I⊥ holds, as expected, while
for classical logic programs sH

P (I) = ¬.UP(I), for H = If. In summary, the support is
an extension of the notion of unfounded sets (i) to logic programming over bilattices;
and to (ii) arbitrary default assumptions H . Finally, we also recall that the support can
effectively be computed as the iterated fixed-point of the �k-monotone function

σI,H
P (J) = H ⊗ ΦH

P (I ⊕ J) .

Indeed, [27] shows that the iterated sequence of interpretations Ji below is�k-monotone
decreasing and reaches a fixed-point, Jλ = sH

P (I), for a limit ordinal λ.

J0 = H

Ji+1 = σI,H
P (Ji)

Jλ = infi<λ σI,H
P (Ji) .

H-models. At second, among all models of a program P , let us consider those models,
which �k-subsume their own support. That is, we say that an interpretation I is a H-
model of P iff

I |= P and sH
P (I) �k I .

The �k-least H-model is called H-founded model, and is denoted with HFP . H-
models have interesting properties [27].

Proposition 1 ([27]). I is a H-model of P iff I = ΦH
P (I ⊕ sH

P (I)).

From a fixed-point characterization point of view, it follows immediately that the set of
H-models can be identified by the fixed-points of the �k-monotone immediate conse-
quence operator:

ΠH
P (I) = ΦH

P (I ⊕ sH
P (I)) .

This guarantees the existence and uniqueness of the �k-least fixed-point of ΠH
P (I),

i.e., the H-founded model of a program P .
Note that the definition of H-founded model is nothing else than a generalization

from the classical setting to bilattices of the notion of well-founded model (recall that
the well-founded model is the least model satisfying ¬.UP(I) ⊆ I [20], which is a
special case of the definition of H-founded model). We conclude by remarking that [27]
also generalizes the stable model semantics to the AWA.
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Example 2. Consider Example 1 and Table 1. Given the hypothesis Hi described in
the tables (note that H1 = H2 = If, i.e., the CWA is assumed), we observe that
sHi

P (Ii) �k Ii for i = 2, 3 and, thus, both I2 and I3 are H-models, while I1 is not.
Furthermore, it can be verified that both I2 and I3 are also H-founded models and that
I2 corresponds to the classical well-founded semantics, as expected.

We refer the reader to [27, 36] for some applications of the AWA. For the sake of illus-
trative purposes, we recall the following example: a rule expressing the fact that a car
may cross railway tracks if there is no crossing train may be represented by

Cross railway← ¬Train is comming .

In this situation, in order to safely cross the railway there should be explicit evidence
that the train is not coming and, thus, we assume by default that H(Train is comming) =
⊥ (i.e., the atom is interpreted according to the OWA) and H(Cross railway) = f
(i.e., the CWA is assumed), for safety.

Another example is the case where we also want to express default statements of
the form normally, unless something abnormal holds, then ϕ implies A. Such state-
ments were the main motivation for non-monotonic logics like Default Logic [34], Au-
toepistemic Logic [11, 29, 32, 33] and Circumscription [30, 31] (see also [18]). We can
formulate such a statement in a natural way, using abnormality theories, as

A← ϕ ∧ ¬Ab
Ab← ¬A ,

where Ab stands for abnormality, and then consider the hypothesis H(Ab) = f, i.e., by
default there are no abnormal objects.

4 Top-down query answering

A query is an atom Q (query atom) of the form q(x), intended as a question about the
truth degree of all the instances of Q in the intended model of P . We also allow a query
to be a set {Q1, . . . , Qn} of query atoms. In that latter case we ask about the truth
degree of all instances of the atoms Qi in the intended model.

The procedure we devise in this paper is a generalization of the procedure presented
in [36]. We anticipate that the main reason why the procedure in [36] is not suitable to
be used for computing all answers to a query Q, given P , is that

– [36] relies on P’s grounded version P∗, which may be rather huge (exponential
with respect to |P|, in general) in applications with many facts;

– [36] answers ground queries only. Strictly speaking, [36] can compute all answers
of a query atom q(x) by submitting as query the set of all ground instances q(c).
This is clearly not feasible if the Herbrand universe is large.

The procedure presented here does not require grounding. In the following, we assume
that a logic program P is made out of an extensional database (EDB), PE , and an
intensional database (IDB), PI . The extensional database is a set of facts of the form

r(c1, . . . , cn)← b ,
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where r(c1, . . . , cn) is a ground atom and b is a truth value. For convenience, for each
n-ary extensional predicate r, we represent the facts r(c1, . . . , cn) ← b in P by means
of a relational n + 1-ary table tabr, containing the records 〈c1, . . . , cn, b〉. Thus, the
table contains all the instances of r together with their degrees. We assume that there
cannot be two records 〈c1, . . . , cn, b1〉 and 〈c1, . . . , cn, b2〉 in tabr with b1 6= b2.

The intensional database is a set of rules for the form

p(x)← ϕ(x,y) (1)

in which the predicates occurring in the extensional database (called extensional pred-
icates) do not occur in the head of rules of the intensional database. Essentially, we
do not allow that the fact predicates occurring in PE can be redefined by PI . We also
assume that the intensional predicate symbol p occurs in the head of at most one rule
in the intensional database. Due to the expressiveness of rule bodies, it is not difficult
to see that, possibly defining an equality predicate Eq(x, y), logic programs can be put
into this form.

For an atom A of the form p(x), an answer for p is a pair 〈θ, b〉, where θ = {x/c}
is a substitution of the variables x in p(x) with the constants in c and b ∈ L is a truth
degree. We say that the answer 〈θ, b〉 is correct for p with respect to the intended model
I of P iff I(p(c)) = b. That is, by substituting the variables in x using θ, the evaluation
of the query in the intended model is b. An answer set for p is a set of answers for p.
Of course, our goal is to determine the set of all correct answers for the query Q. For a
given n-ary predicate p and a set of answers ∆p of p, for convenience we represent ∆p

as an n + 1-ary table tab∆p
, containing the records 〈c1, . . . , cn, b〉.

Given two answers δ1 = 〈θ, b1〉 and δ2 = 〈θ, b2〉 for the same atom P , we define
δ1 �k δ2 (δ1 �k δ2) iff b1 �k b2 (b1 �k b2). We write δ1 ≺k δ2 (δ1 �k δ2) iff
b1 ≺k b2 (b1 �k b2). If ∆1

p and ∆2
p are two sets of answers for p, we write ∆1

p �k ∆2
p

(∆1
p �k ∆2

p) iff for all δ1 ∈ ∆1
p there is δ2 ∈ ∆2

p such that δ1 �k δ2 (δ1 �k δ2). We
write ∆1

p ≺k ∆2
p (∆1

p �k ∆2
p) iff ∆1

p �k ∆2
p (∆1

p �k ∆2
p) and there is δ2 ∈ ∆2

p such
that for no δ1 ∈ ∆1

p, δ2 �k δ1 (δ2 �k δ1) holds.
We present now our top-down tabling like procedure tailored to compute all correct

answer of a query Q in the intended model. The basic idea of our procedure is to try to
collect, during the computation, all correct answers incrementally together. The proce-
dure can be related to the so-called memoing techniques (tabling/magic sets) developed
for classical logic programming –see e.g., [39] for an overview.

At first, consider a general rule of the form p(x) ← ϕ(x,y). We note that ϕ(x,y)
depends on a computable function f and the predicates p1, . . . , pk, which occur in the
rule body ϕ(x,y). Assume that ∆p1 , . . . ,∆pk

are the answers collected so far for the
predicates p1, . . . , pk. Let us consider a procedure eval(p, ∆p1 , . . . ,∆pk

), which com-
putes the set of answers 〈{x/c}, b〉 of p, by evaluating the body ϕ(x,y) over the data
provided by ∆p1 , . . . ,∆pk

. Formally, let H be a hypothesis, let IH be an interpretation
restricted to the predicates p1, . . . , pk and tuples such that for all ni-ary predicates pi,

IH(pi(c)) =


b, if 〈c, b〉 ∈ tab∆pi

H(pi(c)) if pi is an extensional predicate and 〈c, b〉 6∈ tab∆pi

⊥ otherwise .
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The intuition in the definition above is that to an atom pi(c) we assign the current truth
value if this truth value is known. Otherwise, we assign to it the default truth value taken
from the hypothesis (if pi is an extensional predicate). Then

eval(p, H, ∆p1 , . . . ,∆pk
) = {〈{x/c}, b〉 | b =

∨
c′

IH(ϕ(c, c′)), b 6= ⊥} , (2)

where c′ is a tuple of constants occurring in
⋃

i ∆pi . We omit to report the tuple whose
degree is ⊥. The disjunction

∨
c′ is required as the free variables y in ϕ(x,y) may be

seen as existentially quantified.

Example 3. Consider P = {p(x) ← q(x, y), q(a, b) ← f, q(a, c) ← t}. Assume
∆q = {〈(a, b), f〉, 〈(a, c), t〉}. Then eval(p,∆q) = {〈a, t〉}, which amounts to evalu-
ate q(a, b) ∨ q(a, c).

We are not going to further investigate the implementation details of the eval(p, H, ∆p1 ,
. . . , ∆pk

) procedure, though it has to be carefully written to minimize the number of
table look-ups and relational algebraic operations such as joins. It can be obtained
by means of a combination of SQL statements over the tables and the application of
the truth combination functions occurring in the rule body of p. We point out that
eval(p, H, ∆p1 , . . . ,∆pk

) can also be seen as a query to a database made out by the
relations tab∆p1

, . . . , tab∆pk
and that any successive evaluation step corresponds to the

execution of the same query over an updated database. We refer the reader to e.g., [9,
10, 22] concerning the problem of repeatedly evaluating the same query to a database
that is being updated between successive query requests. In this situation, it may be
possible to use the difference between successive database states and the answer to the
query in one state to reduce the cost of evaluating the query in the next state.

4.1 Query answering: Kripke-Kleene semantics

We start showing how to compute all answers with respect to the Kripke-Kleene seman-
tics, i.e., the �k-least fixed-point of ΦH

P . The procedure is detailed in Table 2. Assume,
we are interested in determining all correct answers of q(x) w.r.t. the Kripke-Kleene
semantics. We call the procedure with Answer(P, Q,H). We start with putting the
predicate symbols q ∈ Q in the active list of predicate symbols A. At each iteration
step (step 2) we select a new predicate p from the queue A and evaluate it using the
eval function with respect to the answers gathered so far (steps 4 or 5). If the evaluation
leads to a better answer set for p (step 6), we update the current answer set v(p) and add
all predicates p′, whose rule body contains p (the parents of p), to the queue A, i.e., all
predicate symbols that might depend on p are put in the active set to be examined. At
some point (even if cyclic definitions are present) the active list will become empty and
we have actually found all correct answers of q(x). The procedure in Table 2 uses some
auxiliary functions and data structures:

– for predicate symbol pi, s(pi) is the set of predicate symbols occurring in the rule
body of pi, i.e., the sons of pi;

– for predicate symbol pi, p(pi) = {pj : pi ∈ s(pj)}, i.e., the parents of pi;
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Procedure Answer(P, Q, H)
Input: Logic program P , set Q of query predicate symbols, hypothesis H;
Output: Mapping v containing all correct answers of predicates in Q w.r.t. lfp(ΦH

P )
1. A := Q, dg := Q, in := ∅, for all predicate symbols p in P do v(p) = ∅, exp(p) = false

2. while A 6= ∅ do
3. select pi ∈ A, A := A \ {pi}, dg := dg ∪ s(pi)
4. if (pi extensional predicate) ∧ (v(pi) = ∅) then v(pi) := tabpi

5. if (pi intensional predicate) then ∆pi := eval(pi, H, v(pi1), ..., v(piki
))

6. if v(pi) ≺k ∆pi then v(pi) := ∆pi , A := A ∪ (p(pi) ∩ dg)
7. if not exp(pi) then exp(pi) = true, A := A ∪ (s(pi) \ in), in := in ∪ s(pi)

endwhile

Table 2. General top-down algorithm.

– in step 5, pi1 , . . . , piki
are all predicate symbols occurring in the rule body of pi,

i.e., the sons s(pi) = {pi1 , . . . , piki
} of pi;

– the variable dg collects the predicate symbols that may influence the result of the
query predicates;

– the array variable exp traces the rule bodies that have been “expanded” (the predi-
cate symbols occurring in the rule body are put into the active list);

– the variable in keeps track of the predicate symbols that have been put into the
active list so far due to an expansion (to avoid, to put the same predicate symbol
multiple times in the active list due to rule body expansion).

Example 4. Consider Example 1. Let us consider the hypothesis H = I⊥ (i.e., the
OWA). The extensional database is shown in the relational table tabr = {〈a, t〉, 〈b, f〉}.
Of course, tabr is also the set tab∆r of correct answers of predicate r, while it can be
verified (by a straightforward bottom-up fixed-point computation iterating ΦH

P over I⊥)
that the set of correct answers of predicate q is given by: ∆q = {〈b, t〉}. We do not
report the tuple 〈a,⊥〉, as if c does not occur in an answer set ∆ then its truth degree is
assumed to be ⊥.

We next show the computation of Answer(P, {q},H). The execution is shown
below reporting also ∆pi

and v(pi) at each iteration i. Each line is a sequence of steps
in the ‘while loop’. What is left unchanged is not reported.

1. A := {q}, pi := q, A := ∅, dg := {q, r}, ∆q := ∅
exp(q) := 1, A := {q, r}, in := {q, r}

2. pi := q, A := {r}, ∆q := ∅
3. pi := r, A := ∅, v(r) ≺k ∆r, v(r) := ∆r, A := {q}, exp(r) := 1
4. pi := q, A := ∅, v(q) ≺k ∆q, v(q) := ∆q, A := {q}
5. pi := q, A := ∅, ∆q = v(q)
6. stop. return v(q)

Iter i ∆pi
v(pi)

0. − v(pi) = ∅
1. ∆q = ∅ −
2. ∆q = ∅ −
3. ∆r = {〈a, t〉, 〈b, f〉} v(r) = ∆r

4. ∆q = {〈b, t〉} v(q) = ∆q

5. ∆q = {〈b, t〉} −
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It can be shown that the procedure Answer behaves as expected.

Proposition 2. There is a limit ordinal λ such that after |λ| steps Answer(P, Q,H)
returns the set of all correct answers of P with respect to the predicates in Q and the
Kripke-Kleene semantics under hypothesis H .

4.2 Query answering: H-founded semantics

As we have seen, the H-founded model of a logic program P is the �k-least fixed-
point of the operator ΠH

P (see Proposition 1) and the support sH
P (I) coincides with the

iterated fixed-point of the function σI,H
P (J) beginning the computation with H . In the

following, we show how we can slightly change the Answer procedure to compute the
support. That is, we want a top-down procedure that, for a set of atoms p(x), computes
all answers 〈{x/c}, b〉 such that sH

P (I)(p(c)) = b.
So, let Support(P, Q,H, I) be the procedure, which is as the Answer procedure

except that:

– Step 1 is replaced with

P := PH
I , A := Q, dg := Q, in := ∅,

for all predicate symbols p in P do v(p) = ∅, exp(p) = false

The logic program PH
I is obtained from P in the following way:

• for each intensional predicate p in P , replace the rule p(x) ← ϕ(x,y) in P
with the rule

p(x)← H(p)(x)⊗ (I(pϕ)(x)⊕ ϕ(x,y)) . (3)

With H(p)(x) we mean a built-in predicate that given a substitution c for x,
returns H(p(c)). This can easily be encoded in the semantics, which we omit.
The case I(pϕ)(x) is similar: I(pϕ)(x) is a built-in predicate that given a sub-
stitution c for x, returns

∨
c′ I(ϕ(c, c′)).

• for each extensional predicate r in P , replace the rule r(c) ← b in P with the
rule

r(c)← b′ , (4)

where b′ is the truth value b′ = H(r(c))⊗ b.
We point out that the rules above are the result of applying σI,H

P to the support
sH
P (I) and to all rules:

sH
P (I)(p(c)) = [H ⊗ ΦH

P (I ⊕ sH
P (I))](p(c))

= H(p(c))⊗ [I ⊕ sH
P (I)](

∨
c′ ϕ(c, c′))

= H(p(c))⊗ (I(
∨

c′ ϕ(c, c′))⊕ sH
P (I)(

∨
c′ ϕ(c, c′)))

= H(p(c))⊗ (
∨

c′ I(ϕ(c, c′))⊕
∨

c′ sH
P (I)(ϕ(c, c′))) .

Since the above equation holds for all predicates p and all c, we get rule (3)
and (4). Build-in predicates do not count as sons and, thus, do not appear in the
A, s, p, v, in, dg variables.
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– Step 6 is replaced with

if v(pi) �k ∆pi
then v(pi) := ∆pi

, A := A ∪ (p(pi) ∩ dg) fi

Essentially, in Step 6 we replace ≺k with �k. This modification is motivated by
the fact that during the computation of the support, ∆pi

is now decreasing in the
knowledge order �k.

Example 5. Consider Example 1, interpretation I2 and hypothesis H2. We have seen
that I2 is the H-founded model of P w.r.t. H2 and corresponds to the well-founded
semantics of P . We next want to show the computation of Support(P, {q, r},H2, I2).
We first determine PH2

I2
. As predicate p does not play any role in the computation, we

report the modified rule for predicate q and r only. PH2
I2

related to q and r is

q(x)← H2(q)(x)⊗ (I2(qϕ)(x)⊕ (q(x) ∨ ¬r(x)))
r(a)← ⊥ r(b)← f .

We recall that H2(q)(a) = H2(q)(b) = f and that I2(qϕ)(a) = I2(q(a) ∨ ¬r(a)) = f,
while I2(qϕ)(b) = t. Then, it can be verified that (by a straightforward fixed-point
computation iterating σI,H

P starting with H2) that the set of correct answers of predicate
q, r of P w.r.t. sH2

P (I2) are: ∆q = {〈a, f〉},∆r = {〈b, f〉}.
Below is a sequence of Support(P, {q, r},H2, I2), returning the expected values.

1. A := {q, r}, pi := q, A := {r}, dg := {q, r}, ∆q �k v(q),
exp(q) := 1, A := {r, q}, in := {q, r}

2. pi := r, A := {q}, v(r) �k ∆r, v(r) := ∆r, exp(r) := 1
3. pi := q, A := ∅, ∆q = v(q)
4. stop. return v(q)

Iter i ∆pi
v(pi)

0. − v(pi) = ∅
1. ∆q = {〈a, f〉} v(q) = ∆q

2. ∆r = {〈b, f〉} v(r) = ∆r

3. ∆q = {〈a, f〉} −

It can then be shown that:

Proposition 3. There is a limit ordinal λ such that after |λ| steps Support(P, Q,H, I)
returns the set of all correct answers of P with respect to the predicates in Q and the
support sH

P (I).

We are now ready to define the top-down procedure AnswerHF (P, Q,H), which com-
putes all correct answers to a query Q under the H-founded semantics. We define
AnswerHF (P, Q,H) as Answer(P, Q,H), except that Step 5 is replaced with the
statements

5. if (pi intensional predicate) then
5.1. Q′ : = s(pi);
5.2. I : = v;
5.3. supp : = Support(P, Q′,H, I);
5.4. v′ : = I⊕ supp;
5.5. ∆pi

:= eval(pi,H, v′(pi1), ..., v
′(piki

)) fi
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These steps correspond to the application of the ΠH
P (I) = ΦH

P (I ⊕ sH
P (I)) operator to

pi. Indeed, at first we ask about all the correct answers of the predicates occurring in
the body of pi w.r.t. the support and the current interpretation I : = v (Steps 5.1 - 5.3).
The variable supp holds these answers. Then we join them with I, i.e., we compute
I ⊕ sH

P (I) (Step 5.4), where this latter is defined pointwise: (i) v′ = v1 ⊕ v2 iff for all
p, v′(p) = v1(p) ⊕ v2(p) = {〈θ, b〉 | 〈θ, b1〉 ∈ v1(p), 〈θ, b2〉 ∈ v2(p), b = b1 ⊕ b2}
(if 〈θ, bi〉 6∈ vi(p) then bi = ⊥ is assumed). Finally, we evaluate the body of pi with
respect to I ⊕ sH

P (I) (Step 5.5), i.e., apply ΦH
P (I ⊕ sH

P (I)).

Example 6. Consider Example 1 and hypothesis H2 (i.e., the CWA). Let us compute all
correct answers to the query q(x) w.r.t. the well-founded semantics. As the interpreta-
tion I2 in Example 6 is the well-founded model (i.e., H2-founded model), we expect to
retrieve ∆q = {〈a, f〉, 〈b, t〉}. Below is the computation of AnswerHF (P, {q},H2).

1. A := {q}, pi := q, A := ∅, dg := {q, r}, supp := {〈r(b), f〉}, v′ := {〈r(b), f〉},
v(q) ≺k ∆q, exp(q) := 1, A := {q, r}, in := {q, r}

2. pi := q, A := {r}, supp := {〈r(b), f〉}, v′ := {〈q(b), t〉, 〈r(b), f〉}, ∆q = v(q)
3. pi := r, A := ∅, supp := {〈r(b), f〉}, v′ := {〈q(b), t〉, 〈r(b), f〉},

v(r) ≺k ∆r, v(r) := ∆r, A := {q}, exp(r) := 1

4. pi := q, A := ∅, supp := {〈q(a), f〉, 〈r(b), f〉}, v′ := {〈q(a), f〉, 〈q(b), t〉, 〈r(a), t〉, 〈r(b), f〉},
v(q) ≺k ∆q, v(q) := ∆q, A := {q}

5. pi := q, A := ∅, supp := {〈q(a), f〉, 〈r(b), f〉}, v′ := {〈q(a), f〉, 〈q(b), t〉, 〈r(a), t〉, 〈r(b), f〉},
∆q = v(q)

6. stop. return v(q)
Iter i ∆pi

v(pi)

0. − v(pi) = ∅
1. ∆q = {〈b, t〉} v(q) = ∆q

2. ∆q = {〈b, t〉} −
3. ∆r = {〈a, t〉, 〈b, f〉} v(r) = ∆r

4. ∆q = {〈a, f〉, 〈b, t〉} v(q) = ∆q

5. ∆q = {〈a, f〉, 〈b, t〉} −

Therefore, AnswerHF (P, {q},H2) returns ∆q = {〈a, f〉, 〈b, t〉} as expected.

It can then be shown that:

Proposition 4. There is a limit ordinal λ such that after |λ| steps AnswerHF (P, Q,H)
returns the set of all correct answers of P with respect to the predicates in Q and the
H-founded semantics.

5 Conclusions

We have presented a simple, general, yet effective top-down algorithm to retrieve all
correct answers to queries for normal logic programs under the AWA and, thus, under
the CWA and OWA. To the best of our knowledge, this is the first time the problem
of computing all answers has been addressed in this context, and under the CWA in
particular, where arbitrary monotone functions in the body can manipulate truth values
taken from a bilattice. We believe that its interest relies on its easiness for an effective
implementation. Computing all answers is the first step towards top-k query answering,
as it is developed in the context relational databases [6, 12, 21] and will be our primary
topic of future research.
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