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Abstract 

Resear c h on animal venoms and their components spans multiple disciplines, including biology , biochemistry , bioinformatics, phar- 
macology, medicine, and more. Manipulating and analyzing the diverse array of data required for venom resear c h can be challenging, 
and r elev ant tools and r esources ar e often dispersed acr oss differ ent online platforms, making them less accessible to nonexperts. 
In this article , w e addr ess the m ultifaceted needs of the scientific community involved in venom and toxin-related resear c h by iden- 
tifying and discussing web r esources, data bases, and tools commonl y used in this field. We hav e compiled these r esources into a 
compr ehensi v e ta b le av aila b le on the VenomZone website ( https://v enomzone.expasy.org/10897 ). Furthermor e, we highlight the chal- 
lenges curr entl y faced by r esear c hers in accessing and using these resources and emphasize the importance of comm unity-dri v en 

interdisciplinar y appr oaches. We conclude by underscoring the significance of enhancing standards, pr omoting inter opera bility, and 

encouraging data and method sharing within the venom resear c h community. 

Ke yw ords: v enom r esources, toxin data bases, machine learning, drug discov er y, anti v enom, pr oteomics, pe ptidomics, transcrip- 
tomics, genomics 
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Bac kgr ound 

Venomous organisms possess the remarkable ability to synthe- 
size and deliver potent cocktails of bioactive compounds known 

as v enoms, whic h can elicit pr ofound physiological effects in 
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ther organisms . T hese complex mixtur es of pr oteins , peptides ,
mall organic molecules, and inorganic elements have under- 
one millions of years of e volution, primaril y driv en by selectiv e
r essur e suc h as pr edation or defense [ 1 ]. Animal v enoms hav e
e. This is an Open Access article distributed under the terms of the Cr eati v e 
h permits unrestricted reuse, distribution, and reproduction in any 

https://orcid.org/0000-0003-3060-2507
https://orcid.org/0000-0002-7462-8226
https://orcid.org/0000-0002-9916-8465
https://orcid.org/0000-0001-5241-7770
https://orcid.org/0000-0002-6296-7132
https://orcid.org/0009-0001-5629-0882
https://orcid.org/0000-0002-2785-145X
https://orcid.org/0000-0002-1998-4033
https://orcid.org/0000-0001-7739-080X
https://orcid.org/0000-0002-7456-8390
https://orcid.org/0000-0003-0630-0541
https://orcid.org/0000-0002-3175-5372
https://orcid.org/0000-0003-2532-6763
https://orcid.org/0000-0001-9928-9294
https://orcid.org/0000-0002-3852-1974
https://orcid.org/0000-0003-4675-8995
https://orcid.org/0000-0002-2749-8588
https://orcid.org/0000-0001-8935-8938
https://orcid.org/0000-0003-3636-5805
https://orcid.org/0000-0001-9202-1797
https://orcid.org/0000-0002-1328-1732
mailto:giulia.zancolli@gmail.com
mailto:aantunes@ciimar.up.pt
https://venomzone.expasy.org/10897
https://creativecommons.org/licenses/by/4.0/


2 | GigaScience , 2024, Vol. 13 

c  

i  

l  

t  

r  

c  

b  

s
 

r  

a  

t  

c  

t  

p  

o  

p  

i  

r  

l  

d
 

t  

a  

W  

a  

p  

s  

E  

t  

h  

c  

t  

p  

t  

w  

f  

t  

h  

i  

t  

t  

c  

p  

e

R
S
O
T  

t  

c  

i  

l  

n  

c  

f
 

s  

s  

t  

f  

v  

[  

o  

m  

f  

q  

a  

t  

v  

w  

s  

q  

i  

w  

a  

o
 

i  

w  

h  

S  

l  

t  

p  

m  

e  

m  

B  

p  

w  

m  

p  

i  

C  

P  

3  

s  

m
 

i  

t  

o  

K  

s  

 

a  

e  

i  

a  

d  

C  

p  

s  

r  

f  

t  

d  

c
 

t  

o  

i  

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae054/7753515 by guest on 20 Septem

ber 2024
a ptiv ated human curiosity for centuries, and r ecentl y, tec hnolog-
cal advancements in div erse r esearc h fields, especiall y in molecu-
ar biology, hav e pr opelled an incr easing inter est within the scien-
ific community. This has attracted attention from industry, which
ecognizes the opportunities presented by animal toxins as drug
andidates [ 2–7 ], diagnostic tools [ 8 , 9 ], biopesticides, antimicro-
ial and antiparasitic agents [ 10 , 11 ], and biological markers to
tudy human physiology [ 12 , 13 ]. 

Modern v enom r esearc h is thus highl y m ultidisciplinary, and it
 equir es the ability to manipulate and analyze a heterogeneous
rray of data [ 14 ]. The emergence and integration of multiomics
ec hnologies suc h as pr oteomics, tr anscriptomics, and, mor e r e-
ently, whole-genome data has revolutionized the characteriza-
ion of venom components and highlighted their biotechnological
otential [ 14 ]. Despite the abundance of venom research meth-
ds , tools , and resources , their scattered nature limits their com-
r ehensiv e utilization. Addr essing this challenge requires central-

zed and coordinated web-based resources that could serve as
epositories of data and knowledge, facilitating the seamless uti-
ization of analytical tools, bioinformatics pipelines, and related
atabases, ultimately driving cutting-edge venom research. 

In this article, we address the multifaceted requirements of
he scientific community by discussing web resources , databases ,
nd tools gener all y used in venom- and toxin-related research.
e compiled them into a compr ehensiv e, inter activ e table fr eel y

vailable on VenomZone [ 15 ]. To gather insights into the most
r e v alent r esour ces used b y both novice and seasoned v enom r e-
ear chers, w e carried out a survey targeting the members of the
uropean Venom Network (EUVEN) COST Action CA19144 [ 16 ] and
he participants of the First International Congress of the EUVEN
eld virtually in September 2021. While this survey primarily fo-
used on European researchers, limiting its comprehensiveness of
he global v enom r esearc h landsca pe, it serv ed as a springboard to
opulate our resource list. More important, it enabled us to iden-
ify the k e y challenges and needs faced by venom scientists . Here ,
e highlight these challenges and discuss the necessity for user-

riendly tools and inno vative , community-driven approaches . Fur-
hermore, we emphasize the importance of raising standards, en-
ancing inter oper ability, and pr omoting data and method shar-

ng within the field of venom resear ch. Lastly, w e spur the idea
o compose , curate , and mine a unified venom-specific database
hat would report venoms and toxins of diverse animal species, in-
luding genome arc hitectur e and function, whole pr oteome com-
osition, toxin targets, mechanism of action, and ecological and
volutionary data. 

esources in Venom Research: 
tate-of-the-Art 
verview of main web resources 

he cornerstone of virtually any venom resear ch endeav ors en-
ails the identification of venom compounds, encompassing their
ompositional diversity (e.g., protein families), variability (e.g.,
ntra- and interspecies, sex-linked, seasonal, environmental), evo-
utionary traits, mode of action, and toxicity attributes (e.g.,
eur otoxicity, hemol ytic potency, enzymatic activity, LD50, ED50,
lear ance r ates). T his initial step hea vil y r elies on information
ound in se v er al biological databases (Fig. 1 ). 

T he ra w data ar e gener all y deposited in gener alist r epositories
uch as the Proteomics IDEntification (PRIDE) database for mass
pectrometry data [ 17 ] or the DNA Data Bank of Japan (DDBJ),
he European Nucleotide Archive (ENA), and the NCBI GenBank
or nucleic acid data. Nucleotide sequences can also be found in
enom-specific databases like ArachnoServer [ 18 ] and ConoServer
 19 ], whic h additionall y pr ovide pr otein sequences, classification
f gene superfamilies, cysteine fr ame works, information on phar-
acological activities of toxins, and sequence analysis tools (see

ollowing section). Amino acid sequences deriv ed fr om dir ect se-
uencing or from translated nucleotide sequences are mostly
vailable in 2 generalist databases, UniProtKB and NCBI pro-
ein. The Tox-Prot annotation project of UniProtKB/Swiss-Prot pro-
ides access to venom protein sequences and links to additional
 eb resour ces [ 20 ]. Considering tools, UniProtKB supports BLAST

earc hes (otherwise dir ectl y av ailable on the NCBI website), se-
uence alignment, searches for similar proteins, and links to var-

ous features in the Expasy Resource Portal [ 21 ]. The species from
hich the data originate are generally reported in the metadata
nd linked to taxonomy databases such as NCBI or UniProtKB Tax-
nomy ( Supplementary Information Table S1 ). 

The 3-dimensional (3D) structure of peptides and proteins is
mportant to understand their function and mode of interaction
ith their molecular targets . T he most compr ehensiv e databases
olding structural information are the Research Collaboratory for
tructural Bioinformatics Protein Data Bank (PDB) [ 22 ], the Bio-
ogical Magnetic Resonance Data Bank (BMRB) [ 23 ], and the Elec-
r on Micr oscopy Data Bank (EMDB) [ 24 ]. The structur es in PDB ar e
rimarily determined through X-ray crystallography or nuclear
a gnetic r esonance (NMR) spectr oscopy and incr easingl y b y cry o-

lectr on micr oscop y (cry o-EM), although the latter is onl y fr om
olecules or molecular complexes with masses less than 100 kDa.

MRB is a database of NMR spectroscopic data from peptides,
roteins , nucleic acids , and other biologically relevant molecules,
hile EMDB arc hiv es 3D ma ps of biological specimens fr om tr ans-
ission electr on micr oscop y experiments. Cry o-EM holds great

otential for investigating to xin-rece ptor binding [ 25 , 26 ]. Visual-
zation of toxin 3D structures is provided in ArachnoServer and
onoServer, as well as in UniPr otKB. Additionall y, the AlphaFold
r otein Structur e Database [ 27 ] pr o vides access to o ver 200 million
D structur es pr edicted by AlphaFold, an artificial intelligence (AI)
ystem de v eloped by Google DeepMind based on a neural network
odel [ 28 ]. 
A wide array of specialized databases for researchers interested

n exploring biological pathways (e.g., the KEGG [ 29 ]), gene func-
ion classification (e.g., the Gene Ontology [GO] Resource [ 30 ]),
r more specific information on compounds (e.g., PubChem [ 31 ],
aliumDB [ 32 ], ScrepYard, KNOTTIN [ 33 , 34 ]) is discussed in the
ections below and listed in Supplementary Information Table S1 .

Curr entl y, information on v enoms and toxins is dispersed
cross a multitude of resources, both generalists and specialists,
ach offering varying types of data and occasionally resulting
n redundancy. This scenario presents both advantages and dis-
dv anta ges. On one hand, the pr olifer ation of openl y accessible
ata r epr esents a goldmine for basic as well as a pplied r esearc h.
onv ersel y, differ ences in data formats and content between dis-
arate sources make it challenging to aggregate information and
ometimes result in inconsistencies. For instance, the annotation
elated to the mature and precursor sequence of a toxin might dif-
er between a generalist database like UniPr otKB, whic h pr ovides
he amino acid sequence of a whole gene, and a venom-specialist
atabase like Ar ac hnoserv er or ConoServ er, whic h is instead fo-
used on reporting the activ e, matur e sequence [ 35 ]. 

An additional inconvenience in the database landscape is
hat some have become obsolete (e.g., SCORPION2 [ 36 ]), while
thers offer limited utility (e.g., ATDB [ 37 ] primarily available
n Chinese) or are at times una vailable (e .g., Ar ac hnoServ er),

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae054#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae054#supplementary-data
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Figure 1: Specialized and generalist web resources , databases , and tools used in venom research. In a typical venom research w orkflo w, raw data from 

venoms or venom glands are deposited in primary databases, and information is generally subsequently stored in secondary and specialized 
databases. Such information can be accessed and analyzed using different tools for a variety of research purposes. Dbs = databases. 
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highlighting the need to constantl y cur ate the available databases 
[ 35 ]. Nonetheless, enduring venom-specific databases and re- 
sources include ConoServer, VenoMS [ 38 ], T3DB [ 39 ], or Tox-Prot.
Furthermore, VenomZone [ 40 ] is a free w eb resour ce that provides 
information on venoms from 6 major venomous taxa (i.e ., snakes ,
scorpions , spiders , cone snails , sea anemones , and insects), as well 
as on their molecular targets. Information is structured and ac- 
cessible thr ough pa ges on taxonomy ( ∼170 pa ges), activity ( ∼50 
pa ges), and v enom pr otein families ( ∼40 pa ges). Eac h pa ge also 
provides links to the corresponding proteins in Tox-Prot, classi- 
fied by species or protein family . Importantly , VenomZone is con- 
sulted by around 2,000 visitors every month (average from January 
to May 2024) and has been r egularl y updated since its creation in 

2015. 
Many of the aforementioned websites include some tools for 

pr edicting matur e pe ptide boundaries, pharmacological acti vity,
theoretical molecular mass, and so on, while generalist web-based 

portals (e.g., Expasy [ 21 ] and Galaxy [ 41 ]) provide compr ehensiv e 
resources for the analysis of gene expression data, structural bi- 
ology, text mining, machine learning, and more. 

Resources in genomics 

Genomics is incr easingl y playing a centr al r ole in v enom r esearc h.
The advancements and decreasing costs of sequencing technolo- 
gies have facilitated the availability of genome data from ven- 
omous species; consequently, genomics has become indispens- 
able for elucidating the complexity of v enom-r elated genes. In- 
eed, genomic information is crucial to assess whether div er gence
n venom composition among species or populations arises from 

ariation in gene copy n umber, n ucleotide sequence, or regulation
f gene expression [ 42–45 ]. 

One major adv anta ge of genome data is that it eliminates ar-
ifacts from de novo proteo-transcriptomics , pro viding highly ac-
ur ate r esults for pr edicting v enom genes and identifying gene
nd pr otein v ariants, including all r elated tr anscript and pr otein-
ased modifications [ 46 ]. To ac hie v e this, tr anscriptomic data
an be assembled using a genome-guided transcriptome assem- 
l y a ppr oac h (e.g., Trinity assembler [ 47 ]). Typicall y, the pr eferr ed
ethod for creating genomes is to map transcripts against the

enome sequences (scaffolds) with aligners such as BOWTIE2 [ 48 ]
nd splice-aware tools like HISAT2 [ 49 ], STAR, [ 50 ] and Tophat2
 51 , 52 ] (although no longer supported). High-quality or r efer ence
enomes ar e gener all y annotated using tr anscriptomes fr om m ul-
iple tissue samples, compr ehensiv el y identifying most gene v ari-
nts, whic h is especiall y r ele v ant to pr operl y c har acterize m ulti-
ene families like many venom proteins [ 46 ]. 

Generating genomes involves using a plethora of tools and soft-
ar e, primaril y command line based due to the specificity, compu-

ational demands, and challenges associated with genome analy- 
is [ 53 , 54 ]. Se v er al pipelines hav e been de v eloped by genome con-
ortia, and the r ecentl y de v eloped automated pipeline in Galaxy
s expected to r e volutionize the pace of r efer ence genome produc-
ion and annotation [ 55 ]. 

Resources and tools related to genomic data are currently not
idel y av ailable in a v enom-r elated context. Ho w e v er, ther e ar e
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e v er al web resources for accessing genomes, with NCBI Genome
eing the primary platform that provides genomic data in con-

unction with their r espectiv e publications. While NCBI offers a
ompr ehensiv e collection of genomes, some thematic databases,
uch as Ensembl Metazoa, focus specifically on metazoan refer-
nce genomes and offer mor e tailor ed data and information [ 56 ].
dditionall y, Ensembl pr ovides cr oss-genome r esources, annota-

ions , syntenies , and other features , with the added benefit of
eing more accessible than NCBI through a server and applica-
ion pr ogr am interface (API) service. Man y genome sequencing
onsortia, such as G10K, GIGA, i5K, B10K, VGP , EBP , DToL, T2T,
nd ERGA, provide prepublication information on their planned
enomes through dedicated websites, often including unpub-
ished data [ 57–63 ]. For example, GenomeArk houses hundreds of
igh-quality r efer ence genomes and assembl y data. 

Ar guabl y, the v enomous or ganisms benefiting fr om the ric h-
st genomic r esources ar e Cnidaria (sea anemones , corals , hy-
r oids, and jell yfish). The original reason for the construction of
hese datasets was the use of se v er al cnidarian species as models
or e volutionary de v elopmental biology (“e vo-de vo”) [ 64–67 ] and
he specific importance of reef-building corals for marine ecol-
gy [ 68–70 ]. The availability of these c hr omosome-scale assem-
lies, along with rich datasets on small RNA sequencing [ 71 , 72 ],
hr omatin imm unopr ecipitation sequencing of histone modifica-

ion marks, and tr anscriptional r egulator pr oteins [ 73 , 74 ] for se v-
ral k e y species, mak es them an excellent resource for studying
 enom r egulatory genomics and evolution. Some of these data can
e easily accessed through the SIMRbase genome portal of the
to w ers Institute for Medical Research and the Hydra 2.0 Genome
roject Portal of the National Institutes of Health (NIH). 

Despite these adv ancements, c hallenges persist in annotat-
ng and analyzing toxin-coding genes, as many venom compo-
ents are part of large, multigene families, and gene comparison
ools typically perform better for single-copy genes. Recent stud-
es hav e demonstr ated that anal yzing the genome structure and
rrangements of genes and their flanking regions across multi-
le species, known as micr o-synten y, is the most effectiv e method
or unambiguousl y unr av eling the origin and e volution of man y
nderstudied multigene venom protein families or short toxin
enes [ 46 , 75–77 ]. Another challenge is that man y v enom gene
amilies ar e poorl y studied and functionall y c har acterized, with

isleading naming conventions often implying phylogenetic re-
ationships based on similar allergenic responses in bioactivity
ests (e.g., venom allergens). T herefore , a vailability of a dedicated
atabase based on phylogenetic relationships rather than naming
onventions would be valuable for analyzing venom gene families.
n example of a similar database is PhylomeDB, a catalog of gene
h ylogenies (ph ylomes) with multisequence alignments, ph yloge-
etic trees, and ortholog predictions [ 78 ]. A promising specialized
e w r esource is ToxCodAn-Genome, an automated pipeline for
nnotating toxin genes in genomes [ 79 ]. While it relies on prior
nowledge of venom genes, and it has been tested on a set of well-
nown venomous lineages, it still ov erlooks r ar e v enomous taxa
nd more species-specific gene families. 

A br anc h of biology that is incr easingl y being explor ed for in-
ights into venom production and phenotype changes is epige-
etics [ 42 , 80 ], the study of heritable traits occurring without
N A change (e.g., DN A methylation, histone modifications, c hr o-
atin arc hitectur e, noncoding RNA). Suc h c hanges ar e not er ased

y cell division, regulating gene expression, and altering cellu-
ar/physiological phenotypic traits influenced by environmental
actors. A popular web-based genomic data exploration tool that
r ovides visualization, integr ation, and anal ysis of epigenomic
atasets is the WashU Epigenome Browser [ 81 ]. This browser en-
bles the interaction of 1D (genomic features), 2D (Hi-C data), 3D
c hr omatin structur e), and 4D (gene/genomic regions as a func-
ion of time) data assessment, serving and expanding the data
ubs fr om lar ge consortia suc h as 4DN, Roadma p Epigenomics,
 aRGET , and ENCODE. Ho w e v er, it curr entl y does not include any
enomous taxa. 

esources in transcriptomics 

NA sequencing is one of the most widely emplo y ed strategies
sed to c har acterize v enom components b y sequencing mRN A
r om dissected v enom glands . T his technique enables the ac-
uisition of complete pr ecursor sequences, whic h can then be
sed to build a custom database for mass spectrometry (MS)–
ased searches of crude venom (proteo-transcriptomics). Al-
hough genomes from venomous organisms are now becom-
ng a vailable , de novo tr anscriptome assembl y (often coupled
ith subsequent proteome analysis) remains the most common
ethod to describe venom compositions and for identifying novel

oxin isoforms. 
Due to the high computational demands of this process, most

r anscriptomics anal yses ar e conducted on workstation comput-
rs , high-performance clusters , or via cloud computing and there-
ore use command-line tools . T he most widely used assembler for
 enom gland tr anscriptomes is undoubtedl y Trinity [ 47 ] and its
ompanion Trinotate pipeline [ 82 ], which predicts coding regions
nd searches for homology against multiple databases. Ho w ever,
s of March 2024, Trinotate is no longer under active develop-
ent or support. There are also more bioinformatics knowledge-
ise demanding m ultiassembl y pipelines that combine different
ssemblers and cover a larger space of gene models and recon-
tructed transcripts; 1 example is the Oyster River pipeline [ 83 ]. 

Functional annotation is typically performed manually
hr ough BLAST searc hes of tr anslated amino acid sequences
 gainst UniPr otKB, NCBI RefSeq, and other r ele v ant databases
 Supplementary Information Table S1 ), along with domain
earches using tools like HMMER [ 84 ] or InterProScan [ 85 ] against
fam [ 86 ], CDD [ 87 ], or own custom databases (e.g., [ 88 ]). To
acilitate the identification of toxins, se v er al pr edictor tools hav e
een de v eloped specificall y for v enom components. Some of
hese pipelines can be run locally from the command line (e.g.,
enomix [ 89 ], ToxClassifier [ 90 ], TOXIFY [ 91 ], and DeTox [ 92 ]),
hile others, such as ToxDL [ 93 ] and ConoPrec on ConoServer

 19 ], among others ( Supplementary Information Table S1 ), can be
un online through web interfaces where the translated amino
cid sequences can be dir ectl y uploaded. Additionall y, tr anscripts
an be functionally annotated with GO terms using online deep
earning a ppr oac hes suc h as P annzer2 [ 94 ] and filtering for tr an-
cripts annotated with terms like “toxin activity” or “modulation
f process of another organism.”

While most transcriptomics studies on venomous animals fo-
us on venom glands, comparative transcriptomics, which com-
ares gene expression between venom glands and other tissues,
rovides further valuable insights. For instance, this a ppr oac h can
elp with the annotation of a transcript as a v enom pr otein, since
oxin genes are generally uniquely or predominantly expressed in
 enom glands. Additionall y, it helps identify pathways and genes
nvolv ed in v enom component biosynthesis and secretion [ 95 –
7 ]. After transcript quantification using command-line tools like
allisto [ 98 ], differ ential expr ession anal ysis can be performed in
 using various packages (e .g., edgeR [ 99 ]). T he resulting list of
enom gland upregulated genes can be subjected to enrichment

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae054#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae054#supplementary-data
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analysis for GO terms and KEGG pathwa ys , r e v ealing c ha per ones 
and other proteins important for protein folding and maturation 

or those secreted with toxins to facilitate their targeting. 
RNA sequencing data, both raw and pr ocessed, can be arc hiv ed 

in NCBI. Raw r eads ar e deposited dir ectl y in the SRA arc hiv e 
or through the ENA either interactively or through the com- 
mand line, while assemblies can be arc hiv ed in the Transcrip- 
tome Shotgun Assembly (TSA) sequence database, although it 
does not accept sequences below 200 bp. Unlike the compulsory 
raw data submission, assemblies are not mandatory in most jour- 
nals and are therefore often not uploaded or published as sup- 
plementary data (e.g., [ 100–104 ]). Gene expression quantifications 
can be uploaded on the NCBI Gene Expression Omnibus (GEO) 
arc hiv e. 

Archiving sequencing and gene expression data is crucial and 

highl y r ecommended for ensuring their accessibility and r epr o- 
ducibility. By making the assemblies and the expression levels 
of the corresponding transcripts freely a vailable , researchers can 

pr e v ent the duplication of effort and unnecessary r eassembl y and 

ma pping of r aw r eads, allowing others to r eadil y access and use 
this essential information for their own studies. 

Resources in proteomics and peptidomics 

Pr oteomics anal ysis plays a crucial r ole in v enom r esearc h, as an- 
imal v enoms ar e mostl y composed of peptides and pr oteins. MS 
methods are commonly emplo y ed to identify venom components 
using 2 main a ppr oac hes: bottom-up and top-down proteomics 
[ 14 ]. In bottom-up pr oteomics, v enom components ar e enzymat- 
ically digested, and the resulting peptides are individually ana- 
lyzed by tandem MS. Conversely, top-down approaches analyze 
intact venom proteins without any prior fragmentation, necessi- 
tating high-resolution MS instruments. In both a ppr oac hes, pep- 
tides and proteins are identified through database-based or de 
novo searches. A database-based search matches spectra against 
an existing database, often deriv ed fr om v enom gland de novo 
tr anscriptome assembl y or fr om other afor ementioned datasets,
while a de novo search infers peptide sequences dir ectl y fr om 

the mass spectra without relying on prior genomics or transcrip- 
tomics data [ 105 ]. Advancements in bottom-up proteomics have 
led to the de v elopment of user-friendl y tools, democr atizing com- 
plex data analysis. Similar to genomics and tr anscriptomics, pr o- 
teomics analyses on the raw data are mostly performed locally 
or on a computer cluster, while online r esources ar e a pplied for 
downstr eam anal yses. 

For bottom-up pr oteomics, pr ominent pr oprietary database 
search engines like Mascot [ 106 ] and PEAKS DB [ 107 ] are com- 
monly used for venom protein identification. Additionally, soft- 
ware tools like ProteomeDiscoverer [ 108 ] integrate multiple search 

algorithms such as Sequest [ 109 ], Mascot, and Byonic [ 110 ] for 
peptide identification and protein characterization. Freely avail- 
able platforms, including pFind 3 [ 111 ], MSFr a gger [ 112 ], and 

Pe ptideShak er [ 113 ], offer powerful tools for identifying venom 

components and c har acterizing posttr anslational modifications 
(PTMs). Other software solutions like MaxQuant [ 114 ] and Skyline 
[ 115 ] enable identification and quantification of venom proteins 
using data-dependent acquisition (DDA) methods. To overcome 
the limitation of DDA, platforms such as DIA-NN [ 116 ] and Max- 
DIA [ 117 ] use data-independent acquisition (DIA) methods [ 118 ].
In contrast to database-based searches, de novo sequencing soft- 
w are like Nov or [ 119 ] and pNov o [ 120 ] facilitate fast and accurate 
peptide sequencing, although it can be challenging for complex 
spectra and peptides with extensive PTMs. 
Top-down a ppr oac hes aim to c har acterize entir e toxins, includ-
ng their isoforms and PTMs, and have recently been applied to
 enom r esearc h [ 121 ]. In database-based sear ches, softw are such
s OpenMS [ 122 ], MZmine [ 123 ], MS-Deconv [ 124 ], and Mscon-
 ert [ 125 ] ar e commonl y used for deconvoluting complex data.
dditionally, MS-Align + [ 126 ], MASH Suite [ 127 ], pTop [ 128 ], and
opMG [ 129 ] allow for high-throughput and automated protein se-
uence matching of multiple isoforms with high confidence. For 
e novo searches, license-based software like PEAKS (Bioinformat- 
cs Solutions Inc.) and ProSight PC (Thermo Fisher Scientific) are
ener all y used, as well as free academic licenses for TopPIC [ 130 ]
nd Informed-Proteomics [ 131 ]. 

AI tools are emerging in proteomics to predict protein struc-
ur es, pharmacological pr operties, and inter action partners.
oxin-specific web server tools include T oxinPred [ 132 ], T oxin-
red2 [ 133 ], and ToxClassifier [ 90 ] (although unavailable as of April
024), while non-toxin-specific platforms include Peptide Ranker 
 134 ] and PEP-FOLD3 [ 135 ], which use machine learning algo-
ithms to predict and design peptides from amino acid sequences.
he newest version of PEP-FOLD4 [ 136 ] accounts for pH condi-
ions and salt concentration conformations, which are critical pa- 
ameters for accurate structure prediction. Well-known servers 
ased on machine learning approaches include AlphaFold2 [ 28 ],
vailable in ColabFold [ 137 ], RoseTTAFold [ 138 ], and RaptorX [ 139 ],
hic h ar e based on PDB structur es, m ultiple sequence align-
ents, and specific algorithms to learn the backbone conforma- 

ions and side chain–side chain contacts. Ho w ever, limitations ex-
st, particularly with the accuracy of predictions when signal pep-
ides , pro-peptides , or PTM positions are not specified in the input
mino acid sequence. Despite challenges, AI tools offer promising 
apabilities in predicting unknown protein structures. 

Raw proteomics data can be deposited in repositories like 
RIDE [ 17 ] and Mass Spectrometry Interactive Virtual Environ-
ent (MassIVE) [ 140 ], which play a crucial role in facilitating col-

abor ation and r epr oducibility. Additionall y, MassiVE offers tools
or r eanal yzing spectr al datasets, comparing r esults, and mor e. 

esources in metabolomics 

he main objective of metabolomics is to identify and quantify
he metabolites that exist in biological fluids , cells , and tissues .
mines , organic acids , steroids , alkaloids , and sugars are con-
idered the substances of the metabolome. To date, the elucida-
ion of metabolite structures is mainly performed by studying the
iter atur e and comparing the MS/MS spectra of related metabo-
ites. Compr ehensiv e databases include the Human Metabolome 
atabase (HMDB) [ 141 ] and KEGG [ 29 ], which offer different qual-

tative and quantitative data for human metabolites and infor- 
ation about metabolomic pathwa ys . HMDB is curr entl y the

atabase containing the largest data collection of MS/MS fr a g-
entation spectra of metabolites [ 141 , 142 ]. An interesting tool

s offered by the Global Natur al Pr oducts Social Molecular Net-
orking (GNPS) [ 143 ], a web-based mass spectrometry ecosystem 

hat aims to be an open-source and open-access knowledge base
or community-wide organization and sharing of raw, processed,
r identified tandem mass (MS/MS) spectrometry data. GNPS aids 
n identification and discovery throughout the entire life cycle of
ata, from initial data acquisition to postpublication. 

The only existing venom-specialist metabolite database is 
enoMS [ 38 ], which focuses on low molecular mass metabo-

ites from spider venoms. VenoMS gathers known structures of 
pider venom metabolites and offers a fragment ion calcula- 
or (FRIOC) for the prediction of fragment ions for the linear
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ol yamine deriv ativ es . T his website can be considered comple-
entary to ArachnoServer. Despite its usefulness, this resource is

imited to spiders and is not included in the typical automated MS
nalyses. 

A suggestion for a future endeavor could be to extend the con-
ent of VenoMS to other venomous organisms and create a more
ompr ehensiv e online database of venom metabolites. As venom
etabolomics is still in its infancy, challenges rely mostly in the

hemical identification of metabolites and the integration with
ata from other omics platforms. 

esources in tr ansla tional research 

he vast biotechnological and biomedical potential of animal ven-
ms and toxins is undeniable, with well-documented bioactivi-
ies r anging fr om analgesic, imm unomodulatory, anticancer, an-
imicr obial, and antipar asitic pr operties [ 2–5 , 144 ]. This potential
ranslates into a growing number of venom-derived drugs, with
lr eady 11 a ppr ov ed by the US Food and Drug Administration and
uropean Medicines Agency, and many more in preclinical or clin-
cal de v elopment. Beyond medicine, v enom toxins hold pr omise
or dia gnostics, nanopor e-based sensing, a gr oc hemicals, and cos-

etics [ 8 , 10–13 , 145 ]. Ho w e v er, despite the e vident opportunities,
he translation of basic research into concrete applications is a
engthy process that requires the generation of a variety of data
nd access to a wide array of different tools and databases. In this
ection, we provide an ov ervie w of the av ailable r esources perti-
ent to venom and toxin research from a biomedical and transla-
ional perspective. 

In a typical w orkflo w for venom component discovery, the
rst step involves candidate identification. This can be ac hie v ed
y gener ating ne w data by means of genomics or proteo-
r anscriptomics anal ysis or by mining existing databases. Typ-
cal databases include Ar ac hnoServ er, T oxin and T oxin T arget
atabase (T3DB), PubChem, and UniPr otKB/Swiss-Pr ot, among
thers ( Supplementary Information Table S1 ). T3DB is partic-
larly useful as it combines detailed toxin data with compre-
ensiv e r eceptor information, molecular and biological proper-
ies , toxin effects , and potential ther a peutic a pplications [ 39 ]. For
eptide-based cancer r esearc h, CancerPPD4 [ 146 ], canSAR [ 147 ],
pInAPDB [ 148 ], PaccMann [ 149 ], and EviCor [ 150 ] provide plat-

orms for the exploration of the mechanism of action, function,
inding tar get, affinity, structur al information, and other physic-
c hemical featur es of peptides. Furthermor e, they offer AI-based
redictions of anticancer compound sensitivity and other prop-
rties to inform drug discov ery. A compr ehensiv e database use-
ul in translational resear ch w as the discontinued VenomKB [ 151 ],
hich included data on venom’s molecular components and their
otential applications in drug discovery and development. 

The databases can be mined manually to select a list of po-
ential candidates, which can be further screened using the pre-
iction tools mentioned earlier. Alternativ el y, databases can be
sed to build machine learning models based on random forest,
upport vector machine, or artificial neural network algorithms,
hich can process a vast amount of data and identify patterns

o predict potential drug targets . T his first crucial step of target
dentification poses a challenge in v enom r esearc h as the toxin
nformation is scattered across several databases . T hanks to the
dvent of the Semantic Web (SW), the tedious process to manually
ine different life science databases can be significantl y r educed

 152 ]. SW provides a common framework that enables data to be
hared and reused across different data sources. Combining and
uerying these data sources are possible by using a standard se-
antic query language like SPARQL. A solution to meaningfully
ccess the databases containing animal venom information is to
ederate them by applying SW technologies that enable seman-
ic queries across them [ 153 ]. For instance, currently UniProtKB
nd PubChem can be jointly queried by writing a single federated
PARQL query [ 154 ]. 

Once potential candidates are characterized, further steps in-
lude prediction of molecular targets and interactions with the
oxins. Databases such as the mousephenotype.org for mammals
 155 ], zfin.or g for zebr afish [ 156 ], and flybase.or g for insects [ 157 ]
an be explored for predicting the effects of toxin intervention
n a systemic le v el and specific regulatory functions, as well as
dentifying promising pharmaceutical or bioinsecticides targets.

eb-based prediction tools for molecular docking include Swiss-
ock [ 158 ], the more recently developed PPI-Affinity model [ 159 ],
nd the CAMP model [ 160 ] to elaborate on target predictions for
eptides and proteins. Molecular docking and molecular dynam-

cs simulation models such as quantitative structure–activity re-
ationship (QSAR), quantitative structure–property relationship
QSPR) anal ysis, pharmacophor e modeling, and iBitter-SCM ar e
r equentl y used to decipher peptide and pr otein inter actions [ 161 ].

Once a lead compound has been identified and selected, it
an be modified to have unique and desirable properties, for in-
tance, to modulate their target selectively and induce a ther a peu-
ic rather than a harmful toxic effect [ 162 ]. ToxinPred and Toxin-
red2 include tools to design all possible single mutant analogues
f a peptide and predict whether they are toxic or not, as well
s to optimize the peptide sequence to get maxim um, minim um,
nd desired toxicity. In addition, ToxinPred offers users to calcu-
ate various physicochemical properties. 

While the a ppr oac hes delineated above facilitate the search
mong known venom compounds, enduring challenges remain
or the prediction of toxins with undescribed new mechanisms
f action and the identification of the potential off-target effects
hat might limit the usefulness of the molecule as a putative ther-
peutic drug [ 163 ], although current machine learning algorithms
resent a promising avenue for the discovery of molecules with
o vel activities . Despite the potential benefits , it is important to
cknowledge that the principles of open science may not always
e guaranteed in translational and applied research, often due
o confidentiality a gr eements associated with pr eliminary stud-
es on toxin activity prediction and application. 

esources in anti v enom production and 

dministr a tion 

cientists working in the field of antiv enom r esearc h ar e typi-
all y inter ested in a v ariety of information spanning fr om the
eogr a phic distribution of the venomous species to their venom
omposition and v ariation, toxin structur e, and bioactivity, whic h
ll impact antivenom efficiency. Most of the r esources r elated to
his kind of information have been already discussed in pr e vious
ections and are listed in Supplementary Information Table S1 ;
her efor e, her e we focus on the resources available for antivenom
roducers. 

A first important resource is r epr esented by the World Health
r ganization (WHO) guidelines, whic h pr ovides compr ehen-
ive and important manuals for antiv enom manufactur ers on
he design, production, control, and regulation of high-quality
ntiv enom imm unoglobulins . T hese guidelines ar e r egularl y up-
ated to provide framework guidance to national regulatory bod-

es for securing the products they offer . T ec hnical bulletins, r e-
orts, and documents are also available on the WHO website.

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae054#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae054#supplementary-data
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Within the scope of WHO w eb resour ces, in addition to pharma- 
copoeia r equir ements, curr ent antidote pr oduction, especiall y the 
impr ov ement of studies and technologies carried out under GMP 
quality system conditions, is ensur ed. Additionall y, WHO mana ges 
the snakebite information and data platform as part of the 2019–
2030 global strategy for the prevention and control of snakebite 
env enoming, whic h is within the scope of neglected tropical dis- 
eases by WHO. This web source platform is part of a collabora- 
tion between the departments for the control of Neglected Trop- 
ical Diseases (WHO/NTD) and the Dissemination of Data for Im- 
pact and analytics (WHO/DDI). Another data source created for 
easy access to antivenom in cases of envenoming caused by poi- 
sonous animals is the Munich AntiVenom INdex (MAVIN) created 

by the Munich Poison Center. MAVIN gathers a list of venomous 
animals , antivenom holding centers , antivenoms , and correlated 

information. 
In addition to international web r esources suc h as WHO and 

MAVIN, some countries have developed national web resources 
to help staff at zoos and aquariums managing the supply of an- 
tivenom and finding the right antivenom when they need it. For 
instance, an online Antivenom Index was created in 2006 by the 
Association of Zoos and Aquariums (AZA) and America’s Poison 

Centers (pr e viousl y known as American Association of Poison 

Contr ol Centers). The Univ ersity of Arizona College of Pharmacy is 
curr entl y r esponsible for maintaining, updating, and hosting this 
index. Ho w e v er, onl y r epr esentativ es of poison control centers and 

AZA-accredited institutions have access to the Antivenom Index. 

Resources in clinical toxinology 

Se v er al fr eel y av ailable r esources offer information on venoms 
and venomous animals, which are relevant to clinical toxicolo- 
gists and toxinologists. A central resource is the “Clinical Tox- 
inology Resour ces” w ebsite, whic h pr ovides compr ehensiv e in- 
formation on venomous and poisonous animals , plants , and 

m ushr ooms fr om ar ound the world ( Supplementary Information 

Table S1 ). This r epository r eceiv es support from experts around 

the world, and it features a searchable database that allows users 
to find specific organisms by common or scientific names, fam- 
ily , country , or region. Another useful resource is PubChem, which 

gathers information on c hemical structur e, c hemical and physical 
properties, biological activity, toxicity, and medical management 
guidance , among others . 

Most clinical toxinology and toxicology databases cater specifi- 
cally to poison centers and are accessible only to registered health 

car e pr ofessionals . Nonetheless , some ar e r eac hable upon sub- 
scription fees and may offer free or reduced-cost access, partic- 
ularly for users in low-income countries. For instance, AfriTox of- 
fers online and offline v ersions, primaril y for r egister ed health 

car e pr ofessionals , with subscription-based access . T his database 
focuses on substances, including venomous exposures, from an 

African perspective . T he Mer ativ e Micr omedex ® POISINDEX ®
System is widely used worldwide, especially in North Amer- 
ica, and provides both summary and in-depth clinical toxicol- 
ogy information, including details on venomous animals, through 

subscription-based access. Another useful resource is TO XB ASE,
produced by poison specialists and medical toxicologists, which 

offers advice on toxin features and exposure management to 
toxins and venomous animals. While primarily accessible to UK 

health car e pr ofessionals , T O XB ASE is also used internationally,
with special arrangements for certain countries . Lastly, T OXINZ 

provides information and treatment guidelines, including ven- 
omous animal exposures. While primarily designed for use in New 
ealand, TOXINZ is accessible in other countries through paid 

ubscriptions. 

hallenges, Needs, and Perspectives of Web 

esources in Venom Research 

he survey that we conducted within the fr ame work of the EU-
EN COST Action [ 16 ], although r epr esenting onl y a sample of

he worldwide venom research community, provided important 
nsights into the challenges and needs of r esearc hers and clini-
ians working with animal venoms or toxins . Here , we ha ve sum-
arized and discussed them. 

hallenges 

any scientists in the venom research community expressed dis- 
ppointment due to the bottleneck caused by the limited ex- 
ertise in bioinformatics and data mana gement, especiall y con-
erning the handling of complex “-omics” pipelines essential for 
utting-edge r esearc h. Despite the impr ov ements in accessibil-
ty offered by databases, there is still a demand for more user-
riendly interfaces that seamlessly integrate data and tools into 
xisting pipelines, facilitating the translation of research findings 
nto clinical applications. Ho w ever, achieving a unified graphical
ser interface (GUI) software is not easy due to the variety, volume,
nd complexity of curr ent data, r equesting stor a ge on serv ers
longside the necessary analysis tools. Toxinologists are encour- 
 ged to collabor ate with bioinformaticians and r ele v ant tec hnol-
gy experts in cross-disciplinary projects. Initiatives like EUVEN 

nd organizations such as the Swiss Institute of Bioinformatics 
rovide support and facilitate collaborations by offering access to 
atabases of r esearc hers and their corresponding expertise. 

Another challenge faced by venom researchers, particularly 
hose involved in applied aspects like drug discov ery, was r e-
ated to the scattered and diverse nature of information about
enoms and toxins across several databases . T his issue is not
nique to v enom r esearc hers but is pr e v alent among biologists.
s the production of biological and health data continues to ex-
onentiall y gr o w, so does the number of databases [ 164 ]. Ho w-
 v er, querying is still lar gel y limited to a single database at a
ime, making it difficult to integrate multiple data types to an-
wer complex biological questions [ 152 ]. A step forw ar d in ad-
r essing this c hallenge is the adoption of query languages like
PARQL to searc h acr oss differ ent databases and perform data
anipulation tasks such as exploration, extraction, and anno- 

ation. Furthermor e, to effectiv el y mana ge and anal yze datasets,
tandardized terminologies and classification systems are essen- 
ial. Ontologies and glossaries serve as structured vocabularies 
hat provide a common language for annotating and organizing 
iological information (e.g., GO, UniPr otKB/Swiss-Pr ot contr olled 

ocabularies). Even though the use of such resources is gener- 
lly well consolidated along the research pipelines, often different 
erms are emplo y ed to denote the same concept, or conv ersel y, the
ame term is used to r epr esent m ultiple concepts across web re-
our ces, thereb y hindering interoperability [ 165 ]. For instance, in
ntobee [ 166 ], a catalog and web-based linked data server for se-
antic terminologies, the term “venom” is described differ entl y in
 ontologies . T his highlights the need for mapping terms between
he semantic resources commonly used in the field. 

To access the wealth of data, a reliable database needs to
e r egularl y maintained and updated. Its longe vity depends on
e v er al factors, including the underlying technology and system,
he frequency of data updates, its ability to handle growing data

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae054#supplementary-data
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olumes, their r egular bac kup, and the database capacity to con-
inue to meet user needs. Ultimately, the decision to maintain a
atabase lar gel y depends on the funding r equir ed to support the
ork of de v elopers and cur ators, whic h in turn depends on the

ize of the database and the number of users. 
In terms of data analysis, as venom omics data accumulate,

he c hallenge e volv es fr om basic descriptiv e compar ativ e find-
ngs to the more sophisticated task of integrating multiomics
ata. This a ppr oac h ultimatel y aims to gain a compr ehensiv e
nderstanding of the complexity of biological systems and their
nderl ying mec hanisms. To this end, data standardization, ad-
anced computational methods (e.g., machine learning tech-
iques), and inter pr etation of div erse data types ar e k e y to pro-
ide meaningful insights. While m ultiomics integr ation tools ar e
urr entl y a pplied in studying complex human diseases [ 167 ],
hey hold great promise for deciphering equally complex venom
henotypes. 

eeds 

espite the abundance of databases containing information on
nimal toxins, some data remain disorganized and inaccessible
ue to a lack of structured datasets. For the data to be accessible
hr ough query langua ges, databases need to be mac hine-r eadable,

eaning they must be formatted in a way that can be processed
 y softw are tools . T his is also crucial for full implementation of
he Findable Accessible Inter oper able Reusable (FAIR) principles
 168 ]. The Resource Description Fr ame work (RDF), for instance, is
 SW standard data model adopted by many databases for sharing
nd linking data. Data in RDF can be queried, r etrie v ed, and ma-
ipulated using the SPARQL langua ge, whic h has the adv anta ge
hat it is gr a ph-based, thus allowing users to join data from mul-
iple, diverse sources (in contrast to SQL, which is a table-based
uery langua ge). Ther efor e, ther e is a need to standardize the
tructure of databases to run queries on animal venoms and toxin
 esearc h acr oss them. Furthermor e, it is advisable to use existing
ntologies and incor por ate contr olled terms alr eady in use or map
edundant terms among them. This can be facilitated by search-
ng existing terms in semantic resource catalogs such as Onto-
ee, the Ontology Lookup Service (OLS), or BioPortal [ 152 , 169 ].
his practice prevents unnecessary duplications, reduces redun-
ancy, and enhances data reusability and interoperability, which

s particularly relevant to a high multidisciplinary field like venom
 esearc h. 

Another issue raised by the venom research community is the
bsence of a repository for protocols and methods for recom-
inantl y pr oducing or c hemicall y synthesizing v enom peptides,
hich would benefit researchers by preventing redundant proto-

ol optimization efforts, especially in the case of toxins difficult
o r efold. Additionall y, ther e is a need for a centr alized, nonpr ofit
atabase of biological materials related to venoms and natural or
ngineered toxins stored or generated in research institutes, sim-
lar to plasmid repositories or even catalogs for museum spec-
mens, to aid r esearc hers in accessing preexisting materials for
heir own studies. 

Ensuring data and information accessibility and standardiza-
ion to the r esearc h and clinician communities and the public re-

ains crucial, as discussed in pr e vious sections . T he importance
f making these data publicl y av ailable is further emphasized by
he FAIR principles [ 159 ] and the recent European Open Access
olicies [ 170 ], which advocate for open access not only to publica-
ions but also to all underlying data. Addressing these needs and
hallenges will require collaboration and concerted efforts from
 esearc hers , clinicians , and organizations to advance venom re-
earch and its applications. 

erspecti v es on a unified venom web resource 

teps to w ar d satisfying the needs of the venom research commu-
ity include the creation of a venom-specific resource containing
etailed information on venomous species and their venoms and
oxins . T his database could encompass genome arc hitectur e and
unction of v enomous species, v enom gland transcriptomes, toxin
enes and their translated amino acid sequences , PTMs , 3D struc-
ures, pharmacological activities and toxicity le v els, molecular
nd cellular targets, and mechanisms of action, coupled with eco-
ogical and evolutionary information of the corresponding species
e.g., diet and geogr a phical distribution). By consolidating such
iverse information into a single resource or interface uniting a
 ange of r esour ces, scientists w orking in the interdisciplinary field
f animal venoms and toxins would have a valuable tool at their
isposal. It would enable them to access both general and spe-
ific information on a vast number of venomous species and tox-
ns and would decrease the time spent on extensive literature
earches. 

Such a resource could also significantly contribute to venom re-
ear ch b y facilitating the classification of v enom pr oteins, aiding
n the design of peptides with desired pharmacological properties,
nd identifying potential interactions. Ho w ever, the creation and
aintenance of such a platform would present considerable chal-

enges, requiring a substantial w orkfor ce, financial resour ces, and
nternational interdisciplinary collaborations to ensure its contin-
al updates and accuracy. 

An existing resource like VenomZone could serve as a starting
oint to w ar d realizing this unified resour ce. Ho w ever, significant
xpansions would be necessary to incor por ate the additional data
r oposed. A pr omising initiativ e is the inter activ e table that we
ave compiled within the framework of this work and made avail-
ble on the VenomZone website [ 15 ] ( Supplementary Information
ig. S4 ). It includes current web resources relevant to venom re-
earch in an interactive way. It therefore represents a positive step
o w ar d creating a comprehensive and accessible resource for the
ntir e v enom r esearc h comm unity. 

onclusions 

� Modern venom research is a multidisciplinary field resulting
in the generation and analysis of highly diverse datasets. 

� Curr entl y, information on v enom and toxin data is scattered
acr oss differ ent r esources, r anging fr om gener alist to special-
ized platforms. 

� Most multiomics analyses are performed using software and
command-line tools that r equir e adv anced computational
and command-line skills, while most available web resources
mainly offer downstream analyses. 

� One of the core challenges is accessing and providing infor-
mation across the different databases . T here is an urgent
need to establish standards to facilitate inter oper ability and
allow seamless querying of animal venom and toxin r esearc h
across platforms. 

� Pr ogr ess to w ar d meeting the needs of the v enom r e-
searc h comm unity r equir es the establishment of a dedi-
cated v enom-specific r esource . VenomZone , together with
our ne wl y cur ated site on demanded tools and r esources, r ep-
resents an important first step to w ar ds this goal. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae054#supplementary-data
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Additional Files 

Additional file 1.pdf: Survey on web resources in venom re- 
search. Questions included in the survey sent to the members of 
the EUVEN COST Action and the participants of the First Interna- 
tional EUVEN Congress in 2021. 
Additional file 2.csv: Ans w ers to the surve y. Anonymized an- 
swers to the survey. 
Additional file 3.tsv: Summary of v enom researc h areas. Con- 
tingency table of the r esearc h ar eas r epr esented by the r espon- 
dents of the survey used to create Supplementary Information 

Fig. S1 . 
Additional file 4.tsv: Summary of organisms studied in 

v enom researc h. Contingenc y table of the organisms studied 

by the respondents of the survey used to create Supplementary 
Information Fig. S2 . 
Additional file 5.pdf: Supplementary Information. Ov ervie w of 
the r esults fr om the surv ey and the compiled list of web re- 
sources , databases , and online tools utilised in venom research 

( Supplementary Information Table S1 ) and available on the 
VenomZone website. 
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