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Abstract

We analyse the family of C1-Virtual Elements introduced in [7] for fourth-order
problems and prove optimal estimates in L2 and in H1 via classical duality
arguments.
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1. Introduction

The Virtual Element Method (VEM), introduced in [2] and further developed
in [1], can be seen as the extension of the Finite Element Method (FEM) to
decompositions into almost arbitrary polygons and/or polyhedra. Since the
first paper in 2013 ([2]) the Virtual Element approach has been applied to
a number of applications: linear elasticity in two and three dimensions ([3]
and [9], respectively), general advection-diffusion-reaction problems, both in
primal [5] and in mixed form [4], Helmholtz problem [12], and plate bending
problems in the Kirchhoff-Love formulation [7]. In [7] a family of elements was
constructed and analysed, showing the ductility of the approach to design C1-
elements. Optimal convergence rates were proved in the energy norm, i.e., in
H2. Namely, order k − 1, with k ≥ 2 whenever the discrete space Vh contains
locally polynomials of degree k. In the present paper we prove optimal estimates
also in H1 and in L2, obtained via classical duality arguments, and we provide
numerical results confirming the theoretical estimates.

We point out that the use of C1-approximations is of interest not only for
plate bending problems, although the family of elements we are dealing with
was originally introduced having in mind plates. In many other applications
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the presence of fourth order operators calls for higher continuity. For example,
Cahn-Hilliard equation for phase separation, or Navier-Stokes equations in the
stream-vorticity formulation contain the biharmonic operator, exactly as in plate
bending problems, which we will refer to throughout the paper.

An outline of the paper is as follows. In Section 2 we state the continuous
problem and fix some notation. In Section 3 we recall the VEM-approximation
and the convergence result given in [7]. In particular, in Subsection 3.3 we
propose a different approximation of the loading term, more suited for deriving
optimal estimates in L2 and H1. In Sections 4 and 5 we prove error estimates in
H1 and in L2, respectively. Numerical results are presented in Section 6, and a
comparison with the classical Clough-Tocher and Reduced-Clough-Tocher finite
elements is carried out.

Throughout the paper we shall use the common notation for the Sobolev
spaces Hm(D) for m a non-negative integer and D an open bounded domain.
In particular (see e.g. [11], [8]) the L2(D) scalar product and norm will be
indicated by (·, ·)0,D or (·, ·)D and ‖ · ‖0,D or ‖ · ‖D, respectively. When D ≡ Ω
the subscript D will often be omitted. Finally, Pk will denote the space of
polynomials of degree ≤ k, with the convention that P−1 = {0}, and C will
denote a positive constant independent of the mesh size h.

2. The Continuous Problem

Let Ω ⊂ R2 be a convex polygonal domain occupied by the plate, let Γ be
its boundary, and let f ∈ L2(Ω) be a transversal load acting on the plate. The
Kirchoff-Love model for thin plates (see e.g. [8]) corresponds to look for the
transversal displacement w, the solution of

D∆2 w = f in Ω, (2.1)

where D = Et3/12(1− ν2) is the bending rigidity, t the thickness, E the Young
modulus, and ν the Poisson’s ratio. Assuming for instance the plate to be
clamped all over the boundary, equation (2.1) is supplemented with the bound-
ary conditions

w =
∂w

∂n
= 0 on Γ. (2.2)

The variational formulation of (2.1)-(2.2) is:{
Find w ∈ V := H2

0 (Ω) solution of

a(w, v) = (f, v)0 ∀v ∈ H2
0 (Ω),

(2.3)

where the energy bilinear form a(·, ·) is given by

a(w, v) = D
[
(1− ν)

∫
Ω

w/ijv/ij dx+ ν

∫
Ω

∆w∆v dx
]
. (2.4)
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In (2.4) v/i = ∂v/∂xi, i = 1, 2, and we used the summation convention of
repeated indices. Setting ‖v‖V := |v|2,Ω, it is easy to see that, thanks to the
boundary conditions in V and to the Poincaré inequality, this is indeed a norm
on V . Moreover

∃M > 0 such that a(u, v) ≤M‖u‖V ‖v‖V u, v ∈ V, (2.5)

∃α > 0 such that a(v, v) ≥ α‖v‖2V v ∈ V. (2.6)

Hence, (2.3) has a unique solution, and (see, e.g. [11])

‖w‖V ≤ C‖f‖L2(Ω). (2.7)

3. Virtual Element discretization

We recall the construction of the family of elements given in [7], and the
estimates there obtained. The family of elements depends on three integer
indices (r, s, m), related to the degree of accuracy k ≥ 2 by:

r = max{3, k}, s = k − 1, m = k − 4. (3.1)

Let Th be a decomposition of Ω into polygons K, and let Eh be the set of edges
in Th. We denote by hK the diameter of K, i.e., the maximum distance between
any two vertices of K. On Th we make the following assumptions (see e.g. [2]):

H1 there exists a fixed number ρ0 > 0, independent of Th, such that for every
element K (with diameter hK) it holds

i) K is star-shaped with respect to all the points of a ball of radius ρ0 hK , and

ii) every edge e of K has length |e| ≥ ρ0 hK .

3.1. Definition of the discrete space Vh

On a generic polygon K we define the local virtual element space as

V (K) := {v ∈ H2(K) : v|e ∈ Pr(e),
∂v

∂n |e
∈ Ps(e) ∀e ∈ ∂K, ∆2v ∈ Pm(K)}.

Then the global space Vh is given by

Vh = {v ∈ V : v|K ∈ V (K), ∀K ∈ Th}. (3.2)

A function in Vh is uniquely identified by the following degrees of freedom:

• The value of v(ξ) ∀ vertex ξ (3.3)
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• The values of v/1(ξ) and v/2(ξ) ∀ vertex ξ (3.4)

• For r > 3, the moments

∫
e

q(ξ)v(ξ)dξ ∀q ∈ Pk−4(e), ∀e ∈ Eh (3.5)

• For s > 1, the moments

∫
e

q(ξ)v/n(ξ)dξ ∀q ∈ Ps−2(e), ∀e ∈ Eh (3.6)

• For m ≥ 0, the moments

∫
K

q(x)v(x) dx ∀q ∈ Pm(K) ∀K. (3.7)

Proposition 3.1. In each element K the d.o.f. (3.3)–(3.7) are unisolvent.
Moreover, (3.3), (3.4), and (3.5) uniquely determine a polynomial of degree ≤ r
on each edge of K, the degrees of freedom (3.4) and (3.6) uniquely determine a
polynomial of degree ≤ s on each edge of K, and the d.o.f. (3.7) are equivalent
to prescribe Π0

mv in K, where, for m a nonnegative integer,

Π0
mv is the L2(K)− projector operator onto the space Pm(K). (3.8)

Remark 3.1. We recall that our assumptions on Th allow to define, for every
smooth enough w, an “interpolant” in Vh with the right interpolation properties.
More precisely, if gi(w), i = 1, 2, ...G are the global d.o.f. in Vh, there exists a
unique element wI ∈ Vh such that

gi(w − wI) = 0 ∀i = 1, 2, ....G. (3.9)

Moreover, by the usual Bramble-Hilbert technique (see e.g. [8]) and scaling
arguments (see e.g. [6]) we can prove that

‖w − wI‖s,Ω ≤ C hβ−s |w|β,Ω s = 0, 1, 2, 3 ≤ β ≤ k + 1 (3.10)

(with C > 0 independent of h) as in the usual Finite Element framework.

3.2. Construction of ah

We need to define a symmetric discrete bilinear form which is stable and
consistent. More precisely, denoting by aKh (·, ·) the restriction of ah(·, ·) to a
generic element K, the following properties must be satisfied (see [2]). For all
h, and for all K in Th,

• k-Consistency: ∀pk ∈ Pk, ∀v ∈ V (K)

aKh (pk, v) = aK(pk, v). (3.11)

• Stability: ∃ two positive constants α∗ and α∗, independent of h and of K,
such that

∀v ∈ V (K) α∗ a
K(v, v) ≤ aKh (v, v) ≤ α∗ aK(v, v). (3.12)
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The symmetry of ah, (3.12) and the continuity of aK imply the continuity of
aKh :

aKh (u, v) ≤
(
aKh (u, u)

)1/2 (
aKh (v, v)

)1/2

≤ α∗M ‖u‖2,K ‖v‖2,K for all u and v in V (K).
(3.13)

In turn, (3.12) and (3.13) easily imply

∀v ∈ Vh α∗ a(v, v) ≤ ah(v, v) ≤ α∗ a(v, v), (3.14)

and
ah(u, v) ≤ α∗M ‖u‖V ‖v‖V for all u and v in Vh. (3.15)

Next, let ΠK
k : V (K) −→ Pk(K) ⊂ V (K) be the operator defined as the solution

of 
aK(ΠK

k ψ, q) = aK(ψ, q) ∀ψ ∈ V (K), ∀q ∈ Pk(K)∫
∂K

(ΠK
k ψ − ψ) = 0,

∫
∂K

∇(ΠK
k ψ − ψ) = 0.

(3.16)

We note that for v ∈ Pk(K) the first equation in (3.16) implies (ΠK
k v)/ij = v/ij

for i, j = 1, 2, that joined with the second equation gives easily

ΠK
k v = v ∀v ∈ Pk(K). (3.17)

Hence, ΠK
k is a projector operator onto Pk(K). Let then SK(u, v) be a sym-

metric positive definite bilinear form, verifying

c0 a
K(v, v) ≤ SK(v, v) ≤ c1 aK(v, v), ∀v ∈ V (K) with ΠK

k v = 0, (3.18)

for some positive constants c0, c1 independent of K and hK . We refer to [7] for
a precise choice of SK(u, v). We just recall that SK(u, v) can simply be taken
as the euclidean scalar product associated to the degrees of freedom, properly
scaled to satisfy (3.18). Then set

aKh (u, v) := aK(ΠK
k u,Π

K
k v) + SK(u−ΠK

k u, v −ΠK
k v). (3.19)

Clearly the bilinear form (3.19) verifies both the consistency property (3.11)
and the stability property (3.12).

We postpone the construction of the right-hand side, and recall the conver-
gence result of [7].

Theorem 3.1. Under assumptions H1 on the decomposition the discrete prob-
lem: {

Find wh ∈ Vh solution of

ah(wh, vh) =< fh, vh > ∀vh ∈ Vh
(3.20)

has a unique solution wh. Moreover, for every approximation wI of w in Vh
and for every approximation wπ of w that is piecewise in Pk, we have

‖w − wh‖V ≤ C
(
‖w − wI‖V + ‖w − wπ‖h,V + ‖f − fh‖V ′

h

)
5



where C is a constant depending only on α, α∗, α
∗, M and, with the usual

notation, the norm in V ′h is defined as

‖f − fh‖V ′
h

:= sup
vh∈Vh

< f − fh, vh >
‖vh‖V

. (3.21)

3.3. Construction of the right-hand side

In order to build the loading term < fh, vh > for vh ∈ Vh in a simple and
easy way it is convenient to have internal degrees of freedom in Vh, and this
means, according to (3.1) and (3.7), that k ≥ 4 is needed. In [7] suitable choices
were made for different values of k, enough to guarantee the proper order of
convergence in H2. Namely,

‖w − wh‖V ≤ C hk−1‖w‖k+1. (3.22)

In order to derive optimal estimates in L2 and H1 we need to make different
choices. To this end, following [1], we modify the definition (3.2) of Vh. For
k ≥ 2, and r and s related to k by (3.1), let W k(K) be the new local space,
given by

W k(K) := {v ∈ H2(K) : v|e ∈ Pr(e),
∂v

∂n |e
∈ Ps(e) ∀e ∈ ∂K, ∆2v ∈ Pk−2(K)}.

For k = 2 we define the new global space as

W 2
h = {v ∈ V : v|K ∈W 2(K), and

∫
K

v dx =

∫
K

ΠK
k v dx ∀K ∈ Th}, (3.23)

and for k ≥ 3

W k
h = {v ∈ V : v|K ∈W k(K), and∫

K
v pα dx =

∫
K

ΠK
k v pα dx, α = k − 3, k − 2 ∀K ∈ Th}.

(3.24)

In (3.24) pα are homogeneous polynomials of degree α. It can be checked that
the d.o.f. (3.3)–(3.7) are the same, but the added conditions on the moments
allow now to compute the L2−projection of any v ∈W k

h onto Pk−2(K) ∀K, and
not only onto Pk−4(K) as before. Taking then fh = L2−projection of f onto
the space of piecewise polynomials of degree k − 2, that is,

fh = Π0
k−2f on each K ∈ Th,

the right-hand side in (3.20) can be exactly computed:

< fh, vh > =
∑
K∈Th

∫
K

fh vh dx ≡
∑
K∈Th

∫
K

(Π0
k−2f) vh dx

=
∑
K∈Th

∫
K

f (Π0
k−2vh) dx.
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Moreover, standard L2 orthogonality and approximation estimates yield

< fh, vh > −(f, vh) =
∑
K∈Th

∫
K

(Π0
k−2f − f)(vh −Π0

k−2vh) dx

≤ C
∑
K∈Th

hk−1
K |f |k−1,K ‖vh −Π0

k−2vh‖0,K .
(3.25)

4. Estimate in H1

We shall use duality arguments, both for deriving estimates in H1 and in
L2. In view of this, let us recall some regularity results for the problem

D∆2ψ = g in Ω, ψ = ψ/n = 0 on ∂Ω. (4.1)

Since Ω is a convex polygon, it holds (see [10])

g ∈ H−1(Ω) =⇒ ψ ∈ H3(Ω), ‖ψ‖3 ≤ C ‖g‖−1, (4.2)

and
∃ p with 0 < p ≤ 1 such that

g ∈ L2(Ω) =⇒ ψ ∈ H3+p(Ω), ‖ψ‖3+p ≤ C ‖g‖0.
(4.3)

The value of p depends on the maximum angle in Ω. Moreover, there exists a
θ0 < π such that, for all θ ≤ θ0 it holds p = 1, thus giving ψ ∈ H4(Ω).

We shall prove the following result.

Theorem 4.1. Let w be the solution of (2.3), and let wh be the solution of
(3.20). Then

|w − wh|1 ≤ Chk(|w|k+1 + (
∑
K∈Th

|f |2k−1,K)1/2), (4.4)

with C a positive constant independent of h.

Proof. Let ψ ∈ H2
0 (Ω) be the solution of (4.1) with g = −∆(w − wh):

D∆2ψ = −∆(w − wh) in Ω. (4.5)

By (4.2) we have

‖ψ‖3 ≤ C ‖∆(w − wh)‖−1 ≤ C |w − wh|1. (4.6)

Let ψI be the interpolant of ψ in W 2
h , for which it holds (see (3.10))

‖ψ − ψI‖m ≤ C h3−m‖ψ‖3, m = 0, 1, 2. (4.7)
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Integrating by parts, using (4.5), adding and subtracting ψI , and using (2.3)
and (3.20) we have:

|w − wh|21 = −(∆(w − wh), w − wh)0 = (D∆2ψ,w − wh)0

= a(w − wh, ψ − ψI) + a(w − wh, ψI)

= a(w − wh, ψ − ψI) + [(f, ψI)− < fh, ψI >]

+[ah(wh, ψI)− a(wh, ψI)] =: T1 + T2 + T3.

(4.8)

The first term is easily bounded through (2.5), and then (3.22), (4.7), and (4.6):

T1 ≤ Chk−1‖w‖k+1h‖ψ‖3 ≤ Chk‖w‖k+1|w − wh|1. (4.9)

For T2 we use (3.25) with vh = ψI . Standard interpolation estimates give

‖ψI −Π0
k−2ψI‖0,K ≤ ‖ψI −Π0

0ψI‖0,K
≤ ‖ψI − ψ‖0,K + ‖ψ −Π0

0ψ‖0,K + ‖Π0
0(ψ − ψI)‖0,K

≤ ChK |ψ|1,K

which inserted in (3.25) gives

T2 ≤ C hk(
∑
K∈Th

|f |2k−1,K)1/2 |w − wh|1. (4.10)

It remains to estimate T3. Adding and subtracting wπ(= Π0
kw) and using (3.11),

then adding and subtracting ψπ = Π0
2ψ and using again (3.11) we have

T3 =
∑
K

(aKh (wh, ψI)− aK(wh, ψI))

=
∑
K

(aKh (wh − wπ, ψI) + aK(wπ − wh, ψI))

=
∑
K

(aKh (wh − wπ, ψI − ψπ) + aK(wπ − wh, ψI − ψπ)).

From (3.15), (2.5), standard approximation estimates, (3.22) and (4.7) we de-
duce

T3 ≤ C hk|w|k+1|w − wh|1. (4.11)

Inserting (4.9), (4.10), and (4.11) in (4.8) we have the result (4.4)

5. Estimate in L2

We shall prove the following result.
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Theorem 5.1. Let w be the solution of (2.3), and let wh be the solution of
(3.20). Then

‖w − wh‖0 ≤ C


h2
(
|w|3 + (

∑
K∈Th

|f |21,K)1/2
)

for k = 2

hk+p
(
|w|k+1 + (

∑
K∈Th

|f |2k−1,K)1/2
)

for k ≥ 3,
(5.1)

with C > 0 independent of h, and p the regularity index given in (4.3).

Proof. We shall treat only the cases k ≥ 3, the reason being that, if β is the order
of convergence inH2, the expected order in L2 is given by min{2β, β+2}. Hence,
for k = 2 we can expect not more than order 2, which is a direct consequence
of the H1−estimate (4.4):

for k = 2, ‖w − wh‖0 ≤ C |w − wh|1 ≤ Ch2
(
|w|3 + (

∑
K∈Th

|f |21,K)1/2
)
. (5.2)

Let then k ≥ 3, and let ψ ∈ H2
0 (Ω) be the solution of (4.1) with g = w − wh:

D∆2ψ = w − wh in Ω. (5.3)

By the regularity assumption (4.3) we have

‖ψ‖3+p ≤ C ‖w − wh‖0. (5.4)

Let ψI be the interpolant of ψ in W 3
h , for which it holds

‖ψ − ψI‖m ≤ C h3+p−m‖ψ‖3+p, m = 0, 1, 2. (5.5)

Then, from (5.3) and proceeding as we did in (4.8) we have

‖w − wh‖20 = (D∆2ψ,w − wh)0 = a(ψ,w − wh)

= a(w − wh, ψ − ψI) + [(f, ψI)− < fh, ψI >]

+[ah(wh, ψI)− a(wh, ψI)] =: T1 + T2 + T3.

(5.6)

The rest of the proof follows exactly the steps used for proving Theorem 4.1.
Thus, from (3.22), (5.5) and (5.4),

T1 ≤ Chk−1‖w‖k+1h
1+p‖ψ‖3+p ≤ Chk+p‖w‖k+1‖w − wh‖0. (5.7)

For the term T2 we use again (3.25) with vh = ψI , which now gives

‖ψI −Π0
k−2ψI‖0,K ≤ ‖ψI −Π0

1ψI‖0,K ≤ Ch2
K |ψ|2,K ,

so that
T2 ≤ C hk+1(

∑
K∈Th

|f |2k−1,K)1/2 ‖w − wh‖0. (5.8)
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Finally, proceeding exactly as for (4.11),

T3 ≤ C hk−1|w|k+1h
1+p‖ψ‖3+p ≤ C hk+p|w|k+1‖w − wh‖0. (5.9)

Collecting (5.7)–(5.9) in (5.6) gives

‖w − wh‖0 ≤ C hk+p(|w|k+1 + (
∑
K∈Th

|f |2k−1,K)1/2)

and the proof is concluded.

6. Numerical results

In order to assess accuracy and performance of virtual elements for plates, we
present numerical tests using the first two elements of the family here described.
The corresponding polynomial degree indices, defined in (3.1), are r = 3, s = 1,
m = −2 and r = 3, s = 2, m = −1. Thus, the elements are named VEM31
and VEM32, respectively. The degrees of freedom, chosen according to the
definitions (3.3)-(3.7), are the values of the displacement and its first derivatives
at the vertices ((3.3) and (3.4)) for VEM31, and the same degrees of freedom
(3.3)-(3.4) plus the moment of order zero of the normal derivative (see (3.7)) for
VEM32. The two elements are presented in Figure 1. They are the extensions
to polygonal elements of two well-known finite elements for plates: the Reduced
Hsieh-Clough-Tocher triangle (labelled CLTR), and the Hsieh-Clough-Tocher
triangle (labelled CLT) (see e.g. [8]), respectively. As a test problem we solve
(2.1)-(2.2) with Ω = unit square and f chosen to have as exact solution the
function wex = x2(x− 1)2y2(y − 1)2. As a first test, we compare the behaviour
of virtual and finite elements; for this we take a sequence of uniform meshes of
N ×N × 2 equal right triangles (N = 4, 8, 16, 32), and we plot the convergence
curves of the error in L2, H1 and H2 produced by the virtual elements VEM31
and VEM32, and the finite elements CLTR and CLT respectively. Figure 2
shows the relative errors in L2, H1 and H2 norm against the mesh diameter
(h = 0.3536, h = 0.1768, h = 0.0884, h = 0.0442). The convergence rates are
obviously the same, although in all cases the virtual elements seem to perform a
little better. Next, we test the behaviour of the virtual elements on a sequence of
random Voronoi polygonal tessellations of the unit square in 25, 100, 400, 1600
polygons with mean diameters h = 0.3071, h = 0.1552, h = 0.0774, h = 0.0394
respectively. (Figure 3 shows the 100 and 1600-polygon meshes). In Figure 4
we compare the convergence curves in L2, H1 and H2 norm obtained using the
virtual elements VEM31 and VEM32 on the Voronoi meshes and on uniform
triangular meshes.
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Figure 1: VEM31 element on the left, VEM32 element on the right
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Figure 3: 100 and 1600-polygons Voronoi mesh
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Figure 4: Virtual elements on different meshes. Left: VEM31 element. Right: VEM32 element
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