2208.11339v1 [cs.CV] 24 Aug 2022

arxXiv

A Spatio-Temporal Attentive Network for
Video-Based Crowd Counting

1% Marco Avvenuti
Dept. of Information Engineering
University of Pisa
Pisa, Italy
marco.avvenuti @unipi.it

4™ Fabrizio Falchi
Inst. of Information Science and Tech.
National Research Council (ISTI-CNR)
Pisa, Italy
fabrizio.falchi @isti.cnr.it

Abstract—Automatic people counting from images has re-
cently drawn attention for urban monitoring in modern Smart
Cities due to the ubiquity of surveillance camera networks.
Current computer vision techniques rely on deep learning-based
algorithms that estimate pedestrian densities in still, individual
images. Only a bunch of works take advantage of temporal
consistency in video sequences. In this work, we propose a spatio-
temporal attentive neural network to estimate the number of
pedestrians from surveillance videos. By taking advantage of
the temporal correlation between consecutive frames, we lowered
state-of-the-art count error by 5% and localization error by 7.5%
on the widely-used FDST benchmark.

Index Terms—Crowd Counting, Deep Learning, Visual Count-
ing, Smart Cities

I. INTRODUCTION

Computer Vision obtained a tremendous boost in the last
few years thanks to the astonishing advances in Machine
Learning. In particular, Deep Learning allowed the research
community to define new state-of-the-arts in many Computer
Vision tasks, such as object detection [/1]], or image retrieval
[2], to name a few. With the increasing interest in Smart Cities
and the grown availability of surveillance cameras that have
become pervasive, there is a unanimous effort to employ these
novel technologies for urban monitoring and surveillance.
Like no other sensing mechanism, networks of city cameras
can observe and simultaneously provide visual data to Al
systems to extract relevant information from this deluge of
data. In this context, many smart applications, ranging from
lot occupancy detection [3]] to pedestrian detection [4]—[6] and
re-identification [[7], have been proposed and are nowadays
widely employed worldwide. In this work, we treat the count-
ing task, which consists of providing the number of instances
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of a specific class present in the scene — for example,
the number of vehicles that are transiting a particular road.
Specifically, we focus on crowd counting to automatically
estimate the number of people present in images gathered
from city surveillance cameras. This application is crucial in
many scenarios, like monitoring and eventually limiting people
aggregations during the recent COVID-19 pandemic.

Recent literature extensively faced the crowd counting task
by estimating and integrating density maps of still, individual
images. Nevertheless, relatively few works take advantage of
the temporal consistency of video streams. However, using
temporal constraints across consecutive frames could be an
essential key point for enhancing the counting performance.

Driven by these concerns, we propose an enhanced exten-
sion to the video-counting framework introduced by Liu et al.
[8]], [9]]. These works presented an interesting semi-supervised
learning method that infers people density maps starting from
the estimation of people flows among adjacent keyframes.
At inference time, the flow is integrated to obtain the ac-
tual people count. Although the learning framework is solid,
their proposed network comprises a simple fully-convolutional
encoder-decoder pipeline, which estimates the flow from a
pair of consecutive images. In this work, inspired by the
recent attentive mechanisms proposed to process visual data,
such as Vision Transformer [10]], we enhance the architecture
in [8]], [9] with self-attentive connections. Specifically, we
introduce an attentive-based temporal fusion layer to improve
the flow predictor, taking advantage of the temporal corre-
lation between consecutive frames. Through an experimental
evaluation, we show that our proposed method can boost the
performance compared with the original framework on the
widely-used FDST dataset [11], one of the largest and most
diverse collections of temporally correlated frames, suitable
for video-based counting. We assess not only the counting
performance considering the counting errors occurring at in-
ference time (i.e., the difference between the predicted and



the actual person numbers) but also the ability to correctly
localize the counted persons. Indeed, count errors do not take
into account where the pedestrians have been detected in the
images and, consequently, counting models might achieve low
values of errors while providing wrong predictions (e.g., a high
number of false positives and false negatives).

To sum up, we propose the following contributions:

« We propose an extension to a recent semi-supervised
video-based counting framework [8]], [9], employing an
attentive-based temporal fusion layer that takes advantage
of the temporal correlation between consecutive images
and improves the people flow estimation.

« We demonstrate through detailed experiments that the
proposed variation can reach state-of-the-art results on
the FDST dataset, lowering the count error by 5%.

e We conduct a performance evaluation also considering
the ability to correctly localize the counted persons,
lowering the localization error by 7.5% compared to the
original counting framework.

The code and the trained models will be publicly available

at https://tinyurl.com/yb42ce38.

II. RELATED WORK
A. Image-based Counting

Image-based counting aims at estimating the number of
object instances, like people [12]], [13], cells [14]], [15], or
vehicles [16], [17]], in szill images or video frames [I8].
Current solutions are formulated as supervised deep learning-
based problems belonging to one of two main categories:
counting by detection and counting by regression. Detection-
based approaches, such as in [19] and [20], require prior
detection of the single instances of objects. On the other hand,
regression-based techniques like and try to establish
a direct mapping between the image features and the number
of objects in the scene, either directly or via the estimation of
a density map (i.e., a continuous-valued function). Regression
techniques show superior performance in crowded and highly-
occluded scenarios [18].

B. Video-based Counting

Crowd counting approaches are mainly based on single-
image inputs, even when a video sequence is available, leading
to the impossibility of exploiting the temporal interdependence
between consecutive frames in the sequence. Nevertheless,
in the literature, there are a handful of works that rely on
the estimation of density maps, but, on the other hand, try
to exploit also temporal information to improve counting
accuracy. For instance, introduced one of the first video-
based counting approaches, based on an LSTM-based method
called ConvLSTM, i.e., a fully connected LSTM extended with
convolutional layers in both the input-to-state and state-to-
state connections. In [24]], the authors exploited a Locality-
constrained Spatial Transformer (LST) module to model the
spatial-temporal correlation between estimated neighboring
density maps. Another remarkable work is [25], where the
authors introduced a Temporal Aware Network (TAN), which

-
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Fig. 1. Visualization of a neighborhood N (j) of an image patch j (shown
in red). This is used to impose people conservation constraints, as formulated
by Equations [2] and 3]

can compute the number of people present at frame X,
by exploiting frames from X, , to X;;x. More recently,
Liu et al. [8]], [9] proposed an alternative approach where
density maps are not directly regressed from images but are
inferred from people flows across image locations between
consecutive frames. However, the proposed network in charge
of estimating flows from pair of images lies in a simple
fully-convolutional encoder-decoder pipeline. In this work, we
extend and enhance this framework by exploiting self-attentive
connections, introducing an attentive-based temporal fusion to
enhance the flow predictor.

C. Attentive Models

Attention mechanisms have been largely used in the last
two years and had a significant impact on tasks that involve
both vision and language, such as VQA [26]), image captioning
[27], [28] or image-text matching [2]], [29]. Recently, the
Transformer-like attention mechanism obtained the best
results in processing images and videos. In particular, the au-
thors in introduced the Vision Transformer, demonstrating
the power of the self-attentive mechanism in the image clas-
sification task. Similarly, the DETR architecture used the
full Transformer architecture for tackling the object detection
task, obtaining remarkable results with respect to state-of-the-
art fully-convolutional approaches. This work is inspired by
the recent advances in attentive video processing, where most
methods use spatio-temporal attention to understand frame
patches from multiple timesteps [32], [33]l.

III. METHOD

The proposed architecture tries to reconstruct the people
flows, enhancing the weak-supervised learning framework
proposed in [3], [9]. In Section we briefly review their
original framework; in Section [[II-B we explain our attentive-
based temporal fusion used to improve the flow predictor.

A. The People-Flow Approach

The approach presented in [8], [9]] is a video-based counting
scheme that does not directly estimate people densities from
images but infers them from the so-called people flow between
two consecutive frames. People flows are vector fields that
associate pedestrian movement vectors to every point in the
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frame space. People flows are zeros at a certain point in space
if there are no moving pedestrians.

Once the people flow f' 1! between two consecutive
frames I~ and I' has been predicted, the j-th spatial location
of the density map d; for the frame I’ can be reconstructed
by summing all the flow contributions entering j from neigh-
boring locations of the previous frame:

4= 3 gt 0
iEN())
where the neightbouring locations N (j) of the j-th path are
shown in Figure [I] The final people count at time ¢ can then
be found by summing up all the pixel values of the obtained
density map: Y j dﬁ However, regressing the flows is not a
straightforward operation, as many video-counting datasets do
not embed any explicit people flow ground-truth that can be
used to supervise the network.
For this reason, the work in [8]], [9] proposed a weak-
supervised learning approach that estimates the flows using
. St—1 5t .
only the ground-truth density maps d ~ and d at consecutive
timesteps (¢t — 1,¢). In particular, the flows are constructed
by only imposing strong people conservation constraints, i.e.,
people cannot appear or disappear between consecutive frames
if not in the frame edges. In particular, the constraints can be
expressed as follows:
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where Eq. 2] imposes people conservation in the neighborhood
of a location j (Figure E]) across consecutive frame intervals,
and Eq. [3] enforces the spatio-temporal symmetry of the flows,
i.e. the people should move in the opposite direction when the
time flows backwards. More details can be found in [8]].
With this weakly-supervised learning framework, the only
missing piece is the function that regresses the flows. In partic-
ular, this function is a deep neural network R(I*~* I*, 6) that
outputs the flow f~' given two consecutive images in input.
Its parameters 6 are optimized during the training process by
enforcing the constraints in Eq. 2] and 3] In the next paragraph,
we propose to use a spatio-temporal attentive network as K.

B. The Attentive Flow Regressor

The proposed network resembles a convolutional encoder-
decoder architecture, which takes two consecutive RGB im-
ages in input and produces the predicted flows. Specifically, the
encoder £ processes the input images I~ and I" to obtain the
corresponding internal feature maps w?~! w! € RW*H*C
where (W, H, C') are the width, the height and the number of
channels, respectively. Formally:

wiTt=¢g(I') )
w' = &(I") )

These feature maps are then composed together using an
aggregator function w = A(w'~! w?), which outputs a

feature map @ € RW*H*C" with the same spatial resolution

but possibly a different number C’ of channels. In the end,
the final flows are obtained by applying the decoder to the
aggregated feature maps: f' = D(w) € RW*H*10, Notice
that the output flow is 10-dimensional, as there are ten possible
directions in which a person can move inside the frame (nine
locations in the neighborhood including the starting cell, as
depicted in Figure |1} plus one cell representing the rest of the
world at the edges of the image).

In the original formulation in [8]], the aggregator function is
a straightforward concatenation along the channels dimension:
A = [,]¢, which therefore outputs @ € RW>*Hx2C 1
this work, we propose an attentive spatio-temporal aggregation
module that can produce more space-time aware feature maps
w, which, in turn, provide better flows.

The idea is to employ the feature maps coming from
one of the two input frames to condition the features of
the other frame. We denote the feature maps from the two
frames as Winput and Wiarger, Where input refers to the visual
information that conditions the target one in the attention
mechanism. In particular, we used an approach similar to the
convolutional self-attention by [34]]. Specifically, we initially
derive other three feature maps from the two input maps pro-
duced by the encoder, namely v = g, (Wiarget) € RW xHxdy
and ¢ = gg(Warger) € RW*H¥ from wigge, and k =
Gk (Winpw) € RW>*H*dk from wiypy. These v, k,q are the
values, the keys, and the queries respectively, used to drive
the Transformer-like attention mechanism. They are produced
from the input feature maps using three different convolutional
layers g,, gk, gr having a 3 x 3 kernel and padding=1 to leave
the spatial resolution untouched.

The output, as in the Transformer [30] attention mechanism,
is computed through the scaled dot-product attention:

T
q
o = softmax(——)v (6)
( \/ch)

gq(wlarget)gk(winput)T

Vdy

Note that, differently from the original Transformer-like
attention, we empirically found that computing values from
the target sequence — instead of the input sequence — led
to better results. Still, the core idea aims at incorporating the
context from one frame into the feature map of the other frame.

To account for the original feature maps after the attentive
processing, we concatenate a transformation of the original
feature maps wippy; to the output o along the channel dimen-
sion:

= softmax ( ) go (Wrarget) @)

o= [gskip(winput)a O}C (8)

where gip(+) is a convolution operation that does not change
the spatial resolution, and outputs C' — d,, channels so that &
has again C channels. We denote the above-described spatio-
temporal attentive fusion module as 6 = ST (Winput; Wiarget)
(see Figure [3). Now, the final goal is to condition the past
frame I'~' given the present frame I‘, and vice-versa. For
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Fig. 2. The overall spatio-temporal attentive regressor architecture.
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Fig. 3. Inner architecture of the spatio-temporal fusion module.

this reason, we compute the two symmetric attentional feature
maps, by simply swapping the two frames in input:

o' =ST(w' ' w) ©)
o' = ST (w',w'™) (10)

At this point, using plain concatenation along the channel
direction, we merge the obtained attentive feature maps ob-
taining the final spatio-temporal aware feature map: w =
[6'=!,5']C. Finally, as in the original encoder-decoder con-
volutional architecture, the 10-dimensional output flow f is
obtained by applying the decoder to this last feature map:
f' = D(w). The overall architecture is shown in Figure

IV. EXPERIMENTAL EVALUATION

This section describes the experiments performed to val-
idate our approach and discusses the obtained results. As
benchmark, we exploit the widely-used FDST dataset [I1]. It
consists of 100 videos gathered from 13 different scenarios. A
total of 150,000 frames have been extracted, thus representing
one of the largest and most diverse collections of real-world
images suitable for this task. Annotations are expressed using
dots localizing peoples’ heads, as usual for the counting task,
for a total of 394,081 labeled pedestrians. We follow the same
setting as in , considering 60 videos (9,000 frames) as the
training set and the remaining 40 videos (6,000 frames) as the
test set.

In the first stage of the evaluation, we compare the counting
errors obtained using our proposed solution against the frame-
work introduced in [8]], [9]], and other recent state-of-the-art
counting solutions present in the literature. On the other hand,
in the second part of our experiments, we also assess the ability
to correctly localize the counted pedestrians.

A. Comparison with the State-of-the-art

Here, we compare our solution in terms of counting
with other state-of-the-art methodologies. Following standard
counting benchmarks, we used the Mean Absolute Error
(MAE) and the Root Mean Square Error (RMSE) to measure
the counting performance. Specifically, they are defined as:

; (1)

| X
MAE = N Z ’cg — Cpred

n=1

N

RMSE = % > (em = )2 (12)
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where IV is the number of test images, cgt is the actual count
(i.e., the ground truth), and cgred is the predicted count of the
n-th image. It is worth noting that, as a result of the squaring
of each difference, the RMSE effectively penalizes large errors
more heavily than small ones, and so it is more useful when
outliers are particularly undesirable.

We report our quantitative results obtained on the FDST
dataset in Table [} We called our solution People Flow Tempo-
ral Fusion (TF), to distinguish it from the original framework
People Flow Plain Concatenation (PC). We divided the train-
ing set into train and validation splits, considering the 80%
and the 20% of the available data, respectively. To mitigate
the overfitting problem, we considered training and validation
images belonging to different video sequences (12 sequences
for validation and the remaining 48 for the training). For better
capturing movement between consecutive images, we sampled
the previous and the consecutive frames by setting an offset of
5 frames. More, we performed data augmentation randomly,
applying common transformations such as horizontal flipping,
cropping, and normalization. We repeated the experiments
using our solution three times, reporting the mean. Finally,



TABLE I
COMPARISON WITH SOTA ON FDST DATASET. WE OBTAINED SOTA
RESULTS IN TERMS OF MAE AND WE LOWERED THE ERROR BY 5%
COMPARED TO THE ORIGINAL FRAMEWORK.

Model Temporal MAE | RMSE |
ConvLSTM [23] v 4.48 5.82
WithoutLST [24] 3.87 5.16
MCNN [13]| 3.77 4.88
LST [24] v 3.35 4.45
CAN [22] 2.44 2.96
People Flow PC [8]], [9] v 2.17 2.62
People Flow TF (Our) v 2.07 2.69
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Fig. 4. Some qualitative examples showing the predicted density maps.

images are resized to a dimension of 640 x 360 pixels
(width and height, respectively). As can be seen, our approach
outperforms the competing methods. In particular, we lowered
the MAE by about 5% compared to the baseline framework,
with a comparable RMSE value.

B. Localization Analysis

Although the MAE is a fair metric for establishing a
comparative in terms of count error, it can often lead to
masking erroneous estimations. A potential pitfall of the
counting approaches is that the models may miss hard-to-
detect instances. To compensate for these missed detections
and estimate the correct count, they may falsely mark back-
ground sub-regions having similar regional image properties as
possible object instances instead. The reason is that the MAE
does not take into account where the estimations have been
done in the images. In this section, we conduct experiments
to assess the ability of our solution to localize the counted
pedestrians correctly, comparing the obtained results against
the framework introduced by [[8], [9]. Specifically, we consider
the Grid Average Mean absolute Error (GAME) [35]], a hybrid
metric that simultaneously considers the object count and
the estimated locations of the persons. It is computed by

TABLE II
LOCALIZATION ANALYSIS. WE LOWERED THE GAME BY ABOUT 7.5%
COMPARED TO THE ORIGINAL FRAMEWORK ON THE FDST DATASET.

Model MAE | GAME |
People Flow PC* 2.17 16.00
People Flow TF (Our) 2.07 14.81

* Retrained in this work.

sub-dividing the image in 4" non-overlapping regions and
summing the MAE computed in each of these sub-regions:

N 4F
1
GAME(L) = 5 > (3 Iche — Creal).

n=1 [=1

13)

where N is the total number of test images, céred is the
estimated count in a region [ of the n-th image, and cgt is
the ground truth for the same region in the same image. The
higher L, the more restrictive the GAME metric will be.

In this work, we considered a grid with a fixed dimension of
80 x 45 (width and height, respectively), corresponding to the
spatial resolution of the feature maps produced by the encoder
& fed with input images of 640 x 360 pixels. Table[[l|shows our
quantitative results obtained on the FDST dataset exploiting
our solution People Flow Temporal Fusion (TF) compared
with the original framework People Flow Plain Concatenation
(PC). We repeated the experiments three times, reporting the
mean. Specifically, concerning the original framework, we
performed three different experiments considering the model
publicly provided E| by the authors of [8]], [9], and two
models obtained re-training from scratch the original network
using different seeds (as illustrated in the Table, the mean
concerning the MAE is fully comparable with the one reported
in [8]], [9]). As can be seen, our approach outperforms the
original methodology, lowering the GAME by about 7.5%,
thus suggesting that our solution provides better performance
not only in terms of count errors but that it is also capable of
better localizing the found pedestrians. In Figure 4] we report
some qualitative outputs from our approach.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed an attentive neural network to esti-
mate the number of pedestrians in videos from surveillance
cameras. In particular, we extended a promising method that
estimates people flows to obtain people densities, which are
then integrated to get the final count. To create a more
suitable spatial and temporal context for predicting the flows,
we proposed a spatio-temporal attentive network, which can
contextualize the features maps from the present with those
from the past frame vice-versa. In our experiments on the
largely-used FDST dataset, we demonstrated the effectiveness
of our architecture. We obtained a considerable improvement
in counting performance compared to other state-of-the-art ap-
proaches in video counting. Furthermore, through the GAME

Uhttps://github.com/weizheliu/People-Flows
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metric, we demonstrated that our method achieves a more
precise localization of the pedestrians inside the frame than
the network without the spatio-temporal attentive module.

In the future, we plan to extend the experimentation to
other datasets, also employing virtual data to train the network,
to avoid manual annotation of large dot-annotated pedestrian
videos. Furthermore, we plan to use domain adaptation tech-
niques to fill the well-known domain-gap existing between the
different monitored scenarios.
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