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Abstract

The management of imprecise information in logic programs becomes to be
important whenever the real world information to be represented is of imper-
fect nature and the classical crisptrue, falseapproximation is not adequate.

In this work, we consider generalized normal logic programs over com-
plete lattices, where computable truth combination functions may appear in
the rule bodies to manipulate truth values. It is an unifying umbrella for
existing approaches for many-valued normal logic programs. We will pro-
vide declarative and fixed-point semantics of the logic and provide a simple
and effective top-down query answering procedure by a transformation to an
equational system over lattices.

Categories: F.4.1-Mathematical Logic and Formal Languages-Mathematical
Logic-Logic and constraint programming, I.2.3-Artificial Intelligence-Deduction
and Theorem Proving-Logic programming

Keywords: logic programming, nonmonotonic logic, many-valued logic, top-
down

1



1 Introduction

The management of uncertainty and/or imprecision within deduction systems is
an important issue whenever the real world information to be represented is of
imperfect nature. In logic programming, the problem has attracted the attention
of many researchers and numerous frameworks have been proposed. Essentially,
they differ in the underlying notion of uncertainty theory and imprecision theory
(Probability theory[3, 15, 16, 17, 25, 30, 37, 50, 51, 52, 53, 54, 55, 63, 67, 68, 69,
70, 80, 83],Fuzzy set theory[7, 20, 28, 29, 33, 56, 65, 64, 72, 73, 78, 81, 82, 84],
Multi-valued logic[9, 10, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 35, 36, 38, 42, 43,
44, 45, 46, 47, 48, 49, 57, 58, 61, 59, 60, 75, 74],Possibilistic logic[1, 2, 18, 71])
and how uncertainty/imprecision values, associated to rules and facts, are managed.

Under “uncertainty theory” fall all those approaches in which statements rather
than being either true or false, are true or false to some probability or possibil-
ity/necessity, while under “imprecision theory” fall all those approaches in which
statements are true to some degree which is taken from a truth space (see [19] for a
clarification between the notions of uncertainty and imprecision). In this work we
deal withimprecisionand, thus, statements have a degree of truth.

Current frameworks for managing imprecision in logic programming can roughly
be classified intoannotation based(AB) and implication based(IB).

• In the AB approach (e.g. [31, 32, 66, 67]), a rule is of the form

A: f(β1, . . . , βn)← B1:β1, . . . , Bn:βn

which asserts “the value of atomA is at least (or is in)f(β1, . . . , βn), when-
ever the value of atomBi is at least (or is in)βi, 1 ≤ i ≤ n”. Heref is an
n-ary computable function andβi is either a constant or a variable ranging
over an appropriate truth domain.

• In the IB approach, (e.g. [9, 14, 37, 38, 60, 78, 81] a rule is of the form

A
α← B1, ..., Bn

which says that the value associated with the implicationB1 ∧ ... ∧ Bn →
A is α. Computationally, given an assignmentI of values to theBi, the
value ofA is computed by taking the “conjunction” of the valuesI(Bi) and
then somehow “propagating” it to the rule head. The values the atoms may
have are taken from a lattice. More recently, [9, 34, 38, 81] show that most
of the frameworks dealing with imprecision and logic programming can be
embedded into the IB framework.
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However, most of the approaches stress an important limitation for real-world
applications, as they do not address any mode ofnon-monotonic reasoning. In
particular, no default negation operation is defined. Exception to this limitation
are [13, 41, 42, 43, 44, 74, 75], where the underlying truth-space are lattices, and
its formulations goes overbilattices[27] (a less general structure than lattices).

Additionally, in most frameworks, in order to answer to a query, we have to
compute the whole intended model (e.g., by a bottom-up fixed-point computa-
tion) and then answer with the evaluation of the query in this model. This always
requires the computation of a whole model, even if not all the atom’s truth is re-
quired to determine the answer (some work presenting top-down procedures are
[10, 32, 38, 75, 81], but in none of them non-monotonic negation is considered
(and [74] deals with normal logic programs over bilattices).

The contribution of this work is as follows. We present a general framework
for generalized normal logic programs with many-valued semantics. We generalize
the well-known well-founded semantics for classical normal logical programs [79]
to the many-valued case. The truth-space is a complete lattice and rules and facts
have the very general form

A← f(B1, ..., Bn) ,

wheref is ann-ary computable function over lattices andBi are atoms. Each
rule may have a differentf . Computationally, given an assignmentI of values
to the Bi, the value ofA is computed by stating thatA is at least as true as
f(I(B1), ..., I(Bn)). The form of the rules is sufficiently expressive to encom-
pass all approaches to many-valued normal logic programming. Additionally, we
present a very general top-down method for answering queries, by a transforma-
tion of a normal logic program into an equational system over lattices and then by
developing a top-down query answering procedure for such equational systems.

As seen above, there are many works dealing with imprecision with logic pro-
gramming with or without negation, either using the AB approach or the IB ap-
proach. The use of arbitrary computable truth combination functions in the body
is sufficiently expressive to subsume all those work dealing with normal logic pro-
grams. To the best of our knowledge there is no other work which has the ex-
pressive power of our formalism and also presents a top-down query answering
procedure for normal logic programs. Most works deal with logic programming
without negation, though may provide some technique to answer queries in a top-
down manner, as e.g. [10, 32, 38, 81]. On the other hand, we are not aware of other
works dealing with normal logic programs, like [13], providing a top-down query
answering procedure, too.

Closest to our approach are [74, 75]. While [74] considers positive programs
only, but the top-down procedure is a special case of the one we presented here, we
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consider here non-monotonic negation as well as in [75]. The main differences of
this work to [75] are as follows.(i) In [75] we consider bilattices as truth space,
while here we rely on complete lattices only.(ii) Furthermore, in [75] the seman-
tics is given by relying on a generalization of the Gelfond-Lifschitz transform [26]
due to Fitting [21, 22]. Here we follow a different approach, but semantically
equivalent to [75], based on the so-called notion ofsupport[41]. The support is a
generalization of the notion ofunfounded sets[79] to characterize the well-founded
semantics of classical logic programs. The effect of this choice is the development
of a top-down procedure, which is similar to the tabulation procedure [76], but gen-
eralized tomany-valued normal logic programs with arbitrary computable truth
combination functions in rule bodies.

In the remaining, we proceed as follows. In the following section, we give some
basic definitions about our formalism and some illustrative examples. Section 3
contains the definitions of interpretation and model of a program. In Section 4, we
define the intended semantics of normal logic programs. In Section 5 we present
a top-down query answering procedure, while Section 6 concludes and addresses
future directions of work.

2 Preliminaries

2.1 Truth lattice

A truth lattice is a complete latticeL = 〈L,�〉, with L a countable set of truth
values, bottom⊥, top element>, meet∧ and join∨. The main idea is that an
statementP (a), rather than being interpreted as either true or false, will be mapped
into a truth valuec ∈ L. The intended meaning is thatc indicates to which extend
P (a) is true. Finally, we also assume thatL has anegation, i.e. an operator¬ that
reverses the� ordering and verifies¬¬x = x.

Typical truth lattices are the following.

Classical 0-1: L{0,1} corresponds to the classical truth-space, where0 stands for
‘false’, while 1 stands for ‘true’ and¬0 = 1.

Fuzzy: L[0,1]∩Q, which relies on the unit interval, is quite frequently used as truth
lattice with¬x = 1− x.

Four-valued: another frequent truth lattice is Belnap’sFOUR [5], whereL is
{f, t, u, i} with f � u � t andf � i � t. Here,u stands for ‘unknown’,
whereasi stands for inconsistency. Concerning negation, we have¬f = t,
¬u = u and¬i = i. We denote the lattice asLB.
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Many-valued: L = 〈{0, 1
n−1 , . . . n−2

n−1 , 1},≤〉, n positive integer and¬x = 1−x.

In a complete latticeL = 〈L,�〉, a functionf :L → L is monotone, if ∀x, y ∈ L,
x � y implies f(x) � f(y). A fixed-pointof f is an elementx ∈ L such that
f(x) = x. The basic tool for studying fixed-points of functions on lattices is
the well-known Knaster-Tarski theorem [77]. Letf be a monotone function on
a complete lattice〈L,�〉. Thenf has a fixed-point, the set of fixed-points off
is a complete lattice and, thus,f has aleast fixed-point. Theleast fixed-point
of f can be obtained by iteratingf over⊥, i.e. is the limit of the non-decreasing
sequencey0, . . . ,yi, yi+1, . . . ,yλ, . . . , where for a successor ordinali ≥ 0, y0 = ⊥,
yi+1 = f(yi), while for a limit ordinalλ, yλ = lub{yi: i < λ}. We denote the least
fixed-point by lfp(f). For ease of exposition, we will specify the initial condition
y0 and the next iteration stepyi+1 only, while the condition on the limit is implicit.

2.2 Generalized normal logic programs

Fix a latticeL = 〈L,�〉. We assume thatF is a family of continuousn-ary
functionsf :Ln → L. That is (forn = 1), for any monotone chainx0, x1, . . . of
values inL, f(∨ixi) = ∨if(xi). Then-ary casen > 1 is similar. We assume
that the standard functions∧ (meet) and∨ (join) belong toF . Notably,∧ and
∨ are both continuous. We callf ∈ F a truth combination function, or simply
combination function.

We extend standard logic programs [40] to the case wherearbitrary com-
putable functionsf ∈ F are allowed to manipulate truth values. That is, we allow
anyf ∈ F to appear in the body of a rule to be used to combine the truth of the
atoms appearing in the body and to propagate the result to the atom in the head.

Consider an arbitrary first order language that contains infinitely many vari-
ables, constants, and predicate symbols. Aterm, denotedt, is either a variable or a
constant symbol. Anatom, denotedA, is an expression of the formP (t1, . . . , tn),
whereP is ann-ary predicate symbol and allti are terms. A literal,L, is of the
form A or ¬A, whereA is an atom. Aformula, ϕ, is an expression built up from
the atoms, the truth valuesc ∈ L of the lattice and the functionsf ∈ F . The
members of the lattice may appear in a formula, as well as functionsf ∈ F : e.g. in
L[0,1]∩Q, the expression

min(p, q) ·max(¬r, 0.7) + v

is a formulaϕ, wherep, q, r andv are atoms. The intuition here is that the truth
value of the formulamin(p, q) ·max(¬r, 0.7) + v is obtained by determining the
truth value ofp, q, r andv and then to apply the arithmetic functions,min,max, 1−
and product· to determine the value ofϕ. Note that for ease of exposition, we will
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use e.g. the symbolmin both at the syntactic level, writingmin(p, q), as well as
in its interpretation (e.g.,I(min(I(p), I(q))) = min(I(p), I(q)), whereI is an
interpretation –see Section 3) with obvious meaning.

A rule is of the form
A← ϕ ,

whereA is an atom andϕ is a formula. The atomA is called thehead, and the
formula ϕ is called thebody. A generalized normal logic program, or simply
normal logic program, denoted withP, is a finite set of rules. TheHerbrand
universeHP of P is the set of constants appearing inP. If there is no constant
symbol inP then considerHP = {a}, wherea is an arbitrary chosen constant.
TheHerbrand baseBP of P is the set of ground instantiations of atoms appearing
in P (ground instantiations are obtained by replacing all variable symbols with
constants of the Herbrand universe).

GivenP, the generalized normal logic programP∗ is constructed as follows:

1. setP∗ to the set of all ground instantiations of rules inP;

2. if an atomA is not head of any rule inP∗, then add the ruleA← f toP∗ (it
is a standard practice in logic programming to consider such atoms asfalse);

3. replace several rules inP∗ having same head,A ← ϕ1, A ← ϕ2, . . . with
A ← ϕ1 ∨ ϕ2 ∨ . . . (recall that∨ is the join operator of the truth lattice in
infix notation).

Note that inP∗, each atom appears in the head ofexactly onerule.
In the following, we recall some examples, which both might help informally

the reader to get confidence with the formalism and show how our formalism may
capture different approaches to the management of imprecision (and some forms
of uncertainty) in logic programming (some examples are taken from [38]).

Consider the following logic program with the four rulesri,

r1 : A← f1(α1, B)
r2 : A← f2(α2, C)
r3 : B ← α3

r4 : C ← α4

whereA,B, C are ground atoms andαi ∈ [0, 1] ∩Q.

Example 1 (Classical case)ConsiderL{0,1} andαi = 1, for 1 ≤ i ≤ 4. Suppose
fi is min. Then,P is a program in the standard logic programming framework.
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Example 2 ([18]) ConsiderL[0,1]. Supposeα1 = 0.8, α2 = α3 = 0.7, andα4 =
0.8 are possibility/necessity degrees associated with the implications. Supposefi is
min. ThenP is a program in the framework proposed by Dubois et al. [18], which
is founded on Zadeh’s possibility theory [86]. In a fixed-point evaluation ofP, the
possibility/necessity degrees derived forA, B, C are0.7, 0.7, 0.8, respectively.

Example 3 ([78]) ConsiderL[0,1] and supposeαi as defined in Example 2. But,
supposefi is multiplication (·). ThenP is a program in van Emden’s frame-
work [78], which is mathematically founded on the theory of fuzzy sets proposed
by Zadeh [85]. In a fixed-point evaluation ofP, the values derived forA, B, C are
0.56, 0.7, 0.8, respectively.

Example 4 (MYCIN [6]) ConsiderL[0,1], and supposeαi’s are probabilities de-
fined as in the previous example. Supposefi is (·). However, in order to simulate a
probabilistic setting, in particular related to the atomA, with independent events,
we write the program above as:

r0 : A← fs(A′, A′′)
r′1 : A′ ← f1(0.8, B)
r′2 : A′′ ← f2(0.7, C)
r3 : B ← 0.7
r4 : C ← 0.8

where we use two new atomsA′ and A′′ to indicate thatA is head of two rules
and use the algebraic sumfs(α, β) = α + β − α · β to sum up the probabilities
of deriving A. Viewing an atom as an event,fs returns the probability of the
occurrence, of any one of two independent events, in the probabilistic sense. Note
thatfs is the disjunction function used in MYCIN [6]. Let us consider a fixed-point
evaluation ofP. In the first step, we deriveB andC with probabilities0.7 and0.8,
respectively. In step 2, applyingr′1 andr′2, we obtain two derivations ofA (namely
for A′ andA′′), the probability of each of which is0.56. The probability ofA is
then defined asfs(0.56, 0.56) = 0.8064, which is indeed the probability thatA
occurs.

From Example 4 above, it is easy to see that more generally, in order to accommo-
date independent probabilities, a logic programP has to be transformed into it’s
grounded versionP∗, but where ground rules with same headA ← ϕ1, A ← ϕ2,
. . . . rather being transformed intoA ← ϕ1 ∨ ϕ2 ∨ . . ., are transformed into
A← fs(. . . fs(ϕ1, ϕ2) . . . . . .).

In a similar way, we can manage [38].
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Example 5 (PDDU [38, 44]) In [38], a Parametric Approach to Deductive Databases
with Uncertainty(PDDU) is proposed, where rules have the form

r : A
αr← B1, ..., Bn; 〈fd, fp, fc〉

fd is the disjunction function associated withA and,fc andfp are respectively the
conjunction and propagation functions associated with the ruler. αr is the weight
of the rule. Roughly, this functions are mappings fromL× L to L and are contin-
uous w.r.t. each one of its arguments and satisfying some constraints such that they
behave as conjunction and disjunction functions (see, [38]). The intuition behind a
rule is as follows. Ground the program and evaluate each atomBi. Combine their
truth using the conjunction functionfc, i.e. letc1 = fc(B1, . . . , Bn) (for instance,
c1 = min(B1, . . . , Bn)). Then propagate the truth valuec1 to the head using the
weight of the ruleαr and the propagation functionfp, i.e. let c′1 = fp(αr, c1)
(for instance,c′1 = αr · c2). Repeat this operation for rules heavingA in the
head. Ifc′1, . . . , c

′
k are all this values, combine them using the disjunction func-

tion fd, cA = fd(c′1, . . . , c
′
k) (for instance,cA = max(c′1, . . . , c

′
k)). It is then

straightforward to see that a logic programP in the sense of [38] can be repre-
sented in our framework by groundingP and then transforming rule of the form
r : A

αr← B1, ..., Bn; 〈fd, fp, fc〉 into

A← fp(αr, fc(B1, ..., Bn))

Afterwards, all rules with same headA ← ϕ1, A ← ϕ2, . . . are transformed into
A← fd(. . . fd(ϕ1, ϕ2) . . . . . .).

[44] is as [38], but additionally non-monotonic negation is considered as well.
We can encode [44] into our framework in the same way as for [38]. Additionally,
we would like to note that [44] does not provide any top-down query answering
procedure as we do.

Example 6 (Fuzzy Logic Programming [81]) In [81], Fuzzy Logic Programming
is proposed, where rules have the form

A← f(B1, ..., Bn)

for some specificf and the truth space isL[0,1]∩Q. [81] is just a special case of
our framework. Also, [81] does not support negation.

As an illustrative example consider the following scenario. Assume that we
have the following facts, represented in the tables below. There are hotels and
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conferences, their locations and the distance among locations.

HasLocationH
HotelID HasLocationH
h1 hl1
h2 hl2
...

...

HasLocationC
ConferenceID HasLocationC
c1 cl1
c2 cl2
...

...

Distance
HasLocationH HasLocationC Distance
hl1 cl1 300
hl1 cl2 500
hl2 cl1 750
hl2 cl2 750
...

...

Now, suppose that our query is to find hotels close to the conference venue, labeled
c1. We may formulate our query as the rule:

Query(c1, h) ← min(
HasLocationH(h, hl),
HasLocationC(c1, cl),
Distance(hl, cl, d), Close(d))

whereClose(x) is defined as

Close(x) = max(0, 1− x

1000
)

As a result to that query we get a ranked list of hotels as shown in the table below.

Result List
HotelID Closeness degree
h1 0.7
h2 0.25
...

...

Finally, consider the following example whose semantics will be studied later on.
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Example 7 Consider an insurance company, which has information about its cus-
tomers used to determine the risk coefficient of each customer. The company has:
(i) data grouped into a setF of facts; and(ii) a setR of rules. Suppose the com-
pany has the following database (which is a programP = F ∪ R), where a value
of the risk coefficient may be already known, but has to be re-evaluated (the client
may be a new client and his risk coefficient is given by his precedent insurance
company). The truth lattice isL[0,1]∩Q.

F =


Experience(John) ← 0.7
Risk(John) ← 0.5
Sport car(John) ← 0.8

R =


Good driver(X) ← min(Experience(X),¬Risk(X))
Risk(X) ← 0.8 · Young(X)
Risk(X) ← 0.8 · Sport car(X)
Risk(X) ← min(Experience(X),¬Good driver(X))

Then inP∗ the rules become

R∗ =



Good driver(John) ← min(Experience(John),¬Risk(John))
Risk(John) ← max(

0.8 · Young(John),
0.8 · Sport car(John),
min(Experience(John),
¬Good driver(John)))

Using another disjunction function associated to the rules with headRisk, such
as the algebraic sumfs(x, y) = x + y − xy, might have been more appropriate
in such an example (i.e. we accumulate the risk factors, rather than take themax
only), but we will usemax in order to facilitate the reader’s comprehension later
on when we compute the semantics ofP.

3 Interpretations

The semantics of a programP is determined by selecting a particular interpretation
of P in the set of models ofP, where aninterpretationI of a programP is a
function that assigns to all atoms of the Herbrand base ofP a value inL. In logic
programming, that chosen model is usually the least model ofP w.r.t.�.1

Unfortunately, the introduction of negation may have the consequence that
some logic programs do not have a unique minimal model.

1� is extended to the set of interpretations as follows:I � J iff for all atomsA, I(A) � J(A).
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Example 8 (Running example)Consider the truth latticeL[0,1] and the program
P

A ← max(¬B,C)
B ← max(¬A,D)
C ← max(0.3,min(D, 0.6))
D ← D

Informally, an interpretationI is a model of the program if it satisfies every rule,
whileI satisfies a ruleX ← Y if I(X) � I(Y )2. Thus, concerning the value ofD
in the above program, we only know that it has to be greater than itself. It follows
that the value ofD is 0 in any minimal model ofP. Concerning the value ofC,
it follows that the value ofC is 0.3 in any minimal model ofP. Then, any model
I of this program is such thatI(C) � I(A), I(D) � I(B), I(B) ≥ 1 − I(A).
Consequently, there are an infinite number of minimal models such thatI(B) =
1− I(A) and0.3 � I(A). 2

Concerning the previous example we may note that the truth ofA in the minimal
models is in the interval[0.3, 1], while for B the interval is[0, 0.7]. The semantics
we device, is to provide these intervals as anapproximationto the truth of the
atomsA andB.

We propose to rely onL × L. Any element ofL × L is denoted by[a; b]
and interpreted as an interval onL, i.e. [a; b] is interpreted as the set of elements
x ∈ L such thata � x � b. For instance, turning back to Example 8 above, in the
intended model ofP, the truth ofA is “approximated” with[0.3; 1], i.e. the truth
of A lies in between0.3 and1 (similarly for B).

Formally, given a complete latticeL = 〈L,�〉, we construct a so-calledbilat-
tice over L × L, according to a well-known construction method (see [21, 27]).
We recall that a bilattice is a triple〈B,�t,�k〉, whereB is a nonempty set and�t,
�k are both partial orderings giving toB the structure of a lattice with a top and a
bottom [27]. We considerB = L × L with the following orderings:

1. thetruth ordering�t, where[a1; b1] �t [a2; b2] iff a1 � a2 andb1 � b2; and

2. theknowledge ordering�k, where[a1; b1] �k [a2; b2] iff a1 � a2 andb2 �
b1.

The intuition of those orders is that truth increases if the interval contains greater
values (e.g.[0.1; 0.4] �t [0.2; 0.5]), whereas the knowledge increases when the
interval (i.e. in our case the approximation of a truth value) becomes more precise
(e.g.[0.1; 0.4] �k [0.2; 0.3], i.e. we have more knowledge).

The least and greatest elements ofL× L are respectively:
2Roughly,X ← Y dictates that “X should be at least as true asY .
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• f = [⊥;⊥] (false) andt = [>;>] (true), w.r.t.�t;

• ⊥ = [⊥;>] (unknown – the less precise interval, i.e. the atom’s truth value
is unknown) and> = [>;⊥] (inconsistent – the empty interval) w.r.t.�k.

The meet (∧,⊗), join (∨,⊕) and negation (¬) on L × L w.r.t. both orderings are
defined by extending the meet, join and negation fromL to L × L in the natural
way: let[a1; b1], [a2; b2] ∈ L× L, then

Meet and join on�t: [a1; b1]∧[a2; b2] = [a1∧a2; b1∧b2] and[a1; b1]∨[a2; b2] =
[a1 ∨ a2; b1 ∨ b2];

Meet and join on�k: [a1; b1]⊗[a2; b2] = [a1∧a2; b1∨b2] and[a1; b1]⊕[a2; b2] =
[a1 ∨ a2; b1 ∧ b2];

Negation: ¬[a; b] = [¬b;¬a].

Example 9 For instance, takingL[0,1],

• [0.1; 0.4] ∨ [0.2; 0.5] = [0.2; 0.5],

• [0.1; 0.4] ∧ [0.2; 0.5] = [0.1; 0.4],

• [0.1; 0.4]⊕ [0.2; 0.5] = [0.2; 0.4],

• [0.1; 0.4] ⊗[0.2; 0.5] = [0.1; 0.5] and

• ¬[0.1; 0.4] = [0.6; 0.9]. 2

Finally, we extend the functionsf ∈ F over L to L × L: for f ∈ F and
[a1; b1], [a2; b2] ∈ L× L:

f([a1; b1], [a2; b2]) = [f(a1, a2); f(b1, b2)] .

It is easy to verify that these extended functions preserve the original properties of
functionsf ∈ F . The following theorem holds.

Theorem 1 ConsiderL× L with the orderings�t and�k.

1. the combination functions∧,∨,⊗,⊕ are continuous (and, thus, monotonic)
w.r.t.�t and�k;

2. any negation function is monotonic w.r.t.�k;

3. if the negation function satisfies the De Morgan laws, i.e.∀a, b ∈ L.¬(a ∨
b) = ¬a ∧ ¬b then the negation function is continuous w.r.t.�k.
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PROOF. We proof only the last item, as the others are immediate. Consider a chain
of intervalsx0 �k x1 �k . . ., wherexj = [aj ; bj ] with aj , bj ∈ L. To show the
continuity of the extended negation function w.r.t.�k, we show that¬ ⊕j≥0 xj =
⊕j≥0¬xj . Indeed, the following holds:

¬ ⊕j≥0 xj = ¬[∨j≥0aj ;∧j≥0bj ]
= [¬ ∧j≥0 bj ;¬ ∨j≥0 aj ]
= [∨j≥0¬bj ;∧j≥0¬aj ]
= ⊕j≥0[¬bj ;¬aj ]
= ⊕j≥0¬[aj ; bj ]
= ⊕j≥0¬xj

2

We now define the notion of approximate interpretations.

Definition 1 (Approximate interpretation) LetP be a program. Anapproximate
interpretationofP is a total functionI from the Herbrand baseBP to the setL×L.
The set of all the approximate interpretations ofP is denotedCP .

Intuitively, assigning the logical value[a; b] to an atomA means that the exact
truth value ofA lies in betweena andb with respect to�. Our goal will be to
determine for each atom of the Herbrand base ofP the most precise interval that
can be inferred.

With I f andI ⊥ we denote the bottom interpretations under�t and�k respec-
tively (they map any atom intof and⊥, respectively).

At first, we extend the two orderings onL× L to the set of approximate inter-
pretationsCP in a usual way: letI1 andI2 be inCP , then

1. I1 �t I2 iff I1(A) �t I2(A), for all ground atomsA; and

2. I1 �k I2 iff I1(A) �k I2(A), for all ground atomsA.

Under these two orderingsCP becomes a complete bilattice. The meet and join
operations overL × L for both orderings are extended toCP in the usual way
(e.g. for any atomA, (I⊕J)(A) = I(A)⊕J(A)). Negation is extended similarly,
for any atomA, ¬I(A) = I(¬A), and approximate interpretations are extended to
elements ofL, for anyα ∈ L, I(α) = [α;α].

At second, we identify the models of a program.

Definition 2 (Models of a logic program) Let P be a program and letI be an
approximate interpretation ofP. An interpretationI is amodelof a logic program
P, denoted byI |= P, iff for the uniquerule involvingA, A ← ϕ ∈ P∗, I(A) =
I(ϕ) holds.
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Note that usually a model has to satisfyI(ϕ) �t I(A) only, i.e.A ← ϕ ∈ P∗
specifies the necessary condition onA, “A is at least as true asϕ”. But, asA ←
ϕ ∈ P∗ is the unique rule with headA, the constraint becomes also sufficient (see
e.g. [22]).

At third, models of a program are usually also characterized in term of fixed-
points of an immediate consequence operator that is used to infer knowledge from
the program.

Definition 3 LetP be any program. Theimmediate consequence operatorTP is
a mapping fromCP to CP , defined as follows: for every interpretationI, for every
ground atomA, for A← ϕ ∈ P∗

TP(I)(A) = I(ϕ) .

Theorem 2 An interpretationI is a model ofP iff I is a fixed-point ofTP .

PROOF. I |= P iff for all A ← ϕ ∈ P∗, I(A) = I(ϕ) = TP(I)(A) and, thus,
I |= P iff I = TP(I). 2

Note that by definition ofP∗ it follows that if an atomA does not appear as the
head of a rule, thenTP(I)(A) = f .

We have the following Theorem.

Theorem 3 For any programP, TP is monotonic and, if the De Morgan laws hold,
continuous w.r.t.�k.

PROOF. The proof of monotonicity is straightforward. To prove the continuity
w.r.t.�k, consider a chain of interpretationsI0 �k I1 �k . . .. We show that for
anyA ∈ BP ,

TP(⊕j≥0Ij)(A) = ⊕j≥0TP(Ij)(A) . (1)

As CP is a complete lattice, the sequenceI0 �k I1 �k . . . has a least upper
bound, saȳI = ⊕j≥0Ij . For anyB ∈ BP , we have⊕j≥0Ij(B) = Ī(B) (as⊕ is
continuous) and, from Theorem 1,⊕j≥0Ij(¬B) = ⊕j≥0¬Ij(B) = ¬ ⊕j≥0 Ij(B)
= ¬Ī(B) and, thus, for any atom (and similarly for any for truth value)A,

⊕j≥0Ij(A) = Ī(A) . (2)

Now, considerA ← f(B1, . . . , Bn) ∈ P∗. Let us evaluate the left hand side of
Equation 1.

TP(⊕j≥0Ij)(A) = TP(Ī)(A)
= f(Ī(B1), . . . , Ī(Bn)).

(3)
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On the other hand side,

⊕j≥0TP(Ij)(A) = ⊕j≥0f(Ij(B1), . . . , Ij(Bn)) .

But, f is continuous w.r.t.�k, and, thus, by Equation 2 and by Equation 3,

⊕j≥0TP(Ij)(A) = ⊕j≥0f(Ij(B1), . . . , Ij(Bn))
= f(⊕j≥0Ij(B1), . . . ,⊕j≥0Ij(Bn))
= f(Ī(B1), . . . , Ī(Bn))
= TP(⊕j≥0Ij)(A) .

Therefore, Equation 1 holds and, thus,TP is continuous. 2

Note. If we restrict our attention to Datalog with negation, then we have to deal
with four values[f ; f ], [t; t], [f ; t] and [t; f ] that correspond to the truth values
false, true, unknownandinconsistent, respectively. Then, our interval bilattice co-
incides with Belnap’s logic [4], the notions of satisfaction and model coincide with
the classical ones, and our operatorTP reduces to the usual immediate consequence
operatorΦ defined by Fitting [23].

4 Intended semantics of normal logic programs

Approximate Kripke-Kleene Model. The weakest semantics of a normal logic
program is the least model of the program w.r.t. the knowledge ordering: theap-
proximate Kripke-Kleene modelof a logic programP, denotedKKP , is the�k-
least model ofP. By Theorem 3 that model always exists and coincides with the
least fixed-point ofTP with respect to�k.

Note that this least model with respect to�k corresponds to an extension of
the classical Kripke-Kleene semantics [23] of Datalog programs with negation to
normal logic programs: for any Datalog program with negationP, the least fixed-
point ofTP w.r.t.�k is a model ofP that coincides with the Kripke-Kleene model
of P [23].

For ease of presentation, we may represent an interpretation also as a set of
expressions of the formA: [x; y], whereA is a ground atom, indicating thatI(A) =
[x; y].

Example 10 The following sequence of interpretationsI0, I1, I2 shows how the
approximate Kripke-Kleene model of the running Example 8 is computed as the
iterated fixed-point ofTP , starting fromI0 = I⊥, the�k minimal interpretation
that maps anyA ∈ BP to [⊥;>], andIn+1 = TP(In) (note thatIi �k Ii+1):
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I0 = {A: [0; 1], B: [0; 1], C: [0; 1], D: [0; 1]},

I1 = {A: [0; 1], B: [0; 1], C: [0.3; 0.6], D: [0; 1]},

I2 = {A: [0.3; 1], B: [0; 1], C: [0.3; 0.6], D: [0; 1]},

I3 = I2

= KKP .

Note thatKKP is minimal w.r.t.�k and contains only the knowledge provided by
P, the truth values ofB and D lie between 0 and 1, i.e. are unknown, the truth
value ofA is greater than0.3 and the truth value ofC lies between0.3 and0.6.

As well known, the approximate Kripke-Kleene model is usually considered as
too weak. In the following, we propose to consider theClosed World Assumption
(CWA) [62] to complete our knowledge (the CWA assumes that all atoms whose
value cannot be inferred from the program are false by default). As we will see
in the next section, the CWA also allows us to make the truth interval of an atom
more precise.

The Closed World Assumption as a Source of falsehood.The main topic we
address here is to define the notion ofsupport, introduced in [41], of a program
w.r.t. an interpretation. Given a programP and an interpretationI that represents
our current knowledge, the support ofP w.r.t. I, denotedsP(I), determines in a
principled way how muchfalseknowledge, i.e. how much knowledge provided by
the CWA, can “safely” be joined toI w.r.t. the programP. Roughly speaking, a
part of the CWA is an interpretationJ such thatJ �k I f , whereI f maps any
A ∈ BP to [⊥;⊥], and we consider that such an interpretation can be safely added
to I if J �k TP(I⊕J), i.e. if J does not contradict the knowledge represented byP
andI. Intuitively, a part of the CWA represents an assumption on the falsehood of
the atoms. That assumption should be used to increase our knowledge. To this end,
it should be added (using⊕) to our current knowledgeI to provide more precise
approximations of the truth values assigned to each atom. Of course, some care
should be taken in order to avoid the introduction of inconsistent knowledge. Thus
we propose to test if adding such an assumption to our knowledge is safe, i.e. if the
activation of the rules throughTP on the interpretation obtained by addingJ to I
does not contradict the knowledge that we have assumed (J �k TP(I ⊕ J)). This
is formalized as follows.
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Definition 4 An interpretationJ is a safe partof the CWA w.r.t. a programP and
an interpretationI iff

1. J is a part of the CWA, i.e.J �k I f , and

2. J is safe w.r.t.P andI, i.e.J �k TP(I ⊕ J).

Of course, the CWA should be used to complete as much as possible our current
knowledge, thus we are especially interested in the maximal safe part of the CWA.

Definition 5 Thesupport of a programP w.r.t. an interpretationI, denotedsP(I),
is the maximal safe part of the CWA w.r.t. a programP and an interpretationI
w.r.t.�k, i.e. it is the maximal interpretationJ w.r.t.�k such thatJ �k I f and
J �k TP(I ⊕ J).

It is easy to verify (see [41]) that

sP(I) =
⊕
{J | J �k I f and J �k TP(I ⊕ J)} .

The following theorem, which can be shown as in [41], provides an algorithm for
computing the support.

Theorem 4 sP(I) coincides with the iterated fixed-point of the functionFP,I be-
ginning the computation withIf , where

FP,I(J) = If ⊗ TP(I ⊕ J) .

From Theorems 1 and 3, it can be shown thatFP,I is monotone and, if the De
Morgan laws hold, continuous w.r.t.�k. It follows that the iteration of the function
FP,I starting fromIf decreases w.r.t.�k.

We will refer tosP as theclosed world operator.

Corollary 1 LetP be a program. The closed world operatorsP is monotone and,
if the De Morgan laws hold, continuous w.r.t. the knowledge order�k.

Example 11 The following sequence of interpretationsJ0, J1, J2 shows the com-
putation ofsP(KKP), i.e. the additional knowledge that can be considered us-
ing the CWA on the Kripke-Kleene semanticsKKP of the running Example 8
(I = KKP , J0 = If andJn+1 = FP,I(Jn)):

J0 = {A: [0; 0], B: [0; 0], C: [0; 0], D: [0; 0]},

J1 = {A: [0; 1], B: [0; 0.7], C: [0; 0.3], D: [0; 0]},

J2 = J1

= sP(KKP)
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sP(KKP) asserts that, according to the CWA and w.r.t.P andKKP , the truth of
B andC should be respectively at most0.7 and0.3, while the truth ofB should be
exactly0. Please, note how the support provides some more precise information
about the atomsB,C andD with respect to the Kripke-Kleene semantics provided
at the beginning of this section, 2

Classical setting.A well-known way for extracting falsehood using the CWA was
defined in the classical setting through the notion ofunfounded set[79]. We recall
that a setU of atoms isunfoundedw.r.t. a Datalog programP and an interpretation
I iff for all A in U ,

• for A ← ϕ ∈ P∗ (note thatϕ = ϕ1 ∨ . . . ∨ ϕn andϕi = Li1 ∧ . . . ∧ Lin),
ϕi is false either w.r.t.I or w.r.t.¬.U , for all 1 ≤ i ≤ n 3.

It is easy to prove that (see [41]), in the classical setting:

Theorem 5 ([41]) LetP andI be a classical logic program and a classical inter-
pretation, respectively. LetU be a subset ofBP .

1. A setU is unfounded w.r.t.P andI iff ¬.U is a safe part of the CWA w.r.t.P
andI 4;

2. A setU is the greatest unfounded w.r.t.P andI iff ¬.U is the support of the
CWA w.r.t.P andI, i.e.sP(I) = ¬.UP(I).

Approximate Well-Founded Model. We have now two ways to infer informa-
tion from a programP and an approximate interpretationI: usingTP and using
sP . To maximize the knowledge derived fromP and the CWA, we propose to con-
sider the family of models that already contain their own support. In that family of
models, we are particularly interested in the least one w.r.t.�k.

Definition 6 An interpretationI is amodel of a programP supported by the CWA
iff I |= P and sP(I) �k I. Theapproximate well-founded modelof a program
P, denotedWP , is the least model ofP supported by the CWA w.r.t.�k, i.e. the
�k-least model ofP such thatI |= P andsP(I) �k I.

If we consider the definition of support in the classical setting, then supported mod-
els are classical models of classical logic programs such that¬.UP(I) ⊆ I, i.e. the
false atoms provided by the greatest unfounded set are already false in the interpre-
tationI. That is, CWA does not further contribute improvingI ’s knowledge about

3The interpretation¬.U is defined by: for allA, if A ∈ U then¬.U(A) = f else¬.U(A) = u.
4Note that this condition can be rewritten as¬.U ⊆ TP(I ∪ ¬.U).
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the programP. It is interesting to note how the above definition is nothing else than
a generalization from the classical setting to lattices of the notion of well-founded
model. Indeed, in [39] it is shown that the well-founded model is the least model
satisfying¬.UP(I) ⊆ I.

Now we provide a fixed-point characterization and, thus, a way of computation
of the approximate well-founded semantics. It is based on an operator, called ap-
proximate well-founded operator, that combines the two operators that have been
defined above.

Definition 7 Let P be a program. Theapproximate well-founded operator, de-
notedAWP , takes in input an approximate interpretationI ∈ CP and returns
AWP(I) ∈ CP defined by

AWP(I) = TP(I ⊕ sP(I)) .

Note that forA← ϕ ∈ P∗,

(I ⊕ sP(I))(ϕ) = I(ϕ)⊕ sP(I)(ϕ)

holds and, thus, we can rewrite theAWP operator as

AWP(I) = TP(I)⊕ sP(I) . (4)

The following theorems can be shown, as a in [41].

Theorem 6 LetP be a program. An interpretationI is a fixed-pointAWP iff I is
a model ofP supported by the CWA.

PROOF. ⇒ .) AssumeI = AWP(I). From the safeness ofsP(I), it follows that
sP(I) �k TP(I ⊕ sP(I)) = AWP(I) = I. Therefore,I = TP(I ⊕ sP(I)) =
TP(I). By Theorem 2,I is a model ofP and, thus by definitionI is a model ofP
supported by the CWA.
⇐ .) AssumeI |= P andsP(I) �k I. Then, using Theorem 2,I = TP(I) =

TP(I ⊕ sP(I)) = AWP(I). 2

Using the properties of monotonicity and continuity ofTP andsP w.r.t. the knowl-
edge order�k overCP , from the fact thatCP is a complete lattice w.r.t.�k, by the
well-known Knaster-Tarski theorem [77], it follows that:

Theorem 7 LetP be a program. The approximate well-founded operatorAWP is
monotone and, if the De Morgan laws hold, continuous w.r.t. the knowledge order
�k. Therefore,AWP has a least fixed-point w.r.t. the knowledge order�k. More-
over that least fixed-point coincides with the approximate well-founded semantics
WP ofP.
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It is illustrative to recall, as in [41], the way our definition of approximate well-
foundated semantics generalizes the classical setting (using Equation 4) to logic
programs over lattices, where arbitrary, continuous truth combination functions
are allowed to occur in the rule body.

I is the well-founded semantics ofP

Classical logic{f ,⊥, t } Interval bilattices

�k-leastI s.t. I = WP(I) = TP(I) ∪ ¬.UP(I) I = AWP(I) = TP(I)⊕ sP(I)

�k-least modelI s.t. ¬.UP(I) ⊆ I sP(I) �k I

Our result indicates that the support may be seen as the added-value to the approx-
imate Kripke-Kleene semantics and evidences the role of CWA in the approximate
well-founded semantics.

Example 12 The following sequence of interpretations shows the computation of
WP of Example 8 (I0 = I⊥ andIn+1 = AWP(In)).

I0 = {A: [0; 1], B: [0; 1], C: [0; 1], D: [0; 1]}
sP(I0) = {A: [0; 1], B: [0; 1], C: [0; 0.3], D: [0; 0]}

I1 = {A: [0; 1], B: [0; 1], C: [0.3; 0.3], D: [0; 0]}
sP(I1) = {A: [0; 1], B: [0; 1], C: [0; 0.3], D: [0; 0]}

I2 = {A: [0.3; 1], B: [0; 1], C: [0.3; 0.3], D: [0; 0]}
sP(I2) = {A: [0; 1], B: [0; 0.7], C: [0; 0.3], D: [0; 0]}

I3 = {A: [0.3;1],B: [0;0.7],C: [0.3;0.3],D: [0;0]}
sP(I3) = {A: [0; 1], B: [0; 0.7], C: [0; 0.3], D: [0; 0]}

I4 = I3

= WP

The truth ofC andD are respectively0.3 and0, while the truth ofA andB can
only be approximated respectively with[0.3; 1] and[0; 0.7]. Note that, at each step
i, the supportsP(Ii) provided by the CWA toP andIi represents some knowledge
that can be used to completeIi. Also note thatKKP �k WP , i.e. the approximate
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well-founded model contains more knowledge than the approximate Kripke-Kleene
model (see Example 10)

KKP = {A: [0.3; 1], B: [0; 1], C: [0.3; 0.6], D: [0; 1]} .

Note also that the only difference between these semantics comes from the use of
the support as a supplementary way to infer knowledge in the computation ofWP .

The approximate Kripke-Kleene model is completed with some default knowl-
edge from the CWA, namelysP(I3) = sP(KKP) (see below), to obtain the ap-
proximate well-founded model. Indeed, to stress that role of the support, and thus
of the CWA, note that, in our example (see Example 11 for the computation of the
supportsP(KKP)),

WP = KKP ⊕ sP(KKP) ,

i.e. that the approximate well-founded model ofP coincides with the Kripke-Kleene
model ofP completed with its support. 2

Example 13 Consider the programP = R ∪ F given in Example 7. The com-
putation of the approximate well-founded semanticsWP of P gives the following
result5:

WP = { Risk(John): [0.64; 0.7],
Sport car(John): [0.8; 0.8],
Young(John): [0; 0],
Good driver(John): [0.3; 0.36],
Experience(John): [0.7; 0.7] } ,

which establishes thatJohn’s degree ofRisk is in between[0.64, 0.7]. 2

It is easily be verified that in case of logic programs without negation, no approxi-
mation arises related to the atom’s truth.

Theorem 8 If we restrict our attention to logic programs without negation, then
for any programP the approximate well-founded semanticsWP assigns exact val-
ues to all atoms.

5 Top-down query answering

The objective of this section is to provide a top-down procedure to answer queries.
A query, denotedq, is an expression of the form?A (query atom), intended as a
question about the truth of the atomA in the selected intended model ofP. We also

5For ease of presentation, we use the first letter of predicates and constants only.
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allow a query to be aset{?A1, . . . , ?An} of query atoms. In that latter case we ask
about the truth of all the atomsAi in the intended model of a logic programP. The
intended model is either the approximate Kripke-Kleene model or the approximate
well-founded model.

Given a logic programP, one way to answer to a query?A is to compute the
intended modelI of P by a bottom-up fixed-point computation and then answer
with I(A). This always requires to compute a whole model, even if in order to
determineI(A), not all the atom’s truth is required. Our goal is to present a simple,
yet general top-down method, which relies on the computation of just a part of
an intended model. Essentially, we will try to determine the value of a single
atom by investigating only a part of the programP. Our method is based on a
transformation of a program into a system of equations of monotonic functions
over lattices for which we compute the least fixed-point in a top-down style.

For it we take inspiration on the method [74] and customized it to our case. The
main difference to it is that [74] relies on Fitting’s [21, 22] formulation based on
a generalization of the Gelfond-Lifschitz formulation of stable models [26], while
here we have to deal with the equivalent formulation based on the notion of support
(in classical terms, the generalization of the notion of unfounded set, see, [41]).

We assume the lattices we will deal with isfinite. From a practical point of view
this is a limitation we can live with, especially taking into account that computers
have finite resources, and thus, only a finite set of truth degrees can be represented.
In particular, this includes also the usual case were we use the rational numbers in
[0, 1] ∩ Q under a given fixed precisionp of numbers a computer can work with.
This will guarantee the termination of our procedures (otherwise the termination
after a finite number of steps cannot be guaranteed always –see Example17).

The idea is the following. LetL = 〈L,�〉 be a complete lattice and let〈L ×
L,�t,�k〉 be the interval bilattice derived from it. LetP be a logic program.
Consider the Herbrand baseBP = {A1, . . . , An} of P and considerP∗. Let us
associate to each atomAi ∈ BP a variablexi, which will take a value in the domain
L×L (sometimes, we will refer to that variable withxA as well). An interpretation
I may be seen as an assignment of intervals to the variablesx1, ..., xn. For an
immediate consequence operatorO, e.g.TP , a fixed-point is such thatI = O(I),
i.e. for all atomsAi ∈ BP , I(Ai) = O(I)(Ai). Therefore, we may identify the
fixed-points ofO as the solutions overL × L of the system of equations of the
following form:

x1 = f1(x11 , . . . , x1a1
) ,

...
xn = fn(xn1 , . . . , xnan

) ,

(5)

where for1 ≤ i ≤ n, 1 ≤ k ≤ ai, we have1 ≤ ik ≤ n. Each variablexik
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will take a value in the domainL×L, each (monotone) functionfi determines the
value ofxi (i.e. Ai) given an assignmentI(Aik) to each of theai variablesxik .
The functionfi implementsO(I)(Ai). Of course, we are especially interested in
the computation of the least fixed-point of the above system.

Example 14 ConsiderL[0,1] and the bilattice of intervals build from it. Consider
the following logic program:

P = A← A ∨B

B ← (¬C ∧A) ∨ 0.3 ∨ ¬D

C ← ¬B ∨ 0.2 ∨ ¬E

D ← 0.5
E ← 0.6

For ease of exposition, we can use directly intervals in the logic program and, thus,
write 6

P = A← A ∨B

B ← (¬C ∧A) ∨ [0.3; 0.5]
C ← ¬B ∨ [0.2; 0.4]

This is harmless as the semantics is based on intervals. Then the corresponding
equational system is of the form

xA = xA ∨ xB ,
xB = (¬xC ∧ xA) ∨ [0.3; 0.5] ,
xC = ¬xB ∨ [0.2; 0.4] .

Note that the approximated Kripke-Kleene model ofP is

KKP = {A: [0.3; 1], B: [0.3; 0.8], C: [0.2; 0.7]} ,

while the approximated well-founded model is

WP = {A: [0.3; 0.5], B: [0.3; 0.5], C: [0.5; 0.7]} .

Notice thatKKP �k WFP , as expected. Also, both are fixed-points of the above
equational system andKKP is the�k-least fixed point.

6Note that¬D introduces the upper bound0.5, while¬E introduces the upper bound0.4.
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In the following, at first we recall the general procedure for the top-down compu-
tation of the value of variable in the�-least solution of the equational system (5),
given a latticeL = 〈L,�〉 [74, 75]. Then, we will customize it for computing the
approximate Kripke-Kleene semantics, the support and eventually the approximate
well-founded semantics.

In the following we use some auxiliary functions: given the equational system
(5),

• s(x) denotes the set ofsonsof x, i.e. s(xi) = {xi1 , . . . , xiai
} (the set of

variables appearing in the right hand side of the definition ofxi);

• p(x) denotes the set ofparentsof x, i.e. the setp(x) = {xi:x ∈ s(xi)} (the
set of variables depending on the value ofx).

In the general case, we assume that each functionfi:Lai 7→ L in Equation (5) is
�-monotone. We also usefx in place offi, for x = xi. We refer to the monotone
system as in Equation (5) as the tupleS = 〈L, V, f〉, whereL is a lattice,V =
{x1, ..., xn} are the variables andf = 〈f1, ..., fn〉 is the tuple of functions.

As it is well known, a monotonic equation system as(5) has a�-least solution,
lfp(f), the�-least fixed-point off is given as the least upper bound of the�-
monotone sequence,y0, . . . ,yi, . . ., where

y0 = ⊥
yi+1 = f(yi) .

Example 15 Consider Example 14. The�k-least fixed-point computation is (the
triples represent〈xA, xB, xC〉,

y0 = ⊥ = 〈[0; 1], [0; 1], [0; 1]〉
y1 = 〈[0; 1], [0.3; 1], [0.2, 1]〉
y2 = 〈[0.3; 1], [0.3; 0.8], [0.2; 0.7]〉
y3 = y2 ,

which corresponds to the approximate Kripke-Kleene model of the program, as
expected.

Informally our top-down algorithm works as follows (see Table 1). Assume we are
interested in the value ofx0 in the least fixed-point of the system. We associate to
each variablexi a markingv(xi) denoting the current value ofxi (the mappingv
contains the current value associated to the variables). Initially,v(xi) is⊥. We start
with puttingx0 in theactivelist of variablesA, for which we evaluate whether the
current value of the variable is identical to whatever its right-hand side evaluates
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ProcedureSolve(S, Q)
Input: �-monotonic systemS = 〈L, V, f〉, whereQ ⊆ V is the set of query variables;
Output: A setB ⊆ V , with Q ⊆ B such that the mappingv equals lfp�(f) onB.

1. A: = Q, dg: = Q, in: = ∅, for all x ∈ V do v(x) = ⊥, exp(x) = false
2. while A 6= ∅ do
3. selectxi ∈ A, A: = A \ {xi}, dg: = dg ∪ s(xi)
4. r: = fi(v(xi1), ..., v(xiai

))
5. if r � v(xi) then v(xi):= r, A: = A ∪ (p(xi) ∩ dg) fi
6. if not exp(xi) then exp(xi) = true, A: = A ∪ (s(xi) \ in), in: = in ∪ s(xi) fi

od

Table 1: General top-down algorithm.

to. When evaluating a right-hand side it might of course turn out that we do indeed
need a better value of some sons, which will assumed to have the value⊥ and put
them on the list of active nodes to be examined. In doing so we keep track of the
dependencies between variables, and whenever it turns out that a variable changes
its value (actually, it can only�-increase) all variables that might depend on this
variable are put in the active set to be examined. At some point (even if cyclic
definitions are present) the active list will become empty and we have actually
found part of the fixed-point, sufficient to determine the value of the queryx0.

The additional data structures are used as follows:

• the variabledg collects the variables that may influence the value of the
query variables;

• the array variableexp traces the equations that has been “expanded” (the
body variables are put into the active list);

• while the variablein keeps track of the variables that have been put into
the active list so far due to an expansion (to avoid, to put the same variable
multiple times in the active list due to function body expansion).

The attentive reader will notice that theSolve procedure has much in common
with the so-calledtabulationprocedures, like [8, 10]. Indeed, it is a generalization
of it to arbitrary monotone equational systems over lattices. The algorithm is given
in Table 1.

Example 16 Consider Example 14 and query variablexA. Below is a sequence
of Solve(S, {xA}) computation w.r.t.�k. Each line is a sequence of steps in the
‘while loop’. What is left unchanged is not reported.
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1. A: = {xA}, xi: = xA, A: = ∅, dg: = {xA, xB}, r: = ⊥, exp(xA):= true,
A: = {xA, xB}, in: = {xA, xB}

2. xi: = xB , A: = {xA}, dg: = {xA, xB , xC}, r: = [0.3; 1], v(xB):= [0.3; 1],
A: = {xA, xC}, exp(xB):= true, in: = {xA, xB , xC}

3. xi: = xC , A: = {xA}, r: = [0.2; 0.7], v(xC):= [0.2; 0.7], A: = {xA, xB},
exp(xC):= true

4. xi: = xB , A: = {xA}, r: = [0.3; 0.8], v(xB):= [0.3; 0.8], A: = {xA, xC}

5. xi: = xC , A: = {xA}, r: = [0.2; 0.7]

6. xi: = xA, A: = ∅, r: = [0.3; 1], v(xA):= [0.3; 1], A: = {xA, xB}

7. xi: = xB , A: = {xA}, r: = [0.3; 0.8],

8. xi: = xA, A: = ∅, r: = [0.3; 1]

10. stop. return v(xA, xB , xC) = 〈[0.3; 1], [0.3; 0.8], [0.2; 0.7]〉

The fact that only a part of the model is computed becomes evident, as the compu-
tation does not change if we add any programP ′ toP in whichA,B andC do not
occur.

Given a systemS = 〈L, V, f〉, whereL = 〈L,�〉, let h(L) be theheightof the
truth-value setL, i.e. the length of the longest strictly�-increasing chain inL
minus 1, where the length of a chainv1, ..., vα, ... is the cardinal|{v1, ..., vα, ...}|.
Thecardinal of a setX is the least ordinalα such thatα andX areequipollent,
i.e. there is a bijection fromα to X. For instance,|{0, 1}| = 2, while in general
|[0, 1] ∩ Q| = ω and|([0, 1] ∩ Q) × ([0, 1] ∩ Q|) = ω. However, as stated at the
beginning of the section, the lattice is always finite and, thus, the height is always
finite.

In [74] it is shown that the algorithmSolve(S, Q) behaves correctly. Also
we recall that from a computational point of view, by means of appropriate data
structures, the operations onA, v, dg, in, exp, p ands can be performed in constant
time. Therefore, Step1. is O(|V |), all other steps, except Step2. and Step4. are
O(1). Let c(fx) be the maximal cost of evaluating functionfx on its arguments, so
Step4. is O(c(fx)). It remains to determine the number of loops of Step2. As the
heighth(L) of L is finite, observe that any variable is increasing in the� order as
it enters in theA list (Step5.), except it enters due to Step6., which may happen
one time only. Therefore, each variablexi will appear inA at mostai · h(L) + 1
times, whereai is the arity offi, as a variable is only re-entered intoA if one of its
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son gets an increased value (which for each son only can happenh(L) times), plus
the additional entry due to Step6. As a consequence, the worst-case complexity is
O(

∑
xi∈V (c(fi) · (ai · h(L) + 1)). Therefore:

Theorem 9 ([74]) Consider a monotone system of equationsS = 〈L, V, f〉.

1. There is a finite limit ordinalλ such that after|λ| stepsSolve(S, Q) deter-
mines a setB ⊆ V , with Q ⊆ B such that the mappingv equals lfp�(f) on
B, i.e.v|B = lfp�(f)|B.

2. If the computing cost of each function inf is bounded byc, the arity bounded
by a, and the height is bounded byh, then the worst-case complexity of the
algorithmSolve is O(|V |cah).

Note that in case the height of a lattice is not finite, the computation may not
terminate after a finite number of steps as the following example shows.

Example 17 ([32]) ConsiderL[0,1], the functions (0 < a ≤ 1, a ∈ Q)

f(x) =
x + a

2

g(x) =
{

1 if x ≥ a
0 if x < a

Consider the two logic programs

P1 = {A← f(A)}

P2 = { A← f(A)
B ← g(A) }

Then the approximated Kripke-Kleene model ofP1 is attained afterω steps ofTP
iterations overI ⊥ = [0; 1] and is such thatKKP(A) = [a; 1], while (g is not
continuous) the approximated Kripke-Kleene model ofP2 is attained afterω + 1
steps ofTP iterations (KKP(A) = [a; 1], KKP(B) = [1; 1]). However, under the
assumption of a fixed finite precisionp to represent rationals numbers in[0, 1], the
computation converges after a finite number of steps for bothP1 andP2.
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5.1 Query answering: approximate Kripke-Kleene semantics

We start with the Kripke-Kleene semantics, for which we have almost anticipated
how we will proceed. LetP be a logic program and consider it’s groundingP∗.
As already pointed out, each atom appears exactly once in the head of a rule inP∗.
The system of equations that we build fromP∗ is straightforward. Assign to each
atomA a variablexA and substitute inP∗ each occurrence ofA with xA. Finally,
substitute each occurrence of← with = and letSKK(P) = 〈L, V, fP〉 be the
resulting equational system. Of course,|V | = |BP |, |SKK(P)| can be computed
in timeO(|P|) and all functions inSKK(P) are�k-monotone. AsfP is one to one
related toTP , it follows that the�k-least fixed-point ofSKK(P) corresponds to the
approximated Kripke-Kleene semantics ofP. The algorithmSolveKK(P, ?A),
first builds the equational systemSKK(P) and then callsSolve(SKK(P), {xA})
and returns the outputv on the query variable, wherev is the output of the call to
Solve. SolveKK behaves correctly (see Example 16).

Theorem 10 LetP and?A be a logic program and a query, respectively. Then
KKP(A) = SolveKK(P, {?A}).

The extension of Theorem 10 to a set of query atoms is straightforward.
From a computational point of view, we can avoid the cost of translatingP

into SKK(P) as we can directly operate onP. So the costO(|P|) can be avoided.
As from our assumption the lattice is finite, by Theorem 9 it follows immediately
that the worst-case complexity for top-down query answering under the approxi-
mate Kripke-Kleene semantics of a logic programP is O(|BP |cah). Furthermore,
often the cost of computing each of the functions offP is in O(1). By observ-
ing that|BP |a is in O(|P|) we immediately have that in this case the complexity
is O(|P|h). If the height is a fixed parameter, i.e. a constant, we can conclude
that the additional expressive power of approximate Kripke-Kleene semantics of
logic programs over lattices (with functions with constant cost) does not increase
the computational complexity of classical propositional logic programs, which is
linear.

5.2 Query answering: approximate well-founded semantics

We address now the issue of a top-down computation of the value of a query under
the approximate well-founded semantics.

As we have seen in Section 4, the approximate well-founded semantics of a
logic programP is the�k-least fixed-point of the operator

AWP(I) = TP(I ⊕ sP(I)) .
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By Theorem 11,sP(I) coincides with the iterated fixed-point of the functionFP,I

beginning the computation withIf , where

FP,I(J) = If ⊗ TP(I ⊕ J) .

That is,sP(I) coincides with the limit of the sequence

J0 = I f ,

Ji+1 = FP,I(Ji) = If ⊗ TP(I ⊕ Ji) .

As we already have a top-down query answering procedure related toTP , it suffices
to determine an analogue related to the support. That is, we want a top-down
procedure answering that for a give query atom?A answers withsP(A), i.e. the
truth of A in the support ofP w.r.t. I. To this purpose, it suffices to build an
equational system whose least fixed-point is the support and then apply the top-
down query answering procedure described in Table 1.

At first, note that the sequenceJi is �t-increasing (see [41]). Therefore,
sP(I) is the�t-least fixed-point of the functionFP,I(·). Therefore,sP(I) =
FP,I(sP(I)). Now, considerA ← f(B1, . . . , Bn) ∈ P∗. Let us introduce vari-
ablesxA, xB1 , ..., xBn . The intended meaning of a variable is that of denoting the
value of the atom in the support, e.g.xA will hold the valuesP(I)(A). Given
A← f(B1, . . . , Bn) ∈ P∗ we consider the equation

xA = f ⊗ [f(I(B1), ..., I(Bn))⊕ f(xB1 , ..., xBn))] . (6)

The above equation is the result of applyingFP,I(Ji) to all rules using the fact that

Ji+1(A) = f ⊗ (I ⊕ Ji)(f(B1, . . . , Bn))
= f ⊗ [I(f(B1, . . . , Bn))⊕ Ji(f(B1, . . . , Bn))]
= f ⊗ [f(I(B1), . . . , I(Bn))⊕ f(Ji(B1), . . . , Ji(Bn))]

and then replaceJi(Bj) with the variablexBj andJi+1(A) with the variablexA,
as at the limitJi will be the support.

Example 18 Consider Example 14 and an interpretationI. Then the correspond-
ing equational system for computing the support is

xA = f ⊗ [I(A ∨B)⊕ (xA ∨ xB)] ,
xB = f ⊗ [I((¬C ∧A) ∨ [0.3; 0.5])⊕ ((¬xC ∧ xA) ∨ [0.3; 0.5])] ,
xC = f ⊗ [I(¬B ∨ [0.2; 0.4])⊕ (¬xB ∨ [0.3; 0.5])] .
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Let us show that, indeed, a bottom-up computation of the least fixed-point of the
above equational systems is the support, which corresponds to the computation of
FP,I(·) starting with I f . To the ease of presentation, we considerI = I ⊥. The
�t-least fixed-point computation is (the triples representxA, xB andxC),

J0 = ⊥ = 〈[0; 1], [0; 1], [0; 1]〉

J1 = 〈[0; 0], [0; 0.5], [0, 1]〉

J2 = 〈[0; 0.5], [0; 0.5], [0; 1]〉

J3 = 〈[0; 0.5], [0; 0.5], [0; 1]〉

J4 = J3 .

J3 is indeed the support ofP w.r.t. I f .

It can then easily be shown that:

Theorem 11 For any programP and interpretationI, the supportsP(I) of P
w.r.t. I is the�t-least fixed-point of the equational system obtained by replacing
each ruleA← f(B1, . . . , Bn) ∈ P∗ with the Equation 6.

It follows then immediately that we have a top-down procedure to compute the
truth of an atom in the supportsP(I). We denote the equational system by using
Equation 6 above asSuppI

P . Then it follows that:

Theorem 12 For a set of query variablesQ, Solve(SuppI
P , Q) outputs a setB ⊆

V , withQ ⊆ B, such that the mappingv equals to the�t-least fixed-point, i.e. the
supportsP(I) onB: v|B = sP(I)|B.

As a side product we obtain a top-down algorithm for the computation of the well-
founded set.

From a computational complexity point of view, the same properties ofSolve
hold forSolve(SuppI

P , Q) as well.
We are now ready to define the top-down procedure,SolveWF (P, ?A), to com-

pute the answer to an atomA under the approximate well-founded semantics. We
defineSolveWF (P, ?A) asSolveKK(P, ?A), except that Step4. is replaced with
the statements

4.1. S: = s(xi);
4.2. I: = v;
4.3. v′: = Solve(SuppI

P , S);
4.4. r: = fi(v(xi1)⊕ v′(xi1), ..., v(xiai

)⊕ v′(xiai
))

30



These steps correspond to one step application of theAWP(I) = TP(I ⊕ sP(I))
operator to the variablexi. Indeed, we have that

xi = fi(xi1 , ..., xiai
)

is the definition ofxi in the equational system. Then, at first we ask about the
value of the variablesxi1 , ..., xiai

in the support w.r.t. the current interpretation
I: = v (Steps 4.1. - 4.3). The variablev′ holds these values. Finally, we evaluate
TP(I ⊕ sP(I))(xi) = fi(v(xi1)⊕ v′(xi1), ..., v(xiai

)⊕ v′(xiai
)).

It follows easily then that:

Theorem 13 Let P and ?A be a logic program and a query, respectively. Then
WP(A) = SolveWF (P, ?A).

Example 19 Consider Example 14 and query variablexA. Below is a sequence of
SolveWW (P, ?A) computation. It resembles the one we have seen in Example 16.
Each line is a sequence of steps in the ‘while loop’. What is left unchanged is not
reported.

1. A: = {xA}, xi: = xA, A: = ∅, dg: = {xA, xB}, Q: = {xA, xB}, v′: = 〈[0; 0.5], [0; 0.5],
[0; 1]〉, r: = [0; 0.5], v(xA):= [0; 0.5], A: = {xA, xB}, exp(xA):= true, in: = {xA, xB}

2. xi: = xB , A: = {xA}, dg: = {xA, xB , xC}, Q: = {xA, xC}, v′: = 〈[0; 0.5], [0; 0.5],
[0; 1]〉, r: = [0.3; 0.5], v(xB):= [0.3; 0.5], A: = {xA, xC}, exp(xB):= true,
A: = {xA, xC}, in: = {xA, xB , xC}

3. xi: = xC , A: = {xA}, Q: = {xB}, v′: = 〈[0; 0.5], [0; 0.5], [0; 1]〉,
r: = [0.5; 0.7], v(xC):= [0.5; 0.7], A: = {xA, xB}, exp(xC):= true

4. xi: = xB , A: = {xA}, Q: = {xA, xC}, v′: = 〈[0; 0.5], [0; 0.5], [0; 0.7]〉, r: = [0.3; 0.5]

5. xi: = xA, A: = ∅, Q: = {xA, xB}, v′: = 〈[0; 0.5], [0; 0.5], [0; 0.7]〉,
r: = [0.3; 0.5], v(xA):= [0.3; 0.5], A: = {xA, xB}

6. xi: = xA, A: = {xB}, Q: = {xA, xB}, v′: = 〈[0; 0.5], [0; 0.5], [0; 0.7]〉, r: = [0.3; 0.5]

7. xi: = xB , A: = ∅, Q: = {xA, xC}, v′: = 〈[0; 0.5], [0; 0.5], [0; 0.7]〉, r: = [0.3; 0.5]

8. stop. return v(xA, xB , xC)|xA
= 〈[0; 0.5], [0; 0.5], [0; 0.7]〉|xA

= [0.3; 0.5]

Note that the answer to?A, namely[0.3; 0.5], is now more precise than the one
([0.3; 1]) under the approximate Kripke-Kleene model (See Example 16), as ex-
pected.
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The computational complexity analysis ofSolveWF parallels the one we have
made forSolveKK . As the height of a lattice is finite then, likeSolveKK , each
variablexj will appear inA at mostaj · (h(L) + 1) times and, thus, the worst-case
complexity isO(

∑
xj∈V (c(fj) · (aj · (h(L)+ 1)). But now, the cost ofc(fj) is the

cost of a recursive call toSolve, which isO(|BP |cah). Therefore,SolveWF runs
in time O(|BP |2a2h2c). That is,SolveWF runs in timeO(|P|2h2c). If the lattice
is fixed, then the height parameter is a constant. Furthermore, often we can assume
thatc is O(1) and, thus, the worst-case complexity reduces toO(|P|2).

6 Conclusions and future work

We have presented a general framework to deal with normal logic programs evalu-
ated over complete lattices. Main features of our extension are:(i) our framework
covers all many-valued frameworks we are aware of dealing with imprecision in
normal logic programming;(ii) as we deal with non-monotone negation, atoms are
assigned with truth interval approximations;(iii) the CWA is used to complete the
knowledge to infer the most precise approximations as possible;(iv) the continuity
of the immediate consequence operator is preserved in case the truth combination
functions are continuous and lattices are distributive; and(v) we have presented
a very general top-down method for answering queries, by a transformation of a
normal logic program into an equational system over lattices.

The next step for future work is to extend our formalism to disjunctive logic
programs with default negation were the head of a rule is a disjunction, or even
more generally to rules of the form

f1(A1, . . . , Am)← f2(B1, . . . , Bm) .

It would be interesting to see whether our idea of using equational systems over lat-
tices can be extended to this general form (or at least to disjunctive logic programs)
as well.
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