Approximate Well-founded Semantics, Query
Answering and Generalized Normal Logic
Programs over Lattices

Yann Loyet and Umberto Straccia

' PRiSM, Universié de Versailles, Saint Quentin
45 Avenue des Etats-Unis,
78035 Versailles, FRANCE

21.S.T.I.-C.N.R,,
Via G. Moruzzi, 1
[-56124 Pisa, ITALY

Technical Report: ISTI-2005-TR-xx
October 25, 2005

Abstract

The management of imprecise information in logic programs becomes to be
important whenever the real world information to be represented is of imper-
fect nature and the classical crigpe, falseapproximation is not adequate.

In this work, we consider generalized normal logic programs over com-
plete lattices, where computable truth combination functions may appear in
the rule bodies to manipulate truth values. It is an unifying umbrella for
existing approaches for many-valued normal logic programs. We will pro-
vide declarative and fixed-point semantics of the logic and provide a simple
and effective top-down query answering procedure by a transformation to an
equational system over lattices.

Categories: F.4.1-Mathematical Logic and Formal Languages-Mathematical
Logic-Logic and constraint programming, 1.2.3-Artificial Intelligence-Deduction
and Theorem Proving-Logic programming

Keywords: logic programming, nonmonotonic logic, many-valued logic, top-
down

1 Introduction

The management of uncertainty and/or imprecision within deduction systems is
an important issue whenever the real world information to be represented is of
imperfect nature. In logic programming, the problem has attracted the attention
of many researchers and numerous frameworks have been proposed. Essentially,
they differ in the underlying notion of uncertainty theory and imprecision theory
(Probability theory[3, 15, 16, 17, 25, 30, 37, 50, 51, 52, 53, 54, 55, 63, 67, 68, 69,
70, 80, 83],Fuzzy set theorf7, 20, 28, 29, 33, 56, 65, 64, 72, 73, 78, 81, 82, 84],
Multi-valued logic[9, 10, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 35, 36, 38, 42, 43,
44, 45, 46, 47, 48, 49, 57, 58, 61, 59, 60, 75, Pgssibilistic logic[1, 2, 18, 71])
and how uncertainty/imprecision values, associated to rules and facts, are managed.

Under “uncertainty theory” fall all those approaches in which statements rather
than being either true or false, are true or false to some probability or possibil-
ity/necessity, while under “imprecision theory” fall all those approaches in which
statements are true to some degree which is taken from a truth space (see [19] for a
clarification between the notions of uncertainty and imprecision). In this work we
deal withimprecisionand, thus, statements have a degree of truth.

Current frameworks for managing imprecision in logic programming can roughly
be classified int@nnotation basedAB) andimplication basedIB).

¢ Inthe AB approach (e.g. [31, 32, 66, 67]), a rule is of the form

Alf(ﬂl,...,ﬂn) — B1:B1,...,Bp: Bn

which asserts “the value of atoris at least (or is iny (54, . .., 8,), when-
ever the value of aton®; is at least (oris in)3;, 1 < i < n”. Here f is an
n-ary computable function ang; is either a constant or a variable ranging
over an appropriate truth domain.

¢ Inthe IB approach, (e.g. [9, 14, 37, 38, 60, 78, 81] a rule is of the form

A& By,...,B,

which says that the value associated with the implicaflom ... A B,, —

A is a. Computationally, given an assignmehbf values to theB;, the
value of A is computed by taking the “conjunction” of the valugs3;) and

then somehow “propagating” it to the rule head. The values the atoms may
have are taken from a lattice. More recently, [9, 34, 38, 81] show that most
of the framewaorks dealing with imprecision and logic programming can be
embedded into the IB framework.

However, most of the approaches stress an important limitation for real-world
applications, as they do not address any modaarf-monotonic reasoningin
particular, no default negation operation is defined. Exception to this limitation
are [13, 41, 42, 43, 44, 74, 75], where the underlying truth-space are lattices, and
its formulations goes ovdiilattices[27] (a less general structure than lattices).

Additionally, in most frameworks, in order to answer to a query, we have to
compute the whole intended model (e.g., by a bottom-up fixed-point computa-
tion) and then answer with the evaluation of the query in this model. This always
requires the computation of a whole model, even if not all the atom’s truth is re-
quired to determine the answer (some work presenting top-down procedures are
[10, 32, 38, 75, 81], but in none of them non-monotonic negation is considered
(and [74] deals with normal logic programs over bilattices).

The contribution of this work is as follows. We present a general framework
for generalized normal logic programs with many-valued semantics. We generalize
the well-known well-founded semantics for classical normal logical programs [79]
to the many-valued case. The truth-space is a complete lattice and rules and facts
have the very general form

A — f(Bl, ceey Bn) y

where f is ann-ary computable function over lattices aft] are atoms. Each
rule may have a differenf. Computationally, given an assignmehof values
to the B;, the value ofA is computed by stating thad is at least as true as
f(I(B1),...,1(By)). The form of the rules is sufficiently expressive to encom-
pass all approaches to many-valued normal logic programming. Additionally, we
present a very general top-down method for answering queries, by a transforma-
tion of a normal logic program into an equational system over lattices and then by
developing a top-down query answering procedure for such equational systems.

As seen above, there are many works dealing with imprecision with logic pro-
gramming with or without negation, either using the AB approach or the IB ap-
proach. The use of arbitrary computable truth combination functions in the body
is sufficiently expressive to subsume all those work dealing with normal logic pro-
grams. To the best of our knowledge there is no other work which has the ex-
pressive power of our formalism and also presents a top-down query answering
procedure for normal logic programs. Most works deal with logic programming
without negation, though may provide some technique to answer queries in a top-
down manner, as e.g. [10, 32, 38, 81]. On the other hand, we are not aware of other
works dealing with normal logic programs, like [13], providing a top-down query
answering procedure, too.

Closest to our approach are [74, 75]. While [74] considers positive programs
only, but the top-down procedure is a special case of the one we presented here, we

3

consider here non-monotonic negation as well as in [75]. The main differences of
this work to [75] are as follows(i) In [75] we consider bilattices as truth space,
while here we rely on complete lattices only:) Furthermore, in [75] the seman-
tics is given by relying on a generalization of the Gelfond-Lifschitz transform [26]
due to Fitting [21, 22]. Here we follow a different approach, but semantically
equivalent to [75], based on the so-called notios@bport[41]. The support is a
generalization of the notion eihfounded sef§ 9] to characterize the well-founded
semantics of classical logic programs. The effect of this choice is the development
of a top-down procedure, which is similar to the tabulation procedure [76], but gen-
eralized tomany-valued normal logic programs with arbitrary computable truth
combination functions in rule bodies

In the remaining, we proceed as follows. In the following section, we give some
basic definitions about our formalism and some illustrative examples. Section 3
contains the definitions of interpretation and model of a program. In Section 4, we
define the intended semantics of normal logic programs. In Section 5 we present
a top-down query answering procedure, while Section 6 concludes and addresses
future directions of work.

2 Preliminaries

2.1 Truth lattice

A truth lattice is a complete lattice. = (L, <), with L a countable set of truth
values, bottomlL, top elementl, meetA and joinV. The main idea is that an
statemenf(a), rather than being interpreted as either true or false, will be mapped
into a truth value- € L. The intended meaning is thatndicates to which extend
P(a) is true. Finally, we also assume thahas anegation i.e. an operatot: that
reverses thes ordering and verifies—z = x.

Typical truth lattices are the following.

Classical 0-1: Ly ;3 corresponds to the classical truth-space, wilestands for
‘false’, while 1 stands for ‘true’ and-0 = 1.

Fuzzy: Ly 1)nq, Which relies on the unit interval, is quite frequently used as truth
lattice with—z = 1 — .

Four-valued: another frequent truth lattice is Belna@@OUR [5], where L is
{f,t,u,i} with f < u < tandf < ¢ < t. Here,u stands for ‘unknown’,
whereas stands for inconsistency. Concerning negation, we hate-= ¢,
—-u = u and—i = 7. We denote the lattice a5g.

Many-valued: L = ({0, -%;,... 2=2 1}, <), n positive integer anehz = 1 —z.

In a complete latticel = (L, <), a functionf: L — L is monotoneif Vz,y € L,

x = yimplies f(z) < f(y). A fixed-pointof f is an element: € L such that
f(xz) = z. The basic tool for studying fixed-points of functions on lattices is
the well-known Knaster-Tarski theorem [77]. Lgtbe a monotone function on
a complete latticé L, <). Then f has a fixed-point, the set of fixed-points pf
is a complete lattice and, thug, has aleast fixed-point. Theleast fixed-point
of f can be obtained by iteratinfover L, i.e. is the limit of the non-decreasing
sequenceo, - - -, Y, Yitl, - - - Yx, - - -, Where for a successor ordinat 0, yo = L,
vi+1 = f(yi), while for alimit ordinal\, y) = lub{y;:7 < A}. We denote the least
fixed-point by Ifp(f). For ease of exposition, we will specify the initial condition
yo and the next iteration step,; only, while the condition on the limit is implicit.

2.2 Generalized normal logic programs

Fix a lattice L = (L, =<). We assume thaf is a family of continuous:-ary
functionsf: L™ — L. That is (forn = 1), for any monotone chaing, 21, ... of
values inL, f(V;z;) = V;f(z;). Then-ary casen > 1 is similar. We assume
that the standard functions (meet) andv (join) belong toF. Notably, A and
V are both continuous. We cafl € F atruth combination functionor simply
combination function

We extend standard logic programs [40] to the case whebédrary com-
putable functiong’ € F are allowed to manipulate truth values. That is, we allow
any f € F to appear in the body of a rule to be used to combine the truth of the
atoms appearing in the body and to propagate the result to the atom in the head.

Consider an arbitrary first order language that contains infinitely many vari-
ables, constants, and predicate symbolten, denoted, is either a variable or a
constant symbol. Aatom denoted4, is an expression of the forf(¢4, ..., t,),
whereP is ann-ary predicate symbol and ai] are terms. A literalL, is of the
form A or - A, whereA is an atom. Aformula ¢, is an expression built up from
the atoms, the truth valuese L of the lattice and the functiong € F. The
members of the lattice may appear in a formula, as well as funcfiens~: e.g. in
Lo, 11nq» the expression

min(p, ¢) - max(—r,0.7) + v

is a formulay, wherep, ¢, » andv are atoms. The intuition here is that the truth
value of the formulanin(p, ¢) - max(—r,0.7) + v is obtained by determining the
truth value ofp, ¢, r andv and then to apply the arithmetic functiomsin, max, 1—
and product to determine the value @f. Note that for ease of exposition, we will

5

use e.g. the symbohin both at the syntactic level, writingiin(p, ¢), as well as
in its interpretation (e.g.J(min(Z(p), I(q))) = min(I(p),1(q)), wherel is an
interpretation —see Section 3) with obvious meaning.
A rule is of the form
A=y,

where A is an atom and is a formula. The atomd is called thehead and the
formula ¢ is called thebody A generalized normal logic prograpor simply
normal logic program denoted withP, is a finite set of rules. Thélerbrand
universeHp of P is the set of constants appearing/m If there is no constant
symbol inP then considefl» = {a}, wherea is an arbitrary chosen constant.
TheHerbrand baseBp of P is the set of ground instantiations of atoms appearing
in P (ground instantiations are obtained by replacing all variable symbols with
constants of the Herbrand universe).

GivenP, the generalized normal logic prograht is constructed as follows:

1. setP* to the set of all ground instantiations of rulesfn

2. if an atomA is not head of any rule i®*, then add the rulel — f to P* (it
is a standard practice in logic programming to consider such atofatsas

3. replace several rules iA* having same headd «— ¢, A «— @9, ... With
A — @1 V2 V... (recall thatv is the join operator of the truth lattice in
infix notation).

Note that inP*, each atom appears in the headréctly oneule.

In the following, we recall some examples, which both might help informally
the reader to get confidence with the formalism and show how our formalism may
capture different approaches to the management of imprecision (and some forms
of uncertainty) in logic programming (some examples are taken from [38]).

Consider the following logic program with the four rules

ro: A — f1<0z1,B)
re : A« fa(ao,O)
rg : B+« aj
ry : C—ay

whereA, B, C are ground atoms ang, € [0, 1] N Q.

Example 1 (Classical case)ConsiderLy 1, anda; = 1, for 1 < i < 4. Suppose
fi ismin. Then,P is a program in the standard logic programming framework.

Example 2 ([18]) ConsiderL| ;. Supposey; = 0.8,a2 = a3 = 0.7, anday =

0.8 are possibility/necessity degrees associated with the implications. Sufjpsse
min. ThenP is a program in the framework proposed by Dubois et al. [18], which
is founded on Zadeh'’s possibility theory [86]. In a fixed-point evaluatioR ,ahe
possibility/necessity degrees derived forB, C are 0.7, 0.7, 0.8, respectively.

Example 3 ([78]) ConsiderL, ;; and supposey; as defined in Example 2. But,
supposef; is multiplication (-). ThenP is a program in van Emden’s frame-
work [78], which is mathematically founded on the theory of fuzzy sets proposed
by Zadeh [85]. In a fixed-point evaluation %, the values derived fad, B, C are

0.56, 0.7, 0.8, respectively.

Example 4 (MYCIN [6]) ConsiderL, ;;, and supposey;’s are probabilities de-
fined as in the previous example. Suppfss (). However, in order to simulate a
probabilistic setting, in particular related to the atory with independent events,
we write the program above as:

ro : A« fo(A,A")
ro A f1(0.8,B)
rh A" — f2(0.7,C)
rg : B« 0.7
rg : C <038

where we use two new atomd$ and A” to indicate thatA is head of two rules

and use the algebraic sufi(a,) = a + f — « - 8 to sum up the probabilities

of deriving A. Viewing an atom as an evenf; returns the probability of the
occurrence, of any one of two independent events, in the probabilistic sense. Note
that £, is the disjunction function used in MYCIN [6]. Let us consider a fixed-point
evaluation ofP. In the first step, we derivB andC' with probabilities0.7 and0.8,
respectively. In step 2, applying andr), we obtain two derivations of (namely

for A’ and A”), the probability of each of which i8.56. The probability ofA is

then defined ag,(0.56,0.56) = 0.8064, which is indeed the probability that
occurs.

From Example 4 above, it is easy to see that more generally, in order to accommo-
date independent probabilities, a logic progr&as to be transformed into it’s
grounded versiofP*, but where ground rules with same he&d— ¢, A «— o,

rather being transformed intd «— ¢1 V @2 V ..., are transformed into

A<—fs(...f8((p1,g02))
In a similar way, we can manage [38].

Example 5 (PDDU [38, 44]) In [38], a Parametric Approach to Deductive Databases
with Uncertainty(PDDU) is proposed, where rules have the form

r: A & By, ..., Bp; <fdafp7fc>

fa is the disjunction function associated withand, f. and f;, are respectively the
conjunction and propagation functions associated with the rule. is the weight

of the rule. Roughly, this functions are mappings frbrm L to L and are contin-
uous w.r.t. each one of its arguments and satisfying some constraints such that they
behave as conjunction and disjunction functions (see, [38]). The intuition behind a
rule is as follows. Ground the program and evaluate each amCombine their
truth using the conjunction functiofy, i.e. lete; = f.(B,..., By) (for instance,

c1 = min(By, ..., By)). Then propagate the truth valug to the head using the
weight of the rulen, and the propagation functiorf,, i.e. letc] = f,(ar,c1)

(for instance,c| = «, - ¢2). Repeat this operation for rules heavingin the
head. Ifc},..., ¢, are all this values, combine them using the disjunction func-
tion fg, ca = falc}, ...,) (for instance,ca = max(c},...,c,)). Itis then
straightforward to see that a logic prografd in the sense of [38] can be repre-
sented in our framework by groundir®g and then transforming rule of the form

r: AL By, B (fa, fp, fe) iNtO

A — fplay, fe(Bi, ..., By))

Afterwards, all rules with same heatl — 1, A «— o9, ...are transformed into
A fa(-.. faleor,02) ...)-

[44] is as [38], but additionally non-monotonic negation is considered as well.
We can encode [44] into our framework in the same way as for [38]. Additionally,
we would like to note that [44] does not provide any top-down query answering
procedure as we do.

Example 6 (Fuzzy Logic Programming [81]) In [81], Fuzzy Logic Programming
is proposed, where rules have the form

A — f(Bl, ceey Bn)

for some specifig’ and the truth space i€y 1jng- [81] is just a special case of
our framework. Also, [81] does not support negation.

As an illustrative example consider the following scenario. Assume that we
have the following facts, represented in the tables below. There are hotels and

conferences, their locations and the distance among locations.

HasLocationH HasLocationC
HotellD | HasLocationH ConferencelD | HasLocationC
hi hl1 cl clil
h2 hl2 c2 cl2

Distance
HasLocationH | HasLocationC | Distance
hl1 cli 300
hl1 cl2 500
hl2 clit 750
hl2 cl2 750

Now, suppose that our query is to find hotels close to the conference venue, labeled
c1. We may formulate our query as the rule:

Query(ci,h) <« min(
HasLocationH(h, hl),
HasLocationC(c1,¢l),
Distance(hl, cl,d),Close(d))

whereClose(z) is defined as

x
Close(x) = max(0,1 — m)

As a result to that query we get a ranked list of hotels as shown in the table below.

Result List
HotellD | Closeness degree
hi 0.7
h2 0.25

Finally, consider the following example whose semantics will be studied later on.

9

Example 7 Consider an insurance company, which has information about its cus-
tomers used to determine the risk coefficient of each customer. The company has:
(1) data grouped into a seft’ of facts; and(ii) a setR of rules. Suppose the com-
pany has the following database (which is a progr&a= F' U R), where a value

of the risk coefficient may be already known, but has to be re-evaluated (the client
may be a new client and his risk coefficient is given by his precedent insurance
company). The truth lattice i§g 1)~q-

Experience(John) « 0.7
F =< Risk(John) — 05
Sport_car(John) « 0.8

Good driver(X) <« min(Experience(X), Risk(X))
R Risk(X) — 0.8 Young(X)
~) Risk(X) — 0.8 Sport_car(X)
Risk(X) — min(Experience(X), “Good driver(X))

Then inP* the rules become

Good.driver(John) <« min(Experience(John), "Risk(John))
Risk(John) — max(
0.8 - Young(John),
0.8 - Sport_car(John),
min(Experience(John),
—Good_driver(John)))

R*

\

Using another disjunction function associated to the rules with treadk, such
as the algebraic sunfs(z,y) = = + y — zy, might have been more appropriate
in such an example (i.e. we accumulate the risk factors, rather than takedke
only), but we will usemax in order to facilitate the reader’s comprehension later
on when we compute the semantic®of

3 Interpretations

The semantics of a prografis determined by selecting a particular interpretation
of P in the set of models oP, where aninterpretation/ of a programP is a
function that assigns to all atoms of the Herbrand base afvalue inL. In logic
programming, that chosen model is usually the least modglwfr.t. <.

Unfortunately, the introduction of negation may have the consequence that
some logic programs do not have a unique minimal model.

1< is extended to the set of interpretations as followss J iff for all atoms A, I(A) < J(A).

10

Example 8 (Running example) Consider the truth latticeC|, ;; and the program
P

max(—B, ()

max(—A, D)

max(0.3, min(D, 0.6))

D

QW
T

Informally, an interpretation/ is a model of the program if it satisfies every rule,
while I satisfies a ruleX « Y if I(X) = I(Y)?. Thus, concerning the value b

in the above program, we only know that it has to be greater than itself. It follows
that the value ofD is 0 in any minimal model gP. Concerning the value af’,

it follows that the value of” is 0.3 in any minimal model d?. Then, any model

I of this program is such thak(C) < I(A), I(D) = I(B), I(B) > 1 —I(A).
Consequently, there are an infinite number of minimal models such (gt =
1—-1I(A)and0.3 < I(A). O

Concerning the previous example we may note that the truth iofthe minimal
models is in the intervgD.3, 1], while for B the interval ig0, 0.7]. The semantics
we device, is to provide these intervals asagproximationto the truth of the
atomsA andB.

We propose to rely o, x L. Any element ofL x L is denoted bya; b]
and interpreted as an interval d@n i.e. [a; 0] is interpreted as the set of elements
x € L such thata < 2 < b. For instance, turning back to Example 8 above, in the
intended model of, the truth ofA is “approximated” with[0.3; 1], i.e. the truth
of A lies in betweert).3 and1 (similarly for B).

Formally, given a complete latticé = (L, <), we construct a so-calldallat-
tice over L x L, according to a well-known construction method (see [21, 27]).
We recall that a bilattice is a triplg3, <, <x), whereB3 is a nonempty set and;,
=< are both partial orderings giving # the structure of a lattice with a top and a
bottom [27]. We consideB = £ x £ with the following orderings:

1. thetruth ordering=;, wherefa;; b1] =; [az; ba] iff a1 =< ag andb; =< be; and

2. theknowledge ordering<y, where[ay; b1] <i [a2; bo] iff a1 < ag andby <
b1.

The intuition of those orders is that truth increases if the interval contains greater
values (e.g[0.1;0.4] <; [0.2;0.5]), whereas the knowledge increases when the
interval (i.e. in our case the approximation of a truth value) becomes more precise
(e.g.[0.1;0.4] < [0.2;0.3], i.e. we have more knowledge).

The least and greatest elementd.ok L are respectively:

2Roughly,X « Y dictates that X should be at least as true Hs

11

o f =[L; 1] (false)and = [T;T] (true), w.r.t.<;

e | = [L;T] (unknown — the less precise interval, i.e. the atom’s truth value
is unknown) andl’ = [T; L] (inconsistent — the empty interval) w.ry,.

The meet {, ®), join (v, @) and negation-t) on L x L w.r.t. both orderings are
defined by extending the meet, join and negation filorto L x L in the natural
way: let[a;; bi1], [a; b2] € L x L, then

Meet and join on =<;: [CL1; bl] VAN [ag; bz] = [a1 Nag; b1/\b2] and[al; bl] V [GQ; bg] =
[a1 V ag; by V bg];

Meet and join on <. [al; b1]®[a2; bg] = [al/\ag; bl\/bg] and[al; bl]@[ag; bg] =
[a1 V as; by A bQ];

Negation: —[a;b] = [b; —a].

Example 9 For instance, takingg 1,

0.1;0.4] V [0.2;0.5] = [0.2;0.5],

e [0.1;0.4] A [0.2;0.5] = [0.1;0.4],

e [0.1;0.4] @ [0.2;0.5] = [0.2;0.4],

e [0.1;0.4] ®[0.2;0.5] = [0.1;0.5] and

e —[0.1;0.4] = [0.6;0.9]. O

Finally, we extend the functiong € F over L to L x L: for f € F and
[al; bl], [ag;bg] €L x L:

f([a1; b1], [ag; ba]) = [f (a1, az); f(b1,b2)] .

It is easy to verify that these extended functions preserve the original properties of
functionsf € F. The following theorem holds.

Theorem 1 ConsiderL x L with the orderings=<; and <.

1. the combination functions, v, ®, & are continuous (and, thus, monotonic)
w.r.t. <, and <g;

2. any negation function is monotonic w.kdy;
3. if the negation function satisfies the De Morgan lawsvi€eb € L.—(a V

b) = —a A —b then the negation function is continuous wxj;.

12

ProoRr We proof only the last item, as the others are immediate. Consider a chain
of intervalszy <y z1 =i ..., wherez; = [a;;b;] with a;,b; € L. To show the
continuity of the extended negation function w.x%,, we show that- ®;>¢ z; =
®;>0—;. Indeed, the following holds:

" @05 = [Vj>0a5;Aj>0b;]

= [Ajz0bji 7 Vjz0]
= [Vjz07bji Aj>0ay]
= ®jz0[7bs; —ay]

= @®j>07]aj;bj]

= Dj>077;

We now define the notion of approximate interpretations.

Definition 1 (Approximate interpretation) LetP be a program. Ampproximate
interpretatiorof P is a total function/ from the Herbrand bas®p to the setl. x L.
The set of all the approximate interpretations/dfs denoted’p.

Intuitively, assigning the logical valug:; b] to an atomA means that the exact
truth value ofA lies in betweeru andb with respect to<. Our goal will be to
determine for each atom of the Herbrand bas® d@he most precise interval that
can be inferred.

With | andl ; we denote the bottom interpretations underand=,, respec-
tively (they map any atom intb and L, respectively).

At first, we extend the two orderings dnx L to the set of approximate inter-
pretation<p in a usual way: lef; and/s be inCp, then

1. I} =2y L iff I1(A) <, I:(A), for all ground atomsi; and
2. I) =} I iff I; (A) <k IQ(A), for all ground atomsi.

Under these two orderingsr becomes a complete bilattice. The meet and join
operations over, x L for both orderings are extended & in the usual way
(e.g. forany atomi, (I ¢ J)(A) = I(A) @ J(A)). Negation is extended similarly,
for any atomA, —1(A) = I(—A), and approximate interpretations are extended to
elements of., for anya € L, I(«a) = [o; .

At second, we identify the models of a program.

Definition 2 (Models of a logic program) Let P be a program and lef be an
approximate interpretation gP. An interpretation/ is amodelof a logic program
P, denoted by = P, iff for the uniquerule involving A, A «— ¢ € P*, I(A) =
I(p) holds.

13

Note that usually a model has to satidff) <; I(A) only, i.e. A — ¢ € P*
specifies the necessary condition 4n“ A is at least as true as’. But, asA «—
o € P* is the unique rule with head, the constraint becomes also sufficient (see
e.g. [22)).

At third, models of a program are usually also characterized in term of fixed-
points of an immediate consequence operator that is used to infer knowledge from
the program.

Definition 3 LetP be any program. Thanmediate consequence operdigr is
a mapping fronCp to Cp, defined as follows: for every interpretatidnfor every
ground atomA4, for A < ¢ € P*

Theorem 2 An interpretation/ is a model ofP iff [is a fixed-point off’p.

PrRoor [= Piffforall A — ¢ € P*, I(A) = I(p) = Tp(I)(A) and, thus,
I=Piff I =Tp(I). O

Note that by definition ofP* it follows that if an atomA does not appear as the
head of a rule, thefi’r(I)(A) =f .
We have the following Theorem.

Theorem 3 For any progranfP, T’» is monotonic and, if the De Morgan laws hold,
continuous w.rt=xy.

Proor The proof of monotonicity is straightforward. To prove the continuity
w.r.t. <, consider a chain of interpretatiodig <, 11 < We show that for
anyA € Bp,

Tp(®)>015)(A) = @j>0Tp(1;)(A) .)

As Cp is a complete lattice, the sequenkge <, Iy =i ... has a least upper
bound, sayl = ®;>0l;. For anyB € Bp, we haves;>l;(B) = I(B) (as® is
continuous) and, from Theorem &,>0/;(—~B) = ®;>0~1;(B) = = ®j>0 1;(B)
= —I(B) and, thus, for any atom (and similarly for any for truth valug)

®jz0lj(A) = I(A). (2)

Now, considerd — f(B1,...,B,) € P*. Let us evaluate the left hand side of
Equation 1.

Tp(@j20lj)(A) = Tp(I)(4) €)

On the other hand side,
®j>0Tp(L;)(A) = j>0f(Li(B1), .., Li(Bn)) -
But, f is continuous w.r.t=<;, and, thus, by Equation 2 and by Equation 3,

Sj>0Tp(L;)(A) = &j>0f(Lj(B1),--.,1j(Bn))
= f(®j>0lj(B1),...,8j>01;(Bn))

= f(I(Bl)a .- '7I(Bn))
= Tp(®;>01;)(4) .

Therefore, Equation 1 holds and, thii, is continuous. O

Note. If we restrict our attention to Datalog with negation, then we have to deal
with four values|[f; f], [¢; t], [f; t] and [t; f] that correspond to the truth values
false, true, unknowandinconsistentrespectively. Then, our interval bilattice co-
incides with Belnap’s logic [4], the notions of satisfaction and model coincide with
the classical ones, and our operafprreduces to the usual immediate consequence
operatord defined by Fitting [23].

4 Intended semantics of normal logic programs

Approximate Kripke-Kleene Model. The weakest semantics of a normal logic
program is the least model of the program w.r.t. the knowledge orderingapthe
proximate Kripke-Kleene modef a logic prograni?, denotedK Kp, is the <-
least model ofP. By Theorem 3 that model always exists and coincides with the
least fixed-point off’»> with respect to<;,.

Note that this least model with respect+q corresponds to an extension of
the classical Kripke-Kleene semantics [23] of Datalog programs with negation to
normal logic programs: for any Datalog program with negafiyrihe least fixed-
point of T’» w.r.t. < is @ model ofP that coincides with the Kripke-Kleene model
of P [23].

For ease of presentation, we may represent an interpretation also as a set of
expressions of the form: [z; y|, whereA is a ground atom, indicating thatA) =

[z;9].

Example 10 The following sequence of interpretatiohs /1, I> shows how the
approximate Kripke-Kleene model of the running Example 8 is computed as the
iterated fixed-point off’p, starting fromiy = I, the <; minimal interpretation

that maps anyl € Bpto [L; T], andl,+1 = Tp(I,) (note thatl; < I;+1):

15

Iy = {A:[0;1], B:[0;1], C:[0; 1], D: [0; 1]},

I = {A:[0;1], B:[0;1],C:[0.3;0.6], D: [0; 1]},
I, = {A:[0.3;1], B:[0;1],C:[0.3;0.6], D: [0; 1]},
Iy = I

= KKp.

Note thatK Kp is minimal w.r.t.<; and contains only the knowledge provided by
P, the truth values oBB and D lie between 0 and 1, i.e. are unknown, the truth
value ofA is greater thar).3 and the truth value of’ lies betweer®.3 and0.6.

As well known, the approximate Kripke-Kleene model is usually considered as
too weak. In the following, we propose to consider @lesed World Assumption
(CWA) [62] to complete our knowledge (the CWA assumes that all atoms whose
value cannot be inferred from the program are false by default). As we will see
in the next section, the CWA also allows us to make the truth interval of an atom
more precise.

The Closed World Assumption as a Source of falsehood.The main topic we
address here is to define the notionsopport introduced in [41], of a program

w.r.t. an interpretation. Given a prografhand an interpretatioi that represents

our current knowledge, the supportBfw.r.t. I, denotedsp (1), determines in a
principled way how muclfalseknowledge, i.e. how much knowledge provided by

the CWA, can “safely” be joined té w.r.t. the progranf?. Roughly speaking, a

part of the CWA is an interpretatiosi such that/ =< | ¢, wherel maps any

A € Bpto[Ll; 1], and we consider that such an interpretation can be safely added
tolif J <, Tp(IdJ),i.e.if J does not contradict the knowledge representeR by
and/. Intuitively, a part of the CWA represents an assumption on the falsehood of
the atoms. That assumption should be used to increase our knowledge. To this end,
it should be added (using) to our current knowledgé to provide more precise
approximations of the truth values assigned to each atom. Of course, some care
should be taken in order to avoid the introduction of inconsistent knowledge. Thus
we propose to test if adding such an assumption to our knowledge is safe, i.e. if the
activation of the rules throughp» on the interpretation obtained by addigo 7

does not contradict the knowledge that we have assuthet}.(Tp (I & J)). This

is formalized as follows.

16

Definition 4 An interpretation/ is a safe parbf the CWA w.r.t. a prograr® and
an interpretation/ iff

1. Jis apartof the CWA, i.el <, |¢,and
2. Jissafew.rtP andl,ie.J <, Tp(I @ J).

Of course, the CWA should be used to complete as much as possible our current
knowledge, thus we are especially interested in the maximal safe part of the CWA.

Definition 5 Thesupport of a prograr® w.r.t. an interpretatiod, denotedsp (1),
is the maximal safe part of the CWA w.r.t. a progrdrand an interpretation/
W.r.t. <y, i.e. it is the maximal interpretatiod w.r.t. <, such that/ <, | and
J =k Tp(I®J).

It is easy to verify (see [41]) that
sp(D) =EP{J | J =k 1§ and J = Tp(I® J)}.

The following theorem, which can be shown as in [41], provides an algorithm for
computing the support.

Theorem 4 sp(I) coincides with the iterated fixed-point of the functibpa; be-
ginning the computation witfy , where

Fpr(J)=1f @ Tp(I® J).

From Theorems 1 and 3, it can be shown that; is monotone and, if the De
Morgan laws hold, continuous w.r. It follows that the iteration of the function
Fp starting from/s decreases w.r.&;,.

We will refer tosp as theclosed world operatar

Corollary 1 LetP be a program. The closed world operatgs is monotone and,
if the De Morgan laws hold, continuous w.r.t. the knowledge orglgr

Example 11 The following sequence of interpretatiofig J1, J» shows the com-
putation ofsp (K Kp), i.e. the additional knowledge that can be considered us-
ing the CWA on the Kripke-Kleene semanti€g{p» of the running Example 8
(I = KK'p, J() = If andJnH = FPJ(Jn)):

Jo = {A:[0;0], B:[0;0],C: [0;0], D: [0; 0},
Ji = {A:]0;1], B:[0;0.7], C: [0;0.3], D: [0; 0]},
o =)

= sp(KKp)

17

sp(K Kp) asserts that, according to the CWA and wRtand K Kp, the truth of

B andC should be respectively at mds? and0.3, while the truth ofB should be
exactly0. Please, note how the support provides some more precise information
about the atom®, C' and D with respect to the Kripke-Kleene semantics provided
at the beginning of this section, O

Classical settingA well-known way for extracting falsehood using the CWA was
defined in the classical setting through the notiommfounded sd79]. We recall
that a seU of atoms isunfoundedv.r.t. a Datalog prograr® and an interpretation
Tiffforall AinU,

o for A — ¢ € P* (notethatp = 1 V...V, andy; = Ly A... A L;),
@; is false either w.r.tl or w.r.t.—.U, forall1 < i < n 3.

It is easy to prove that (see [41]), in the classical setting:

Theorem 5 ([41]) LetP and I be a classical logic program and a classical inter-
pretation, respectively. Léf be a subset oBp.

1. AsetU is unfounded w.r.tP and iff —.U is a safe part of the CWA w.rR
andl %

2. A setU is the greatest unfounded w.fR.and [iff —.U is the support of the
CWAw.rt.P andI,i.e.sp(I) = =~.Up(I).

Approximate Well-Founded Model. We have now two ways to infer informa-
tion from a prograni? and an approximate interpretatidn using7» and using

sp. To maximize the knowledge derived frafhand the CWA, we propose to con-
sider the family of models that already contain their own support. In that family of
models, we are particularly interested in the least one w[.t.

Definition 6 An interpretation/ is amodel of a progran® supported by the CWA
iff I = P andsp(l) < I. Theapproximate well-founded modef a program
P, denotediVp, is the least model oP supported by the CWA w.rky, i.e. the
<k-least model o such that/ = P andsp(l) < I.

If we consider the definition of support in the classical setting, then supported mod-
els are classical models of classical logic programs such-tthgt(7) C I, i.e. the

false atoms provided by the greatest unfounded set are already false in the interpre-
tation /. That is, CWA does not further contribute improvihlg knowledge about

3The interpretation-.U is defined by: for all4, if A € U then-.U(A) =f else—~.U(A) = u.
“Note that this condition can be rewritten-ad/ C T'p (1 U -.U).

18

the progran. Itis interesting to note how the above definition is nothing else than
a generalization from the classical setting to lattices of the notion of well-founded
model. Indeed, in [39] it is shown that the well-founded model is the least model
satisfying—.Up(I) C 1.

Now we provide a fixed-point characterization and, thus, a way of computation
of the approximate well-founded semantics. It is based on an operator, called ap-
proximate well-founded operator, that combines the two operators that have been
defined above.

Definition 7 Let P be a program. Thepproximate well-founded operatate-
noted AWp, takes in input an approximate interpretatidne Cp and returns
AWp(I) € Cp defined by

AWp(I) = Tp(I & sp(l)) .
Note that forA — ¢ € P*,

(I @ sp(I))(p) =1(p) ®sp(I)(¥)
holds and, thus, we can rewrite tH&V» operator as

AWp(I) = Tp(I) @ sp(I) . @
The following theorems can be shown, as a in [41].

Theorem 6 LetP be a program. An interpretatiofi is a fixed-pointAW5 iff [is
a model ofP supported by the CWA.

PROOF = .) Assumel = AWp(I). From the safeness ef(7), it follows that
sp(I) 2 Tp(I ® sp(I)) = AWp(I) = I. Thereforel = Tp(I & sp(I)) =
Tp(I). By Theorem 2] is a model ofP and, thus by definitiod is a model ofP
supported by the CWA.

< .) Assumel |= P andsp(I) <; I. Then, using Theorem Z,= Tp(I) =
Tp(I & sp(l)) = AWp(I). =

Using the properties of monotonicity and continuitylef andsp w.r.t. the knowl-
edge order<; overCp, from the fact thaCp is a complete lattice w.r.&, by the
well-known Knaster-Tarski theorem [77], it follows that:

Theorem 7 LetP be a program. The approximate well-founded operatdvy is
monotone and, if the De Morgan laws hold, continuous w.r.t. the knowledge order
<. Therefore AWp has a least fixed-point w.r.t. the knowledge order. More-

over that least fixed-point coincides with the approximate well-founded semantics
Wp of P.

19

It is illustrative to recall, as in [41], the way our definition of approximate well-
foundated semantics generalizes the classical setting (using Equation 4) to logic
programs over lattices, where arbitrary, continuous truth combination functions
are allowed to occur in the rule body.

I is the well-founded semantics &f

Classical logic{f , L,t } Interval bilattices
<k-leastl s.t. I = W’p(]) = T’p(I) U —‘.Up(.[) I= AWP(I) = T’p(I) D S’/:(I)
<k-least model s.t. -Up(I)C1I sp(I) Sk I

Our result indicates that the support may be seen as the added-value to the approx-
imate Kripke-Kleene semantics and evidences the role of CWA in the approximate
well-founded semantics.

Example 12 The following sequence of interpretations shows the computation of
Wp of Example 81y = I, andl,,11 = AWp(1,)).

Iy = {A [0;1]7B:[0;1}70[]aD [Oa]}
sp(lo) = {A:[01], B:[0:1],C- [0:0.3], D: 0: 0])
I = {A:]0;1], B:[0;1],C":[0.3;0.3], D: [0; 0]}
sp(l;) = {A:]0;1], B:]0;1],C:[0;0.3], D:[0;0]}
I = {A:[0.3;1], B:[0;1],C:[0.3;0.3], D: [0; 0]}
sp(I2) = {A:[0;1], B:]0;0.7],C:[0;0.3], D: [0;0]}
Is — {A:[0.3;1],B:[0;0.7],C:[0.3;0.3], D: [0; 0]}
sp(I3) = {A:[0;1], B:]0;0.7],C:[0;0.3], D: [0; 0]}
I, — I

- Wp

The truth ofC' and D are respectively).3 and 0, while the truth ofA and B can
only be approximated respectively wjth3; 1] and[0; 0.7]. Note that, at each step
i, the supportp(1;) provided by the CWA t® and I; represents some knowledge
that can be used to complefg Also note that Kp <, Wp, i.e. the approximate

20

well-founded model contains more knowledge than the approximate Kripke-Kleene
model (see Example 10)

KKp = {A:]0.3;1],B:[0;1],C:[0.3;0.6], D: [0; 1]} .

Note also that the only difference between these semantics comes from the use of
the support as a supplementary way to infer knowledge in the computatio of

The approximate Kripke-Kleene model is completed with some default knowl-
edge from the CWA, namedy (I3) = sp(KKp) (see below), to obtain the ap-
proximate well-founded model. Indeed, to stress that role of the support, and thus
of the CWA, note that, in our example (see Example 11 for the computation of the
supportsp (K Kp)),

Wp =KKp @ sp(KKp),

i.e. that the approximate well-founded modePatoincides with the Kripke-Kleene
model ofP completed with its support. O

Example 13 Consider the progranP® = R U F' given in Example 7. The com-
putation of the approximate well-founded semantiés of P gives the following
resulP:
Wp ={ Risk(John):[0.64;0.7],

Sport_car(John): [0.8;0.8],

Young(John): [0; 0],

Good_driver(John): [0.3;0.36],

Experience(John): [0.7;0.7] },

which establishes thalohn’s degree oRisk is in betweerj0.64, 0.7]. O

It is easily be verified that in case of logic programs without negation, no approxi-
mation arises related to the atom’s truth.

Theorem 8 If we restrict our attention to logic programs without negation, then
for any programpP the approximate well-founded semanfit® assigns exact val-
ues to all atoms.

5 Top-down query answering

The objective of this section is to provide a top-down procedure to answer queries.
A query, denotedy, is an expression of the forfh4 (query aton), intended as a
guestion about the truth of the atofin the selected intended model®Bf We also

SFor ease of presentation, we use the first letter of predicates and constants only.

21

allow a query to be aet{?A4,,...,7A, } of query atoms. In that latter case we ask
about the truth of all the atom4; in the intended model of a logic prograbn The
intended model is either the approximate Kripke-Kleene model or the approximate
well-founded model.

Given a logic progran®P, one way to answer to a quePyl is to compute the
intended model of P by a bottom-up fixed-point computation and then answer
with I(A). This always requires to compute a whole model, even if in order to
determinel/ (A), not all the atom’s truth is required. Our goal is to present a simple,
yet general top-down method, which relies on the computation of just a part of
an intended model. Essentially, we will try to determine the value of a single
atom by investigating only a part of the progrdgMm Our method is based on a
transformation of a program into a system of equations of monotonic functions
over lattices for which we compute the least fixed-point in a top-down style.

For it we take inspiration on the method [74] and customized it to our case. The
main difference to it is that [74] relies on Fitting’s [21, 22] formulation based on
a generalization of the Gelfond-Lifschitz formulation of stable models [26], while
here we have to deal with the equivalent formulation based on the notion of support
(in classical terms, the generalization of the notion of unfounded set, see, [41]).

We assume the lattices we will deal witHiisite. From a practical point of view
this is a limitation we can live with, especially taking into account that computers
have finite resources, and thus, only a finite set of truth degrees can be represented.
In particular, this includes also the usual case were we use the rational numbers in
[0,1] N Q under a given fixed precisionof numbers a computer can work with.
This will guarantee the termination of our procedures (otherwise the termination
after a finite number of steps cannot be guaranteed always —see Examplel7).

The idea is the following. Lef = (L, <) be a complete lattice and IéL x
L, =4, =k) be the interval bilattice derived from it. L&® be a logic program.
Consider the Herbrand bag# = {A;,...,A,} of P and considefP*. Let us
associate to each ata) € Bp a variabler;, which will take a value in the domain
L x L (sometimes, we will refer to that variable withy as well). An interpretation
I may be seen as an assignment of intervals to the variahles, z,,. For an
immediate consequence operatgre.g.7p, a fixed-point is such that = O(1),

i.e. for all atomsA; € Bp, I(4;) = O(I)(A;). Therefore, we may identify the
fixed-points ofO as the solutions ovel x L of the system of equations of the
following form:
r1 = fl(:ch,...,xlal) y
®)

Tn = fn(xnp-“amnan)a

where forl <7 < n,1 < k < q;, we havel < i, < n. Each variabler;,

22

will take a value in the domain x L, each (monotone) functiofy determines the
value ofz; (i.e. A;) given an assignment(4;,) to each of thes; variablesz;, .
The functionf; implementsO(7)(A4;). Of course, we are especially interested in
the computation of the least fixed-point of the above system.

Example 14 ConsiderL, ;) and the bilattice of intervals build from it. Consider
the following logic program:

P = A—AVB
B« (~CANA)V03V-D
C«+—-BVv02V-E
D — 0.5
E —0.6

For ease of exposition, we can use directly intervals in the logic program and, thus,
write ©

P = A—AVB
B (=C A A)V[0.3;0.5]
C «— -BV[0.2;0.4]

This is harmless as the semantics is based on intervals. Then the corresponding
equational system is of the form

rqa = xaAVZR,
xp = (-zoANza)V|[0.3;0.5],
xc = -wpV[0.2;04].

Note that the approximated Kripke-Kleene modepPaé

KKp = {A:[0.3;1], B:[0.3;0.8], C:[0.2;0.7]} ,
while the approximated well-founded model is

Wp = {A:[0.3;0.5], B:[0.3;0.5],C: [0.5;0.7]} .

Notice thatK Kp <, W Fp, as expected. Also, both are fixed-points of the above
equational system anll Kp is the=<j-least fixed point.

5Note that-D introduces the upper boutids, while = F introduces the upper bourtidd.

23

In the following, at first we recall the general procedure for the top-down compu-
tation of the value of variable in th€-least solution of the equational system (5),
given a latticeC = (L, <) [74, 75]. Then, we will customize it for computing the
approximate Kripke-Kleene semantics, the support and eventually the approximate
well-founded semantics.

In the following we use some auxiliary functions: given the equational system

),

e s(z) denotes the set cfonsof z, i.e.s(z;) = {zi,..., 24, } (the set of
variables appearing in the right hand side of the definition;f

e p(z) denotes the set gfarentsof z, i.e. the sep(z) = {z;: = € s(z;)} (the
set of variables depending on the valuerpf

In the general case, we assume that each fungtiob® — L in Equation (5) is
=<-monotone. We also usg. in place off;, for x = z;. We refer to the monotone
system as in Equation (5) as the tuge= (L, V,f), where. is a lattice,V =
{z1,...,z,} are the variables anfl= (f1, ..., f,) is the tuple of functions.

As itis well known, a monotonic equation system@shas a<-least solution,
Ifp(f), the <-least fixed-point off is given as the least upper bound of the
monotone sequencey, - . ., yi, - - ., where

Yo = 1
vier = f(yi).

Example 15 Consider Example 14. The,-least fixed-point computation is (the
triples representz 4, x5, x¢),

yo = L1 =([0;1],[0;1],[0;1])
yi = ([0;1],]0.3;1],[0.2,1])

y2 = {[0.3:1],[0.3;0.8],[0.2;0.7])
Ys = Y2,

which corresponds to the approximate Kripke-Kleene model of the program, as
expected.

Informally our top-down algorithm works as follows (see Table 1). Assume we are
interested in the value afy in the least fixed-point of the system. We associate to
each variable:; a markingv(z;) denoting the current value af, (the mappings
contains the current value associated to the variables). Initilly) is L. We start

with putting zg in the activelist of variablesa, for which we evaluate whether the
current value of the variable is identical to whatever its right-hand side evaluates

24

Procedure Solve(S, Q)
Input: <-monotonic systerns = (£, V, f), whereQ C V is the set of query variables;
Output: AsetB C V, with @ C B such that the mappingequals Ifp, (f) on B.
A=Q,dg:=Q,in:=0,forall z € Vdov(z) = L, exp(z) = false
while A # () do
selectr; € A, A:= A\ {x;},dg: = dg U s(x;)
ri= fi(v(zi,), s V(fﬂza))
if r > v(z;) thenv(z;):=r, A:= AU (p(z;) Ndg) fi
if not exp(z;) then exp(z;) = true, A:= AU (s(a;) \ in), in: = in U s(z;) i
od

ouhrwNE

Table 1. General top-down algorithm.

to. When evaluating a right-hand side it might of course turn out that we do indeed
need a better value of some sons, which will assumed to have the valnd put
them on the list of active nodes to be examined. In doing so we keep track of the
dependencies between variables, and whenever it turns out that a variable changes
its value (actually, it can only-increase) all variables that might depend on this
variable are put in the active set to be examined. At some point (even if cyclic
definitions are present) the active list will become empty and we have actually
found part of the fixed-point, sufficient to determine the value of the query

The additional data structures are used as follows:

e the variabledg collects the variables that may influence the value of the
guery variables;

e the array variablexp traces the equations that has been “expanded” (the
body variables are put into the active list);

¢ while the variablein keeps track of the variables that have been put into
the active list so far due to an expansion (to avoid, to put the same variable
multiple times in the active list due to function body expansion).

The attentive reader will notice that th#lve procedure has much in common
with the so-calledabulationprocedures, like [8, 10]. Indeed, it is a generalization
of it to arbitrary monotone equational systems over lattices. The algorithm is given
in Table 1.

Example 16 Consider Example 14 and query variablg. Below is a sequence

of Solve(S, {x4}) computation w.r.t=;. Each line is a sequence of steps in the
‘while loop’. What is left unchanged is not reported.

25

1. A={zalzi=xz4,A:=0,dg:={za,25},r:= L, exp(xa): = true,
AM={x4,zp}, in:={x4, 25}

2. zp=uzp,Ai={za}t,dg:={za,xp,2c},r:=1[0.3;1],v(zp): = [0.3;1],
A={za,zc} exp(xp): = true,in: = {z4,z5,2¢}

3. zp=zo,h={xa},r=10.2;0.7,v(zc):=[0.2;0.7],A: = {z4, 25},
exp(z¢): = true

4. zp=xpg,A={za},m=10.3;0.8],v(zp):=1[0.3;0.8],A:= {xa,2c}
5. zp=zo,Ai={xa},r:=10.2;0.7]
6. xpi=x4,A=0,7:=][0.3;1],v(z4):=[0.3;1],A: = {za, 25}

7. ZTi:

xp,A:={xa},7:=1[0.3;0.8],
8. xp=uxa,A=0,r=1]03;]1]
10. stop. returnv(za,zp,zc) = ([0.3;1],[0.3;0.8],[0.2;0.7])

The fact that only a part of the model is computed becomes evident, as the compu-
tation does not change if we add any progr&ito P in which A, B andC do not
occur.

Given a systens = (L, V,f), whereL = (L, =), let h(L£) be theheightof the
truth-value setL, i.e. the length of the longest stricth¢-increasing chain in.
minus 1, where the length of a chain, ..., v,, ... is the cardinal{v1, ..., va, ... }|.
The cardinal of a setX is the least ordinal such thate and X areequipollent
i.e. there is a bijection from to X. For instance|{0, 1}| = 2, while in general
10,1] N Q| = w and|([0,1] N Q) x ([0,1] N Q|) = w. However, as stated at the
beginning of the section, the lattice is always finite and, thus, the height is always
finite.

In [74] it is shown that the algorithn$olve(S, Q) behaves correctly. Also
we recall that from a computational point of view, by means of appropriate data
structures, the operations anv, dg, in, exp, p ands can be performed in constant
time. Therefore, Step. is O(|V]), all other steps, except St@pand Stepl. are
O(1). Lete(f,) be the maximal cost of evaluating functigpnon its arguments, so
Step4. is O(c(f,)). It remains to determine the number of loops of Steps the
heighth (L) of L is finite, observe that any variable is increasing intherder as
it enters in theA list (Step5.), except it enters due to Stép which may happen
one time only. Therefore, each variablewill appear inA at mosta; - h(£) + 1
times, wherey; is the arity of f;, as a variable is only re-entered intdaf one of its

26

son gets an increased value (which for each son only can hagggnimes), plus
the additional entry due to Sté&p As a consequence, the worst-case complexity is
O(inev(dfi) - (a; - h(L) + 1)). Therefore:

Theorem 9 ([74]) Consider a monotone system of equatiéns (L, V, f).

1. There is a finite limit ordinal such that aftef)\| stepsSolve(S, Q) deter-
mines a seB3 C V, with @ C B such that the mapping equals Ifp (f) on
B, i.e.V|B = prj(f>|B

2. If the computing cost of each functionfirs bounded by, the arity bounded
by a, and the height is bounded Iy then the worst-case complexity of the
algorithm Solve is O(|V'|cah).

Note that in case the height of a lattice is not finite, the computation may not
terminate after a finite number of steps as the following example shows.

Example 17 ([32]) ConsiderL g yj, the functions{ < a < 1,a € Q)

T+ a
2

fz) =

(2) = 1 fz>a
I =20 ifz<a

Consider the two logic programs

Pr={A < f(A)}

Py ={ A< f(4)
B« g(A) }

Then the approximated Kripke-Kleene modePofis attained afterw steps oflp
iterations overl | = [0;1] and is such that Kp(A) = [a;1], while (g is not
continuous) the approximated Kripke-Kleene modePgis attained afterw + 1
steps ofl’p iterations (K Kp(A) = [a; 1], KKp(B) = [1;1]). However, under the
assumption of a fixed finite precisiprio represent rationals numbers j@, 1], the
computation converges after a finite number of steps for PatAnd P,.

27

5.1 Query answering: approximate Kripke-Kleene semantics

We start with the Kripke-Kleene semantics, for which we have almost anticipated
how we will proceed. Lef® be a logic program and consider it's groundiRg.
As already pointed out, each atom appears exactly once in the head of afile in
The system of equations that we build frgwi is straightforward. Assign to each
atom A a variabler 4 and substitute ifP* each occurrence of with z 4. Finally,
substitute each occurrence of with = and letSxx(P) = (L,V,fp) be the
resulting equational system. Of cour$€| = |Bp|, |Skx (P)| can be computed
intime O(|P|) and all functions irSk i (P) are<;-monotone. A€p is one to one
related tdl'p, it follows that the< -least fixed-point ok x (P) corresponds to the
approximated Kripke-Kleene semanticsBf The algorithmSolve (P, 7A),
first builds the equational systefx x (P) and then callsSolve(Skx (P),{xa})
and returns the outpuwt on the query variable, whereis the output of the call to
Solve. Solvey i behaves correctly (see Example 16).

Theorem 10 Let’? and? A be a logic program and a query, respectively. Then
KKp(A) = Solvex i (P,{?A}).

The extension of Theorem 10 to a set of query atoms is straightforward.

From a computational point of view, we can avoid the cost of translafing
into Sk x (P) as we can directly operate h So the cosO(|P|) can be avoided.
As from our assumption the lattice is finite, by Theorem 9 it follows immediately
that the worst-case complexity for top-down query answering under the approxi-
mate Kripke-Kleene semantics of a logic progr@ds O(| Bp|cah). Furthermore,
often the cost of computing each of the functionstsfis in O(1). By observ-
ing that| Bp|a is in O(|P|) we immediately have that in this case the complexity
is O(|PJh). If the height is a fixed parameter, i.e. a constant, we can conclude
that the additional expressive power of approximate Kripke-Kleene semantics of
logic programs over lattices (with functions with constant cost) does not increase
the computational complexity of classical propositional logic programs, which is
linear.

5.2 Query answering: approximate well-founded semantics

We address now the issue of a top-down computation of the value of a query under
the approximate well-founded semantics.

As we have seen in Section 4, the approximate well-founded semantics of a
logic programP is the=<-least fixed-point of the operator

AWp(I) = Tp(I @ sp(I)) .

28

By Theorem 11sp (1) coincides with the iterated fixed-point of the functiép
beginning the computation witf , where

Fpi(J)=1f Tp(IDJ).
That is,sp(I) coincides with the limit of the sequence
Jo = I,

Jiyn = Fpi(Ji) =1t @Tp(I & J;).

As we already have a top-down query answering procedure relaiéd tbsuffices

to determine an analogue related to the support. That is, we want a top-down
procedure answering that for a give query atomanswers withsp(A), i.e. the

truth of A in the support ofP w.r.t. I. To this purpose, it suffices to build an
eguational system whose least fixed-point is the support and then apply the top-
down query answering procedure described in Table 1.

At first, note that the sequencg is =<;-increasing (see [41]). Therefore,
sp([) is the =;-least fixed-point of the functio’p;(-). Therefore,sp(l) =
Fpi(sp(I)). Now, considetA — f(Bi,...,B,) € P*. Letus introduce vari-
ablesz 4,zp,, ...,xp,. The intended meaning of a variable is that of denoting the
value of the atom in the support, exgq will hold the valuesp(I)(A). Given
A — f(By,...,B,) € P* we consider the equation

o=t @[f(I(B1),....I(Bn)) ® f(zB,, .., vB,))] - (6)
The above equation is the result of applyifig;(.J;) to all rules using the fact that

Ji+1(A) = f ® (I@Ji)(f(Blw--aBn))
= tI(f(B1,....,Bn)® Ji(f(B1,...,By))]

and then replacé;(B;) with the variablerp, andJ;1(A) with the variabler 4,
as at the limitJ; will be the support.

Example 18 Consider Example 14 and an interpretationThen the correspond-
ing equational system for computing the support is

xg = FTRI(AVB)® (xaVep),
xp = fR[I((-CAA)VI0.3;0.5]) @ ((-mxc Axa) V[0.3;0.5])],
ze = f&[I(-BV[0.2;0.4]) ® (-xp V[0.3;0.5])] .

29

Let us show that, indeed, a bottom-up computation of the least fixed-point of the
above equational systems is the support, which corresponds to the computation of
Fp1(-) starting withl § . To the ease of presentation, we consider | ;. The
=<¢-least fixed-point computation is (the triples represeptz g andx¢),

Jo = L ={([0;1],[0;1],[0;1])
Ji = ([0;0],[0;0.5],[0,1])

Jo = ([0;0.5],[0;0.5], [0; 1])
J3 = ([0;0.5],[0;0.5],[0;1])

Jy = J3.
J3 is indeed the support 6? w.r.t. | ¢ .
It can then easily be shown that:

Theorem 11 For any programP and interpretationl, the supportsp(7) of P
w.r.t. I is the<;-least fixed-point of the equational system obtained by replacing
eachruleA — f(Bu,...,B,) € P* with the Equation 6.

It follows then immediately that we have a top-down procedure to compute the
truth of an atom in the supposi> (7). We denote the equational system by using
Equation 6 above a?‘bupp{). Then it follows that:

Theorem 12 For a set of query variable®, Solve(Supp{,, Q) outputs a seB C
V,with@ C B, such that the mappingequals to the<;-least fixed-point, i.e. the
supportsp () on B: vip = sp(I)|p-

As a side product we obtain a top-down algorithm for the computation of the well-
founded set.

From a computational complexity point of view, the same propertigsobie
hold for Solve(Supph, Q) as well.

We are now ready to define the top-down procedtitéyey (P, 7 A), to com-
pute the answer to an atorhunder the approximate well-founded semantics. We
defineSolveyw r(P,?7A) asSolvex (P, ?A), except that Step. is replaced with
the statements

4.1. S:=s(x;);

42, I:=v;

4.3. v':= Solve(Suppk,s);

44. r= fz(v(-ru) D V/(xi1)>) V<xia) ® V/(xia))

2 7

30

These steps correspond to one step application oAthe (1) = Tp(I @ sp(I))
operator to the variable;. Indeed, we have that

€Tr; = fi(iL'Z'l, ...,l’iai)

is the definition ofz; in the equational system. Then, at first we ask about the
value of the variables;;,, ..., z;,, in the support w.r.t. the current interpretation
I:= v (Steps 4.1. - 4.3). The variabié holds these values. Finally, we evaluate
Tr(I & sp(I))(zi) = fi(v(zi,) & v'(2i)), .. v(@i,,) BV (2i,)-

It follows easily then that:

Theorem 13 Let P and ?A be a logic program and a query, respectively. Then
Wp(A) = Solvew p(P,7A).

Example 19 Consider Example 14 and query variahlg. Below is a sequence of
Solveyw (P, ?7A) computation. It resembles the one we have seen in Example 16.
Each line is a sequence of steps in the ‘while loop’. What is left unchanged is not
reported.

1. A={zal,zii=x4,0=0,dg:={za,25},Q:={za,25},v:= ([0;0.5],0;0.5],
[0;1]),7:=[0;0.5],v(x4): = [0;0.5],A: = {x 4,25}, exp(x4): = true,in: = {x4, x5}

2. zp=uzp,Ai={za},dg:={za, 2,20}, Q:= {xa,2c},v': = ([0;0.5],[0;0.5],
[0;1]),r:=[0.3;0.5], v(xp): = [0.3;0.5], A: = {x 4, xc }, exp(zp): = true,

A:= {l‘Asz}a in: = {.’IZ‘A,Z‘B,JZC}

3. xpi=uzc,Ai={xa}, = {xp},v:=([0;0.5],[0;0.5],[0;1]),
r:=[0.5;0.7],v(zc): = [0.5;0.7], A: = {z 4, x5}, exp(zc): = true

4. zi=xp,Ai={xa},@={za,2zc},v:=([0;0.5],[0;0.5],[0;0.7]),r: = [0.3;0.5]

5. wp=1x4,A=0,Q:={za,zp},v:=([0;0.5],[0;0.5],[0;0.7]),
r:=[0.3;0.5],v(z4): =[0.3;0.5],A: = {x 4,25}

6. zi=xza,A={2xp},@={za, 25}, v:=(0;0.5],[0;0.5],[0;0.7]),r: = [0.3; 0.5]
7. zp=xp,A=0,Q:={za,2c},v":= (][0;0.5],[0;0.5],[0;0.7]), 7: = [0.3; 0.5]

8. stop.returnv(za,zp,zc)z, = ([0;0.5],[0;0.5],[0;0.7]),, = [0.3;0.5]
Note that the answer tdA, namely[0.3;0.5], is now more precise than the one

([0.3;1]) under the approximate Kripke-Kleene model (See Example 16), as ex-
pected.

31

The computational complexity analysis 8blvey parallels the one we have
made forSolvek . As the height of a lattice is finite then, likéolvek i, each
variablez; will appear inA at mosta; - (h(£) + 1) times and, thus, the worst-case
complexity isO(3_, ¢y (c(f;) - (aj - (R(£) +1)). But now, the cost of(f;) is the

cost of a recursive call t§olve, which isO(|Bp|cah). Therefore Solvey r runs

in time O(| Bp|2a®h?c). That is,Solvey r runs in timeO(|P|?h2c). If the lattice

is fixed, then the height parameter is a constant. Furthermore, often we can assume
thatc is O(1) and, thus, the worst-case complexity reduce@ ¢ |?).

6 Conclusions and future work

We have presented a general framework to deal with normal logic programs evalu-
ated over complete lattices. Main features of our extension(&reur framework
covers all many-valued frameworks we are aware of dealing with imprecision in
normal logic programmingi:) as we deal with non-monotone negation, atoms are
assigned with truth interval approximatiorisii) the CWA is used to complete the
knowledge to infer the most precise approximations as possiblethe continuity
of the immediate consequence operator is preserved in case the truth combination
functions are continuous and lattices are distributive; @ndwve have presented
a very general top-down method for answering queries, by a transformation of a
normal logic program into an equational system over lattices.

The next step for future work is to extend our formalism to disjunctive logic
programs with default negation were the head of a rule is a disjunction, or even
more generally to rules of the form

fl(Ala--wAm) — fQ(Bl,. . ,Bm) .

It would be interesting to see whether our idea of using equational systems over lat-
tices can be extended to this general form (or at least to disjunctive logic programs)
as well.

References

[1] Teresa Alsinet, Llis Godo, and Sandra Sandri. On the semantics and auto-
mated deduction fo PLFC, a logic of possibilistic uncertainty and fuzzyness.
In Proceedings of the 15th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-99)1999.

[2] Teresa Alsinet and Lluis Godo Lluis Godo. A complete calcultis for pos-
sibilistic logic programming with fuzzy propositional variables with fuzzy

32

[3]

[4]

[5]

[6]

[7]

propositional variables. IRroceedings of the 16th Conference in Uncertainty
in Artificial Intelligence (UAI-00) pages 1-10. Morgan Kaufmann, 2000.

Chitta Baral, Michael Gelfond, and Nelson Rushton. Probabilistic reasoning
with answer sets. IRroceedings of the 7th International Conference in Logic
Programming and Nonmonotonic Reasoning (LPNMR-@dmber 2923 in
Lecture Notes in Atrtificial Intelligence, pages 21-33, Fort Lauderdale, FL,
USA, 2004. Springer Verlag.

Nuel D. Belnap. How a computer should think. In Gilbert Ryle, editor,
Contemporary aspects of philosopmages 30-56. Oriel Press, Stocksfield,
GB, 1977.

Nuel D. Belnap. A useful four-valued logic. In Gunnar Epstein and J. Michael
Dunn, editors,Modern uses of multiple-valued logipages 5-37. Reidel,
Dordrecht, NL, 1977.

B.G. Buchanan and E.H. Shortli. A model of inexact reasoning in medicine.
Mathematical Bioscien¢®3:351-379, 1975.

True H. Cao. Annotated fuzzy logic program$:uzzy Sets and Systems
113(2):277-298, 2000.

[8] Weidong Chen and David S. Warren. Tabled evaluation with delaying for

[9]

[10]

[11]

[12]

general logic programslournal of the ACM43(1):20-74, 1996.

Carlos Viegas Darasio, J. Medina, and M. Ojeda Aciego. Sorted multi-
adjoint logic programs: Termination results and application®rbteedings

of the 9th European Conference on Logics in Artificial Intelligence (JELIA-
04), number 3229 in Lecture Notes in Computer Science, pages 252-265.
Springer Verlag, 2004.

Carlos Viegas Dasio, J. Medina, and M. Ojeda Aciego. A tabulation proof
procedure for residuated logic programmingPlimceedings of the 6th Euro-
pean Conference on Atrtificial Intelligence (ECAI-02D04.

Carlos Viegas Da#sio, J. Medina, and M. Ojeda Aciego. Termination results
for sorted multi-adjoint logic programs. Broceedings of the 10th Interna-
tional Conference on Information Processing and Managment of Uncertainty
in Knowledge-Based Systems, (IPMU-Q#gges 1879-1886, 2004.

Carlos Viegas Da#sio and Lis Moniz Pereira. A survey of paraconsistent
semantics for logic programs. In D. Gabbay and P. Smets, editargjbook

33

of Defeasible Reasoning and Uncertainty Management Syspamges 241—
320. Kluwer, 1998.

[13] Carlos Viegas Da#sio and Lis Moniz Pereira. Antitonic logic programs.
In Proceedings of the 6th European Conference on logic programming and
Nonmonotonic Reasoning (LPNMR-Dhumber 2173 in Lecture Notes in
Computer Science. Springer-Verlag, 2001.

[14] Carlos Viegas Da#sio and Lis Moniz Pereira. Sorted monotonic logic
programs and their embeddings. Pmoceedings of the 10th International
Conference on Information Processing and Managment of Uncertainty in
Knowledge-Based Systems, (IPMU-(Q#8ges 807—-814, 2004.

[15] Alex Dekhtyar and Michael I. Dekhtyar. Possible worlds semantics for prob-
abilistic logic programs. 120th International Conference on Logic Program-
ming volume 3132 ofLecture Notes in Computer Sciengmages 137-148.
Springer Verlag, 2004.

[16] Alex Dekhtyar and Michael I. Dekhtyar. Revisiting the semantics of inter-
val probabilistic logic programs. 18th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR-@&mber 3662 in
Lecture Notes in Computer Science, pages 330-342. Springer Verlag, 2005.

[17] Alex Dekhtyar and V.S. Subrahmanian. Hybrid probabilistic progralost-
nal of Logic Programming43(3):187-250, 2000.

[18] Didier Dubois, &rome Lang, and Henri Prade. Towards possibilistic logic
programming. InProc. of the 8th Int. Conf. on Logic Programming (ICLP-
91), pages 581-595. The MIT Press, 1991.

[19] Didier Dubois and Henri Prade. Possibility theory, probability theory and
multiple-valued logics: A clarificationAnnals of Mathematics and Artificial
Intelligence 32(1-4):35-66, 2001.

[20] Rafee Ebrahim. Fuzzy logic programmingFuzzy Sets and Systems
117(2):215-230, 2001.

[21] M. C. Fitting. The family of stable modelslournal of Logic Programming
17:197-225, 1993.

[22] M. C. Fitting. Fixpoint semantics for logic programming - a survElgeoret-
ical Computer Scien¢@1(3):25-51, 2002.

34

[23] Melvin Fitting. A Kripke-Kleene-semantics for general logic prograduair-
nal of Logic Programming2:295-312, 1985.

[24] Melvin Fitting. Bilattices and the semantics of logic programmidgurnal
of Logic Programming11:91-116, 1991.

[25] Norbert Fuhr. Probabilistic Datalog: Implementing logical information re-
trieval for advanced applicationgournal of the American Society for Infor-
mation Scienceb1(2):95-110, 2000.

[26] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In Robert A. Kowalski and Kenneth Bowen, editers;
ceedings of the 5th International Conference on Logic Programnpages
1070-1080, Cambridge, Massachusetts, 1988. The MIT Press.

[27] Matthew L. Ginsberg. Multi-valued logics: a uniform approach to reasoning
in artificial intelligence.Computational Intelligence4:265-316, 1988.

[28] C.J. Hinde. Fuzzy prolog. International Journal Man.-Machine Styd.
(24):569-595, 1986.

[29] Mitsuru Ishizuka and Naoki Kanai. Prolog-ELF: incorporating fuzzy logic.
In Proceedings of the 9th International Joint Conference on Atrtificial Intelli-
gence (IJCAI-85)pages 701-703, Los Angeles, CA, 1985.

[30] Kristian Kersting and Luc De Raedt. Bayesian logic programs. In James
Cussens and Alan M. Frisch, editolsP Work-in-progress reports, 10th In-
ternational Conference on Inductive Logic Programmi@dEUR Workshop
Proceedings. CEUR-WS.org, 2000.

[31] M. Kifer and Ai Li. On the semantics of rule-based expert systems with
uncertainty. IrProc. of the Int. Conf. on Database Theory (ICDT-8&)mber
326 in Lecture Notes in Computer Science, pages 102-117. Springer-Verlag,
1988.

[32] Michael Kifer and V.S. Subrahmanian. Theory of generalized annotated logic
programming and its applicationgournal of Logic Programmingl2:335—
367, 1992.

[33] Frank Klawonn and Rudolf Kruse. A tukasiewicz logic based ProMgth-
ware & Soft Computingl(1):5-29, 1994.

[34] Stanislav Kragi, Rastislav Lencses, and Peter Wjt A comparison of fuzzy
and annotated logic programmindzuzzy Sets and Systemgl4:173-192,
2004.

35

[35] Laks Lakshmanan. An epistemic foundation for logic programming with un-
certainty. InFoundations of Software Technology and Theoretical Computer
Sciencenumber 880 in Lecture Notes in Computer Science, pages 89-100.
Springer-Verlag, 1994,

[36] Laks V.S. Lakshmanan and Fereidoon Sadri. Uncertain deductive databases:
a hybrid approachinformation System&2(8):483-508, 1997.

[37] Laks V.S. Lakshmanan and Nematollaah Shiri. Probabilistic deductive
databases. Imt'| Logic Programming Symposiumpages 254—-268, 1994.

[38] Laks V.S. Lakshmanan and Nematollaah Shiri. A parametric approach to
deductive databases with uncertaintyEE Transactions on Knowledge and
Data Engineering13(4):554-570, 2001.

[39] Nicola Leone, Pasquale Rullo, and Francesco Scarcello. Disjunctive stable
models: Unfounded sets, fixpoint semantics, and computatidfiormation
and Computation135(2):69-112, 1997.

[40] John W. Lloyd. Foundations of Logic ProgrammingSpringer, Heidelberg,
RG, 1987.

[41] Yann Loyer and Umberto Straccia. Epistemic foundation of stable model
semanticsJournal of Theory and Practice of Logic Programmifi@ appear.

[42] Yann Loyer and Umberto Straccia. Uncertainty and partial non-uniform as-
sumptions in parametric deductive databasesPrbt. of the 8th European
Conference on Logics in Artificial Intelligence (JELIA-QBumber 2424 in
Lecture Notes in Computer Science, pages 271-282, Cosenza, Italy, 2002.
Springer-Verlag.

[43] Yann Loyer and Umberto Straccia. The well-founded semantics in normal
logic programs with uncertainty. IRroc. of the 6th International Sympo-
sium on Functional and Logic Programming (FLOPS-2Q0@)mber 2441
in Lecture Notes in Computer Science, pages 152-166, Aizu, Japan, 2002.
Springer-Verlag.

[44] Yann Loyer and Umberto Straccia. The approximate well-founded semantics
for logic programs with uncertainty. 188th International Symposium on
Mathematical Foundations of Computer Science (MFCS-2008pber 2747
in Lecture Notes in Computer Science, pages 541-550, Bratislava, Slovak
Republic, 2003. Springer-Verlag.

36

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Yann Loyer and Umberto Straccia. Default knowledge in logic programs with
uncertainty. InProc. of the 19th Int. Conf. on Logic Programming (ICLP-
03), number 2916 in Lecture Notes in Computer Science, pages 466-480,
Mumbai, India, 2003. Springer Verlag.

Yann Loyer and Umberto Straccia. Epistemic foundation of the well-founded
semantics over bilattices. [B9th International Symposium on Mathemat-
ical Foundations of Computer Science (MFCS-200Wmber 3153 in Lec-

ture Notes in Computer Science, pages 513-524, Bratislava, Slovak Republic,
2004. Springer Verlag.

Yann Loyer and Umberto Straccia. Any-world assumptions in logic program-
ming. Theoretical Computer Sciencg42(2-3):351-381, 2005.

James J. Lu. Logic programming with signs and annotatiafmurnal of
Logic and Computatiars(6):755-778, 1996.

James J. Lu, Jacques Calmet, and Joachini.Schmputing multiple-valued
logic programsMathware % Soft Computing(4):129-153, 1997.

Thomas Lukasiewicz. Many-valued first-order logics with probabilistic se-
mantics. InProceedings of the Annual Conference of the European Associa-
tion for Computer Science Logic (CSL'98umber 1584 in Lecture Notes in
Computer Science, pages 415-429. Springer Verlag, 1998.

Thomas Lukasiewicz. Probabilistic logic programming. Rroc. of the
13th European Conf. on Atrtificial Intelligence (ECAI-98)ages 388-392,
Brighton (England), August 1998.

Thomas Lukasiewicz. Many-valued disjunctive logic programs with prob-
abilistic semantics. IfProceedings of the 5th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR’'$@)mber
1730 in Lecture Notes in Computer Science, pages 277-289. Springer Verlag,
1999.

Thomas Lukasiewicz. Probabilistic and truth-functional many-valued logic
programming. InThe IEEE International Symposium on Multiple-Valued
Logic, pages 236—-241, 1999.

Thomas Lukasiewicz. Fixpoint characterizations for many-valued disjunctive
logic programs with probabilistic semantics. ImProceedings of the 6th In-
ternational Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR-01) number 2173 in Lecture Notes in Artificial Intelligence,
pages 336—350. Springer-Verlag, 2001.

37

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Thomas Lukasiewicz. Probabilistic logic programming with conditional con-
straints.ACM Transactions on Computational LogR(3):289-339, 2001.

T. P. Martin, J. F. Baldwin, and B. W. Pilsworth. The implementation of
FProlog —a fuzzy prolog interpretdfuzzy Sets Sys23(1):119-129, 1987.

Cristinel Mateis. Extending disjunctive logic programming by t-norms. In
Proceedings of the 5th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR-98umber 1730 in Lecture Notes in
Computer Science, pages 290-304. Springer-Verlag, 1999.

Cristinel Mateis. Quantitative disjunctive logic programming: Semantics and
computation Al Communicationsl3:225-248, 2000.

Jedis Medina and Manuel Ojeda-Aciego. Multi-adjoint logic programming.
In Proceedings of the 10th International Conference on Information Process-
ing and Managment of Uncertainty in Knowledge-Based Systems, (IPMU-
04), pages 823—-830, 2004.

Jedis Medina, Manuel Ojeda-Aciego, and Peter &jt Multi-adjoint logic
programming with continuous semantics. Proceedings of the 6th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR-01) volume 2173 oL ecture Notes in Artificial Intelligencgages
351-364. Springer Verlag, 2001.

Jesis Medina, Manuel Ojeda-Aciego, and Peter &jt A procedural se-
mantics for multi-adjoint logic programming. Proceedings of the10th Por-
tuguese Conference on Artificial Intelligence on Progress in Atrtificial Intelli-
gence, Knowledge Extraction, Multi-agent Systems, Logic Programming and
Constraint Solvingpages 290-297. Springer-Verlag, 2001.

Jack Minker. On indefinite data bases and the closed world assumption.
In Springer-Verlag, editorProc. of the 6th Conf. on Automated Deduction
(CADE-82) number 138 in Lecture Notes in Computer Science, 1982.

Stephen Muggleton. Stochastic logic programs. In L. De Raedt, eBitor,
ceedings of the 5th International Workshop on Inductive Logic Programming
page 29. Department of Computer Science, Katholieke Universiteit Leuven,
1995.

M. Mukaidono. Foundations of fuzzy logic programming. Advances in
Fuzzy Systems — Application and Theorglume 1. World Scientific, Singa-
pore, 1996.

38

[65] M. Mukaidono, Z. Shen, and L. Ding. Fundamentals of fuzzy prolog.J.
Approx. Reasoning(2):179-193, 1989.

[66] Raymond Ng and V.S. Subrahmanian. Stable model semantics for probabilis-
tic deductive databases. In Zbigniew W. Ras and Maria Zemenkova, editors,
Proc. of the 6th Int. Sym. on Methodologies for Intelligent Systems (ISMIS-
91), number 542 in Lecture Notes in Atrtificial Intelligence, pages 163-171.
Springer-Verlag, 1991.

[67] Raymond Ng and V.S. Subrahmanian. Probabilistic logic programming.
formation and Computatiqri01(2):150-201, 1993.

[68] Raymond Ng and V.S. Subrahmanian. Stable model semantics for probabilis-
tic deductive databasemformation and Computatiqri10(1):42—83, 1994.

[69] Liem Ngo. Probabilistic disjunctive logic programming. Uncertainty in
Artificial Intelligence: Proceedings of the Twelfeth Conference (UAI-1996)
pages 397-404, San Francisco, CA, 1996. Morgan Kaufmann Publishers.

[70] Liem Ngo and Peter Haddawy. Answering queries from context-sensitive
probabilistic knowledge baseBheoretical Computer Scienckr1(1-2):147—
177, 1997.

[71] Pascal Nicolas, Laurent Garcia, and lgag@tan. Possibilistic stable models.
In Proceedings of the 19th International Joint Conference on Artificial Intel-
ligence (IJCAI-05)pages 248-253. Morgan Kaufmann Publishers, 2005.

[72] Ehud Y. Shapiro. Logic programs with uncertainties: A tool for implementing
rule-based systems. Rroceedings of the 8th International Joint Conference
on Artificial Intelligence (IJCAI-83)pages 529-532, 1983.

[73] Zuliang Shen, Liya Ding, and Masao Mukaidorteuzzy Computingchapter
A Theoretical Framework of Fuzzy Prolog Machine, pages 89-100. Elsevier
Science Publishers B.V., 1988.

[74] Umberto Straccia. Query answering in normal logic programs under un-
certainty. In8th European Conferences on Symbolic and Quantitative Ap-
proaches to Reasoning with Uncertainty (ECSQARU-@5)Mber 3571 in
Lecture Notes in Computer Science, pages 687—700, Barcelona, Spain, 2005.
Springer Verlag.

[75] Umberto Straccia. Uncertainty management in logic programming: Simple
and effective top-down query answering. In Rajiv Khosla, Robert J. Howlett,

39

and Lakhmi C. Jain, editor®th International Conference on Knowledge-
Based & Intelligent Information & Engineering Systems (KES-05), Part I
number 3682 in Lecture Notes in Computer Science, pages 753-760, Mel-
bourne, Australia, 2005. Springer Verlag.

[76] Terrance Swift. Tabling for non-monotonic programmignals of Mathe-
matics and Artificial Intelligence25(3-4):201-240, 1999.

[77] A. Tarski. A lattice-theoretical fixpoint theorem and its applicatioRacific
Journal of Mathematicq5):285-309, 1955.

[78] M.H. van Emden. Quantitative deduction and its fixpoint thedgurnal of
Logic Programming4(1):37-53, 1986.

[79] Allen van Gelder, Kenneth A. Ross, and John S. Schlimpf. The well-founded
semantics for general logic programdournal of the ACM 38(3):620-650,
1991.

[80] Joost Vennekens, Sofie Verbaeten, and Maurice Bruynooghe. Logic programs
with annotated disjunctions. 0th International Conference on Logic Pro-
gramming (ICLP-04)volume 3132 ofLecture Notes in Computer Science
pages 431-445. Springer Verlag, 2004.

[81] Peter VojbS. Fuzzy logic programmingiFuzzy Sets and System24:361—
370, 2004.

[82] Gerd Wagner. Negation in fuzzy and possibilistic logic programs. In T. Martin
and F. Arcelli, editorsLogic programming and Soft ComputinBesearch
Studies Press, 1998.

[83] Beat Wuttrich. Probabilistic knowledge basdéEEE Transactions on Knowl-
edge and Data Engineering(5):691-698, 1995.

[84] H. Yasui, Y. Hamada, and M. Mukaidono. Fuzzy prolog based on lukasiewicz
implication and bounded produdEEE Trans. Fuzzy Systems, 199949~
954,

[85] L. A. Zadeh. Fuzzy setdnformation and Contrqgl8(3):338-353, 1965.

[86] L. A. Zadeh. Fuzzy sets as a basis for a theory of possibHityzzy Sets and
Systemsl1(1):3-28, 1965.

40

