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Abstract

The production of digital multimedia content is continuously increasing.
With the advent of the digital cable, satellite and terrestrial televisions, thou-
sands of channels are practically available for users. Moreover, multimedia
is widely used in many professional applications, such as video program pro-
duction, video surveillance, and e-learning. Consequently, the use of tech-
niques for video retrieval as well as video filtering is becoming of crucial im-
portance. The adoption of the MPEG-7 standard is a significant step forward
in simplifying the video retrieval and filtering. However, the performance
issue can be relevant if the retrieval must be accomplished in real time, as
in some applications such as the video surveillance or video filtering in gen-
eral. Moreover, the number of streams to search, the number of queries, and
the computational complexity of the feature similarity measure can heavily
affect the effectiveness of such real time filtering applications.

In this paper we present thePivoted Stream, a novel approach for efficient
filtering of a video stream by using the MPEG-7 descriptors. Our proposal
exploits the properties of the metric spaces, in order to reduce the computa-
tional load of the filtering receiver.

1 Introduction

Wide access to large information collections is of great importance in many aspects
of everyday life: enormous quantities of information in different forms and of dif-
ferent types (text, images, audio, video, etc.) are being produced and archived.
For this reason, a significant effort has been spent in studying and developing tech-
niques that support an effective and efficient retrieval of multimedia data. Among
other types of information, Audio/Video can be considered today as a primarily
mean of communication, due to its richness in informative content and to its ap-
peal. This implies that the development of techniques supporting the retrieval of
Audio/Video documents is of primarily importance to enable the access to the gen-
eral public as well as to professional users of a significant asset of today life. This
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process will gain more impetus from the adoption of standards to represent video
content (e.g. MPEG-7 [3, 12]). The retrieval process is based on a simple schema:
users specify their request needs (e.g. a set of keywords or a sample image) that
are translated into a system query; the items in the archive are compared with the
user’s query, in order to determine if they are relevant for the user’s request. In
order to process this type of query, it is necessary to determine a set of properties
of the objects stored in the archive (usually called features) and a similarity mea-
sure to compare queries and archive objects. Video features can be described by
using the MPEG-7 standard. In case the similarity measure ismetric, many possi-
ble approaches to create indexes can be adopted. These indexes allow to improve
the efficiency of the retrieval process, by comparing the query only with a limited
number of objects in the archive [9].

Another important application scenario similar to the one described so far, is
the one where information is not stored in an archive, but is flowing to the users
continuously in a stream (or more streams). This happens, for example, with in-
formation delivered by news agencies or with broadcasted TV programs [11] [14],
or in a surveillance system. In this case, an enormous quantity of information ar-
rives to the users that are interested only to a very limited part of it: the process
of selecting only the significant information is calledinformation filtering. This
process can be applied, in general, to describe a variety of processes involving
the delivery of information to people who need it: however, the filtering of Au-
dio/Video documents, which is the topic of this paper, is particularly challenging
due to the complexity of performing the selection of video material in real-time,
possibly from a large number of video streams.

The filtering process is based on a simple schema, which has many similarities
with the retrieval process described so far:

• Users specify their information needs that are translated into a system query
filter; in many cases a user, or a group of users with similar interests, may
specify several filters.

• Data are analyzed in order to extract a set of features that describe their
characteristics.

• The items in the stream are compared with the user’s query filter in order to
determine if they are relevant to the user’s request. The item is delivered to
the user in case it passes the filter, i.e. if its similarity with the filter is higher
than a predefined threshold.

The main difference with information retrieval is due to the difficulty in creating
access data structures that can speed-up the filtering process, since a pre-processing
of the entire stream is not feasible in real time.
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The efficiency problems that derive from the difficulties of using any access
data structure, become significant if filtering is performed on Audio/Video data:

• The number of TV channels that are broadcasted is continuously increasing
as it is increasing the number of channels that any single user can receive.
The selection of appropriate programs and information becomes a problem
for personal use as well as for professional uses.

• Video is frequently used for many different applications that go beyond the
pure TV broadcasting, e.g. video surveillance, e-learning, etc. All these
applications may require efficient real-time filtering of relevant events.

• Similarity matching of queries and Audio/Video data is in general more com-
plex than for other data types, due to the fact that Audio/Video data have a
complex structure and that different types of information can be used to rep-
resent Audio/Video. For example, we may use the single video frames (or
a selection of the video frames), or we may use the audio track (a transcript
of the speech, information about sound, etc.), we may use information about
the video structure (a video can be seen as composed of shots and scenes),
we may use metadata manually associated to the video, or combinations of
these features (plus many others).

The complexity of the filtering process is linear with the number of streams,
the number of filters and the number of features used to represent the video data.
Moreover, the entire process must be performed in real-time, so that we can arrive
to a situation where most of the processing power is dedicated to filtering. This
paper goes toward a solution of this problem, by proposing a novel approach to
Audio/Video filtering that makes use of simple additional information sent together
with the video. This allows to avoid the comparison of the filter with video features
for many non-matching videos or video components that will not pass the filter
in any case. The proposed approach requires that the measure of the similarity
between the filter and the video representative ismetric, and it is based on the
use of the well known technique ofpivots. As it will be shown in the section
dedicated to the experimental evaluation of the method, it is possible to obtain –
depending on the filter threshold – an efficiency improvement of more than one
order of magnitude.

The paper provides a brief description of the applicative scenario in the next
section. Section 3 is dedicated to the description of the technique whose perfor-
mance is evaluated in Section 5. This section also contains an analysis of the
system parameters to be used in order to obtain the best performance. Section 4
contains a description of a filtering algorithm when several descriptors are used
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Figure 1: The scenario.

at the same time. Section 6 contains the conclusions and proposals for further
research.

2 The Scenario

As described above, in our scenario we assume to have a certain number of virtual
sources (for instance channels of a digital tv broadcaster), each one sending a video
stream associated to an MPEG-7 stream that contains the description of the video
stream. Moreover, these streams are sent through a generic transmission channel
(see Figure 1) to the receiver stations (e.g., set–top–boxes, workstations, etc.). In
general, any description of the video content can be considered: it can be based on
a description of the entire video, e.g. based on metadata such as title, author, etc;
it can be based on a description of the video shots or scenes; it can be based on a
number of video representative frames. In this paper we assume that the MPEG-7
stream contains a number ofvisual descriptors(image features such as Scalable
Color and Color Structure) for a subset of the frames of the video. We call these
frames,Selected Frames(S-Frames). For simplicity, we will select and analyze
a frame over 5 frames; this corresponds, in the PAL television, to 5 frames per
second. However, the technique is not limited to use this simple method for the
selection of the S-Frames: more semantically meaningful selection techniques can
be adopted in real application settings, such as automatic selection of key-frames
representing video shots or scenes. We callSelection Frame Rate(sf ) the number
of S-Frames expressed in frames per second. Each frame is described by using the
MPEG-7 visual descriptors, which are generated by the source station.
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In this scenario a query filter is an image whose representation is obtained by
using the same MPEG-7 descriptors. A comparison between the filter and each
S-Frame is performed by using the metric similarity measure associated to the
descriptor. This is the task of the receiver station, which has to match the queries
(i.e., images submitted by the user), with the S-Frames of all the streams received.
In case an S-Frame passes the filter, all successive frames until next S-Frame are
shown to the user.

In order to filter the stream without any supporting index structure either on
the video stream or on the queries, we should use the brute force algorithm, which
requires the comparison of all S-Frames with the query filter. However, this so-
lution overloads the receiver station, and reduces the number of channels we can
filter simultaneously. In fact, letnq, ns, andnd be the number of the query fil-
ters, the number of sources, and the number of MPEG-7 descriptors, respectively.
The total time spent by the receiver station for the similarity evaluation is given
by Tc = nqnsndtc; wheretc is the average similarity computation time for the
descriptors. If we have to elaborate the similarity for each S-Frame received, we
have that the processor utilization of the receiver station is given by

Uc = Tcsf = nqnsndtcsf (1)

For instance, assumingtc = 10µsec, nq = 50, nd = 4, ns = 100, we obtain
Tc = 0.2sec; with sf = 5frames/sec we obtainUc = 100%, which means that
the processor is fully loaded by the filtering elaboration.

In order to improve the filtering capabilities of the receiver, two approaches can
be adopted: (i) when the number of filters is very large, they can be organized at the
receiver station by using an appropriate access data structure, or (ii) at the sender
station, a pre-computation of the similarity between some S-Frames can reduce the
number of similarity computations made at the receiver station between the query
and the S-Frame. The first solution does not require any further computation on
the sender station, but it involves the implementation of an index structure of the
queries, to efficiently match S-Frames against several queries. This approach has
been exploited in the field of textual data [13]; the extension to our application
scenario can be straightforward by using an access structure for measuring the
similarity between S-Frames [5, 8, 9]. Nevertheless, this solution has the drawback
that is worthwhile only when the number of queries is large. With the second
solution, we exploit the computational power of the sender station, by adding to the
MPEG-7 stream some pre–computed similarity information, in order to increase
the performance of the receiver station. Note that, the overhead for generating
this pre-computed information is minimal because its computation is negligible
compared with the one for the MPEG-7 stream production.
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The scope of this research is to analyze the performance behavior of this second
approach, which, to the best of our knowledge, has never been explored.

3 Metric Space and Pivot Filtering

The standard approach for exploring modern data repositories, such as multime-
dia databases, and to filter relevant data from a continuous multimedia stream,
is based on the use of features extracted from complex information objects. Fea-
tures are typically defined in high dimensional vector spaces or even generic metric
spaces where pairs of elements can only be compared bydistance functions. From
a formal point of view, the mathematical notion ofmetric spaceprovides a useful
formalization of similarity or nearness.

The necessary starting point to implement a similarity search algorithm is to
consider ameasurable distance(dissimilarity), which in turn allows objects to be
ranked according to their distance with respect to a given reference (target or query)
object. Similarity queries are defined by a query object and a constraint on the
ranked list of data objects, which is typically specified as a distance threshold or
a number of required objects. In order to speed up retrieval in large collections of
metric data, access methods have been developed. An excellent survey of methods
for vector spaces can be found in [10], while a comprehensive list of techniques
for generic metric spaces is analyzed in [7].

In this section, we first give the definitions for metric distance functions and
similarity range query. We explain some terminology and the assumptions neces-
sary for the second part of the section, where a general model of the application is
presented.

3.1 Metric spaces

A convenient way to assess the similarity between two objects is to apply metric
functions to decide the closeness of the objects as a distance, which can be seen as
a measure of the objectsdis-similarity. A metric spaceM = (D, d) is defined by
a domain of objects (elements, points)D and a total (distance) functiond. For any
distinct objectsx, y, z ∈ D, the distance must satisfy the following properties:

d(x, x) = 0 reflexivity
d(x, y) > 0 strict positiveness
d(x, y) = d(y, x) symmetry
d(x, y) ≤ d(x, z) + d(z, y) triangle inequality
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Given a data–set of metric objectsX ⊂ D, for a query objectq ∈ D, the most
important similarity query is therange query, which retrieves all elements within
distancer to q, that is the set{x ∈ X|d(q, x) ≤ r}.

3.2 Pivot-Based Filtering

One important characteristic of distance based index structures used for data search
is that, depending on specific data and a distance function, the performance can be
either I/O or CPU bound and the strategy of indexes based on distances should
be able to minimize both the cost components. The type of access structure that
we will use for filtering requires to access a little number of stored objects (the
queries, the pivots, and the current S-Frames), thus the cost is only CPU bound: the
efficiency of the filtering is obtained by reducing the number of similarity measures
between the query object and the target objects.

The basic idea of the pivot-based algorithms is to exploit the knowledge of a
set of pre–computed distances between one object of the data-set, called pivot, and
all the objects of the data-set. Using the triangle inequality, sometimes we can
avoid the distance computation between the query objectq and the objectx of the
data-set. Formally, given the pivotp, a generic objectx, and a query objectq, the
triangle inequality corresponds to the two following statements

d(q, p) ≤ d(x, p) + d(x, q) ⇒ d(q, p)− d(x, p) ≤ d(x, q)

d(x, p) ≤ d(q, p) + d(x, q) ⇒ d(x, p)− d(q, p) ≤ d(x, q);

which can be synthetized by the following inequality

|d(x, p)− d(q, p)| ≤ d(x, q).

An improvement of the efficiency can be obtained by avoiding the evaluation of
the distance between the query and the objectd(x, q), which is on the right side
of the above inequality. For this purpose we can exploit, the term on the left side,
which represents a lower bound of the unknown distanced(x, q). If we indicate
this lower bound distance asd(x, q),i.e.

d(x, q) = |d(x, p)− d(q, p)| (2)

we have that when
d(x, q) > r (exclusion test), (3)

we can exclude thatd(x, q) ≤ r, i.e. x does not belong to the result set of the query
q. We refer to such a check asexclusion test. Here, we assume that the distances
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Figure 2: Example of pivots behavior.

d(q, p) andd(x, p) are pre–computed, thus the objectx can be excluded from the
result set without actually evaluating the distanced(x, q). Figure 2a illustrates this
principle of the pivoting technique: provided that the distance between any object
andp is known, the gray area represents the region of objectsx that do not belong
to the query result. When this test fails, it is possible to exploit again the triangular
inequality for a second check, which is

d(x, q) ≤ d(x, p) + d(q, p).

In this case, we obtain an upper bound of the distanced(x, q), which we designate
asd(x, q), i.e.

d(x, q) = d(x, p) + d(q, p). (4)

When
d(x, q) ≤ r (inclusion test), (5)

we are sure thatd(x, q) ≤ r, i.e.,x belongs to the result set, without the need of
evaluatingd(x, q). We refer to such a check asinclusion test. Figure 2b illustrates
this second idea. In this case the gray circle represents the region of object which do
not need to be evaluated and belong to the result set. Eventually, if both Conditions
(3) and (5) are not satisfied we have to evaluate the distanced(x, q). For more
details about the pivoted-based algorithms, see for example [6].

3.3 The Pivoted Stream

We can now describe in detail the Pivoted Stream method, that uses the pivot tech-
nique to improve the efficiency of video filtering. In Section 2 we mentioned that
each MPEG-7 stream is elaborated at the source station andnd visual descriptors
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Figure 3: Illustration of the Pivoted Stream principle.

are extracted from each S-Frame, in order to represent its content. In general, a
generic descriptori is supported by the functionsDi anddi. The former is used
for extracting the feature from the image, and the latter for evaluating the distance
(or dissimilarity) between two the features. For instance, given two imagex and
y, the distance can be evaluated by applyingdi on the corresponding features:
di(Di(x), Di(y)). However, for the sake of simplicity we use the notationdi(x, y)
for indicating the distance between the feature extracted by the descriptorDi.

Throughout the paper, we use the symbolsf andq to indicate an S-Frame (of
the video stream), and the query image, respectively. Moreover, we suppose that
the receiver station maintains a set ofnq queries,q1, . . . , qnq .

The principle of the Pivoted stream is to elect one of the S-Framesf as a
Pivot-Framep, and to pre–compute (at the source station) the distances between
the current pivot framep and the successive S-Framesf . Figure 3 illustrates this
principle. At the beginning the first S-Frame of the stream is set as a Pivot-Frame
pi of the i − th descriptor; for any successive S-Framef , we evaluate the dis-
tancesdi(pi, f). These distance measures are attached to each S-Framef together
with their MPEG-7 descriptors. In this way, during the filtering phase, the receiver
can exploit these pre–computed distances in order to skip some distance evalua-
tions between the S-Frames and the queries, as explained in the previous section.
Periodically, new Pivot-Frames are introduced in the stream so that the distance
between the S-Frame and the pivot is sufficiently small. Note that, in general, we
havend distinct pivots, one for each descriptor. In order to decide if an S-Frame
should become the Pivot–Framepi of thei-th descriptor, we definend independent
thresholdssi; if for a given S-Framef di(p, f) > si, the framef is elected as a
new Pivot-Framep and the distances of the following S-Frames are evaluated with
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for j = 1 to nq

for i = 1 to nd

# exclusion test:
if di(qj , f) > ri then continue;
else

# inclusion test:
if not di(qj , f) ≤ ri then

# evaluate the distance:
if di(qj , f) > ri then continue;

end if
end if
f 7→ Ri,j ;

end for
end for

Figure 4: Pivot Filtering Algorithm for Range Queries.

respect to the new Pivot-Frame.
It is worth observing that, havingnd pivots does not imply a significant over-

head of the data transmission. Indeed, this technique only requires to send the
distance measured between the S-Frame and the pivot; if this distance is zero, the
S-Frame is considered as a new pivot. In general, an S-Frame can be simultane-
ously the pivot of many descriptors.

The next subsection describes the algorithms used by the receiving station to
exploit the knowledge of the pre–computed distancesdi(pi, f), in order to imple-
ment range queries.

3.3.1 Range Queries

We assume that a search radiusri is associated to each descriptori. Figure 4 reports
the algorithm for the similarity range queries. During a generic interval of time, the
receiver station filters the source stream and produces the result setsRi,j (for each
descriptordi and queryqj) formally defined asRi,j = {∀f received| di(f, qj) ≤
ri}. The basic idea of the algorithm is straightforward: first it checks the two
pivot tests explained in the previous section. If both of them fail, we must evaluate
directly the distancedi(qj , f), in order to verify if it is smaller thanri; in this case
f is added to the current setRi,j . In general, at any time,Ri,j contains the range
query result set, for the the descriptori and queryqj . Note that, thecontinue
statement force the inner loop to jump to the evaluation of the next descriptori.

It is worth observing that, the choice of the thresholdsi is important; however,
the receiver does not need to know it. Ifsi is too small, many S-Frames become
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Pivot-Frames while ifsi it too large we may have a strong performance degrada-
tion. An evaluation of the relationship between the filtering performance andsi is
given in the next section.

4 Combining Descriptors

In order to improve the effectiveness of the filter, it is possible to combine several
visual descriptors. Indeed, the similarity between visual descriptors, is used to
emulate human perception of frame similarity. Thus, the use of several visual
descriptors, should improve the quality of the similarity measure: for example, by
comparing two images according to their color distribution and the shape of the
objects they contain, should provide more effective results that the use of a single
descriptor.

Although several types of feature combination can be used, we will use the
simplest, the linear combination, which provided good retrieval effectiveness in
our image search engine of the MILOS system [4].

Given a queryq, and an S-Framef , we define the new combined distanced as

d(f, q) = w1 ∗ d1(f, q) + . . . + wnd
dnd

(f, q)

=
nd∑

i=1

widi(f, q) (6)

wherewi is the weight assigned to visual descriptori. Note that the new dis-
tanced is still metric. In fact, it is easy to see that the axioms of Section 3 are valid
for the combined distanced if they are valid for each distancedi.

The idea of using the knowledge of pre–computed distances for obtaining two
bounds of the metric distance can be exploited also in case of combined descriptors.
Moreover, in this case we can enhance this technique by avoiding some distance
evaluation between the pivots and the query (besides the one between the query
and the frame). In practice, the technique consists of calculating the boundsd and
d incrementally, adding the contribution of the each descriptor one bye one, as
explained below.

The lower boundd can be defined generalizing Equation (2) as follows

d(f, q) = w1 ∗ |d(f, p1)− d(q, p1)|+ . . . + wnd
|d(f, pnd

)− d(q, pnd
)|

=
nd∑

i=1

wi|d(f, pi)− d(q, pi)| (7)
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Similarly, the upper boundd in Equation (4) can be generalized as follows

d(f, q) = w1 ∗ (d(f, p1) + d(q, p1)) + wnd
(d(f, pnd

) + d(q, pnd
))

=
nd∑

i=1

wi(d(f, pi) + d(q, pi)). (8)

Observe that these bounds require the evaluation of the distances between the
queryq and the current pivotpi. In particular, during the evaluation of the sum of
the lower boundd we can exploit the “partial sum” by testing if it is greater than
the radiusr. If the test is positive we can avoid its complete evaluation since in this
case we are sure that the query does not belong to the result set.

Figure 5 reports the filtering algorithm for combined descriptors. In order to
simplify the description of the algorithm, some simple optimizations of the code
– implemented in the version used for the experiments – are not included in the
algorithm shown in Figure 5.

After the initialization phase, the algorithm can be seen as composed of two
inner for loops inside the outerfor loop, which iterates over the evaluation of
the nq queries. The first inner loop evaluatesd andd. If the evaluation of these
bounds is not able to satisfy the current queryqj , we proceed by computing the
real distanced(f, qj) (i.e., the second second innerfor loop). However, also in this
case we can proceed incrementally – we continue with a second level of refinement
of the boundsd andd, by substituting each term of the summation with the real
distancedi(qj , f), and exploit them for the query evaluation.

Let us now examine the algorithm in more detail. For what concerns the first
inner for if the partial sum ofd is greater thanr we can skip the current queryqj

(since it does not qualify) and we can process the next queryj. For this purpose
thebreak statement exits the innerfor loop and thecontinue statement jumps to
the next query. However, if this does not happen and we reach the end of thefor
loop, we can check if the upper boundd is smaller thanr; if so, the query qualifies
and we can jump to the evaluation of the next queryj. In case also the upper bound
fails, we must proceed to the second part of the algorithm.

Before continuing, we must explain the role of the matrixo
′
i,j . Each row of the

matrix maintains the order of the evaluation of the distance between the descrip-
tors of the queryqj and the pivots. For instance, ifo

′
3,j = 2 we will evaluate the

descriptor2 as third, for the elaboration of the queryqj . In this way, we dynami-
cally adapt the algorithm by attempting to evaluate first the descriptors that produce
greater values of the termwi∗|di(pi, qj)−di(pi, f)|, increasing the probability that
d > r before the end of the loop. For this reason, the swap statement exchanges the
order of the evaluation of the two last descriptors if the first one produces a small
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for i = 1 to nd

for j = 1 to nq

o
′
i,j = o

′′
i,j = i;

end for
end for
for j = 1 to nq

d = 0;
d = 0;
for m = 1 to nd

i = o
′
m,j ; # take the descriptor index

if wi > 0 then
min curr = wi ∗ |di(pi, qj)− di(pi, f)|;
d = d + wi ∗ (di(pi, qj) + di(pi, f));
d = d + min curr;
if min curr > last min and m > 1 then

swap(o
′
m,j , o

′
m−1,j);

else
last min = min curr;

end if
if d > r then break;

end if
end for
if d > r then continue;

if d ≤ r then

f 7→ Ri,j ;
continue;

end if
for m = 1 to nd

i = o
′′
m,j ; # take the descriptor index

if wi > 0 then
diff curr = wi ∗ (di(qj , f)− |di(pi, qj)

−di(pi, f)|);
d = d + wi ∗ (di(qj , f)− di(pi, qj)− di(pi, f));
d = d + diff curr;
if diff curr > last diff and m > 1 then

swap(o
′′
m,j , o

′′
m−1,j);

else
last diff = diff curr;

end if
if d > r or d ≤ r then break;

end if
end for
if d ≤ r then f 7→ Ri,j ;

end for

Figure 5: Pivot Filtering Algorithm for Combined Descriptors.
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contribution. After an initial transient period, the rowso
′
i,j will contain the best

order of evaluation for the descriptors of all queries, giving higher chances that the
lower boundd succeeds.

The second part of the algorithm takes advantage of the computation already
performed; it proceeds by substituting the terms of the two summations (d andd)
with widi(qj , f), the weighted distances between the current query and the frame
f . This is obtained by iterating again over the descriptors. During the iteration
we will have more and more precise values of the bounds, which at the end will
converge to the real combined distance, i.e.d ≡ d ≡ d(qj , f). The hope is
to terminate the algorithm before the complete evaluation of the (secondbreak
statement). Again, we try to keep the best order in the evaluation of the descriptors
by using a second set of vectorso

′′
(j). However, in this case we must evaluate the

descriptors which produce higher values of the difference between the real distance
di(qj , f) and its surrogate|di(pi, qj)− di(pi, f)|.

5 Performance Evaluation

The experimental evaluation has been performed by using real broadcasted pro-
grams: in particular, we used 90 minutes of the Rai Uno TV channel (the main
Italian public television channel) taken from 7:45pm to 9:15pm. Queries are given
by frames taken from the stream itself (this allows us to test the worst case perfor-
mance, because the probability that the pivot test fails is higher for queries closer
to the S-Frames). In the experiments we used four different queries that represent
specific aspects of the video stream, namely (i) the beginning of advertising, (ii)
the beginning of news, (iii) a frame taken from a soccer play, and (iv) a frame taken
from a quiz show.

Three MPEG-7 visual descriptors have been tested – Scalable Color (SC),
Color Structure (CS), and Edge Histogram (EH) – by using the MPEG-7 XM Ref-
erence Software for their extraction [2]. The similarity computation was based
on the distance measures proposed in the XM Reference software, of the MPEG
group. The descriptors are vectors and their distances are metric. The following
parameters have been used for each descriptor: for SC we used 64 coefficients with
0 bitplanes discarded; for CS, we used 64 coefficients; no parameter was required
by the EH descriptor (it uses 80 coefficients).

As already described, the system is able to filter the S-Frames by using range
queries, i.e. all S-Frames whose distance from the query filter is lower than a cer-
tain valuer are selected. The brute force algorithm requires the comparison of all
S-Frames with the query filter. The use of the pivots can reduce the total number
of distance computations. This number is equal to the number of similarity mea-
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Distance evaluation for different query ranges

0%

20%

40%

60%

80%

100%

0 100 200 300 400 500 600 700

Threshold s

ρρ ρρ
400 300 200

100 Pivots

Figure 6: Distance computation costρ vs the thresholds, for the quiz query. The
Scalable Color is used and graphs are shown at different query ranges (100, 200,
300, and 400), as well as when only the pivots are used.

sures computed between the queries and the pivots plus the number of similarity
measures between the queries and the S-Frames, in case the pivot test fails. All ex-
periments will measure the percentage of distance similarity computations needed
when the pivot method is used, with respect to the number of distance computations
needed when the brute force algorithm is adopted. LetT be an arbitrary period of
time, we denote this distance computation cost as

ρi,j(T ) =
ni,j

T sf
.

whereni,j is the number of distance computations during the timeT for the de-
scriptordi and a given queryqj (0 < ρi,j(T ) ≤ 1). The objective is to obtain
a value ofρ as small as possible (→ 0), it we want to minimize the number of
distance computations.

In general, the total number of distance similarities to be evaluated depends on
(i) the query rangeri and (ii) the threshold that the server uses to choose the Pivot-
Framessi. The evaluation reported in the following analyzes the improvement of
performanceρ that can be obtained by using the pivot method by varying these two
parameters.
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5.1 Sensitivity of the performance with respect to the threshold

In Figure 6,ρ is reported as a function of the thresholdsi for different query ranges.
The Scalable Color (SC) descriptor is used as image feature. The figure shows, in
dotted line, the percentage of distance computations due only to the pivot evalua-
tions. This curve represents a lower bound of computation for the Pivoted Stream
algorithm, since the distance between the pivots and the query must always be cal-
culated. Obviously, when the value of the threshold increases, this contribution
decreases, since the frequency of the pivots diminishes.

The other four graphics in solid line representρ for distinct range queries as
function of the threshold. As we can see, in general, for a range query withr >
0, the number of distance evaluations decreases with the threshold until a certain
point, after which it grows again. This behavior can be explained by observing that,
when the threshold is small, the number of distances is dominated by the distance
evaluationd(p, q) between the pivot and the query (which follows the dotted line).
As the threshold grows, the Pivoted Stream algorithm works progressively better.
However, after a certain point (related to the search radiusr), when the threshold
becomes too high, the number of pivot faults increases, and the total number of
distance computations grows. In other words, for a given search radius there is a
threshold for which the number of distance evaluations is minimum.

5.2 Range queries

In Figure 7 we reportedρ for the four queries, as a function of the query range.
Due to the lack of space we show only the performance of the SC descriptor. In
the figures, we reported three different curves: (i) thebest threshold, which uses
for each value of the query range the best threshold value; (ii) a curve obtained for
a fixed value of threshold equal to250; (iii) the percentage of qualifying S-Frames.
The first curve provides an indication of the variability of the performance with
respect to the choice of the threshold. The most significant and frequently used
range values are the intermediate ones, between100 and400. For these values,
the differences between curves (i) and (ii) are not significant, which means that the
optimal choice of the threshold value is not critical. In general, the performance
improvements are higher for lower query ranges. This does not happen for some
queries (Soccer query), where for range queries higher than a certain value, per-
formance improves as the query range increases. This is due to the inclusion test
(Equation (5)). Note that this advantage cannot be exploited if we need to rank the
result set, since the inclusive check allows to avoid some distance computations
d(x, q), even if the objectx qualifies.

In Figures 8 we report a synthetic view of performance improvement for the
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Beginning of News - Scalable Color D.
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Soccer - Scalable Color D.
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Quiz - Scalable Color D.
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Figure 7: Distance computation costρ for different queries vs the query range. The
Scalable Color descriptor is used.

four test queries, by using all the three feature descriptors for range queries. The
thresholds used are 250 for SC, 3 for CS and9.60 for Edge Histogram. Using
these thresholds we obtained that 7% of the S-Frames become pivots. We used a
radius 200 for SC, 3 for CS and 5 for EH except for the beginning of advertising
query for which we used 50, 0.25 and 0.3. Indeed, for this specific query we
almost needed an exact match, while for the other queries we only required the
selection of similar images. This experimental results show that for all different
queries and for all feature descriptors the Pivoted Stream method gives significant
performance improvements, with the EH descriptor that gives the worst results for
all four queries. It is worth mentioning that the radii of the range queries have been
chosen in order to have a reasonable number of results, which are between 10 and
50 for all descriptors. Only for the Quiz Query the SC and CS descriptors give
many more matches (several hundreds) due to the high color similarity between
different S-Frames of the quiz show.
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Figure 8: Distance computation costρ for different range queries and three differ-
ent image descriptors.

5.3 Linear combination

The last set of experiments studies the performance of the system when we linearly
combine the three visual descriptors (SC, CS, and EH) as explained in Section 4.
For convenience, we have chosen the weightswi to be the inverse of the radii of the
range queries experiments. Consequently, assumingr = 3 for a combined range
query, we have that the number of results are same order of magnitude of the single
descriptor ones. In particular in our experiments we have chosenr in way that if
a framef passes all the three single descriptor filters, it passes also the combined
descriptor filter. On the contrary, if the framef passed the combined descriptor
filter, it passes at least one of the single descriptor filter.

Figure 9 shows the global result of the query with combined descriptors for
range queries. In this caseρ represents the distance computation cost averaged over
all the descriptors. In all the experiments, the advantage of the pivots is evident:ρ
ranges from 2.48% of Advertising to 7.23% of Quiz. The number of results for the
range queries is 21 for Advertising, 31 for News, 17 for Soccer, and 163 for Quiz.
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Figure 9: Distance computation costρ for various range queries using combined
descriptors.

6 Conclusion

In this paper we presented a preliminary research study about a technique, the Piv-
oted Stream, which can also be used to improve the performance of filtering video
streams. The experimental evaluation of the method provides very encouraging
results, with performance improvements up to more than one order of magnitude
with respect to the brute force algorithm which is usually adopted. We also proved
the efficiency of the pivots for the more interesting and useful case of combined
descriptors

There are many possible applications where the Pivoted stream technique could
be useful: for instance, for statistics purpose, it could be necessary to compute how
many times an advertising is transmitted; the method can be used to select the start
time of a television programme, in order to begin its recording. Another possible
use is in the field of property protection of videos or images distributed by news
agencies like the Italian ANSA. These agencies have special agreements of use of
the material sold to TV broadcaster. A filtering application as the one proposed
in the paper could help the news agencies to discover illegal use of this material.
Besides the television environment there can be other different applications such
as the earth satellite surveillance (SAR), the police surveillance, etc. Moreover,
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with the finalization of the MPEG-21 standard [1] it will be easy to introduce the
pivoted stream in a real broadcast system.

We think that the proposed approach opens many possible future lines of in-
vestigation. In particular, we intend to explore the use of other features, such as the
text (OCR captions, the subtitles, etc.) and audio descriptors.

Further performance improvements can be studied if the number of query filters
is large: in this case it would possible to organize the query filters by using a
specific access structure for metric spaces.

References

[1] Mpeg mds group, mpeg-21 multimedia framework, part 7: Digi-
tal item adaptation (final committee draft), iso/mpeg n5845, july
2003. http://www.chiariglione.org/mpeg/workingdocuments/mpeg-
21/dia/diafcd.zip.

[2] Mpeg-7 reference software, October 2002. http://www.lis.e-technik.tu-
muenchen.de/ research/bv/topics/mmdb/empeg7.html.

[3] Mpeg requirements group, mpeg-7 overview, 2003. Doc. ISO/IEC
JTC1/SC29/WG11N5525.

[4] G. Amato, C. Gennaro, P. Savino, and F. Rabitti. Milos: a multimedia content
management system for digital library applications. InProceedings of the
8th European Conference on Research and Advanced Technology for Digital
Libraries (ECDL 2004), volume 3232 ofLecture Notes in Computer Science,
pages 14–25. Springer, September 2004.

[5] T. Bozkaya and Z. M.̈Ozsoyoglu. Indexing large metric spaces for similarity
search querie.ACM TODS, 24(3):361–404, 1999.
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