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Abstract
An explicit expression of the derivative of the square roat of a tensor
is provided, by using the expressions of the derivatives of the eigenvalues
and eigenvectors of a symmetric tensor. Starting from this result, the
derivatives of the right and left stretch tensor U, V and of the rotation R
with respect to the deformation gradient F, are calculated. Expressions
for the material time derivatives of U, V and R are also given.

1 Introduction

The right and left stretch tensor U and V, defined as the square roots of the
right and left Cauchy-Green strain tensors C = FTF and B = FFT, with F
deformation gradient, are widely used in continuum mechanics. Often, knowing
their material time derivatives U and V proves to be useful.

In (1) the explicit expressions for U and V are calculated by differentiating
the polar decompositions of F = RU = VR with respect to the time and
solving an equation for R. In particular, Guo has used two lemmata, the former
regarding the solution of the homogeneous tensor equation SX 4+ XS = 0, with
S a symmetric positive definite tensor, and the latter dealing with solving the
equation SX + XS = A, in which A is a skew tensor.

In [3] Hoger and Carlson obtain the expression for U and V by applying
the chain rule to U = +/C, V = v/B. This requires knowing an expression for
the derivative of the square root of a second-order temsor. The main goal of
their paper is to provide such an expression, which they accomplish by solving
the tensor equation SX + XS = T, for given T, symmetric, and 8, symmetric
positive definite. They have provided several expressions for the derivative of
the square root, that has a polynomial expression whose coeflicients are function
of the principal invariants of the square root itself. Finally, they have used their
results to arrive at formulas for U and V, that are distinct from those given in
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In [6] Wheeler considers the right polar decomposition of F and presents
some results concerning the derivative of R and U with respect to F. Finally,
in [7] the explicit expressions for the derivatives of the stretch and rotation
tensors with respect to the deformation gradient are derived. Chen and Wheeler
have used the definition of derivatives and found the restrictions of the desired
derivatives to the subspaces associated with the tangent space of the stretch and
rotation tensors and proved that these subspaces span the entire tensor space.

In this paper, an explicit expression is provided for the derivative of the
square root of a tensor, from which the material time derivatives of stretch
tensors U and V are obtained. Subsequently, the derivative of U, V and R
with respect to the deformation gradient F are calculated. The proof follows
a wholly different approach from those in the works cited above. In fact, the
derivatives of the square root of a symmetric tensor, as well as those of the
stretch and rotation tensor are explicitly calculated by using the expressions for
the derivatives of the eigenvalues and eigenvectors of a symmetric tensor. These
derivatives are briefly recalled in Section 2 (for further details we refer to [4],
[10], [11] and [8)).

In particular, [8] deals with the problem of the differentiating the eigenval-
ues of the stretch tensors with respect to the deformation gradient, as well as
differentiating the square root of a tensor. The expressions for the derivatives
of the square root and of polar factors of the deformation gradient are given in
terms of the exponential tensors. .

In Section 3, the derivative of the square root is calculated. We shall first
consider the subset of all syminetric tensors constituted by tensors having dis-
tinct eigenvalues and calculate the derivative in this set, Subsequently, it is
observed that the expression found for the derivative is also valid in the case of
repeated eigenvalues, and this leads to the conclusion that the resulting expres-
sion i8 in fact the derivative of the square root of a positive definite symmetric
tensor,

In Section 4, the derivatives of the right and left stretch tensors and rotation
tensor with respect to the deformation gradient are calculated by using the
results obtained in Section 2, and the expressions for U, V and R are found.

Finally, in Section 5 a generalization -of the isotropic function F(X) =

3
S Flz:) ei(X) ® e;(X), with X symmetric tensor, studied in [4] is introduced
i=1

- and its derivative is explicitly calculated. The procedures and results pre-
sented in this paper deal with the three-dimensional case; treatment of the
two-dimensional case is provided in the Appendix.

2 The derivatives of the eigenvalues and eigen-
vectors of a symmetric tensor

Let V be a three-dimensional linear space, Lin the space of all linear transfor-
mations on )V (second-order tensors), with the inner product A-B = tr(ABT),



where A, B € Lin and BT denctes the transpose of B. The case of a two-
dimensional space will be treated in the Appendix. Sym and Skw are the
subspaces of Lin made up of all symmetric tensors and skew fensors, respec-
tively. Psym is the cone of Sym of alt positive definite symmetric tensors, and
Lint is the subset of Lin of tensors with positive determinant,

Sym = {A € Lin | A =ATY), (1)
Skw={A€Lin| A= —ATY (2)
Psym:{AeSym\v-Av>0, vy € V,v # 0}, 7 (3)
Lint = {A € Lin| detA> 0}, (4)

Fora, bc€V,a®bis the second-order tensor defined by (2@ b)v =
(b v)a,VveV;a® b @ c is the linear application from Lin into V (third-order
tensor) such that a®@b® ¢cH = ((b®c) H)aVHE Lin.

Let us denote by Lin the space of all linear transformations on Lin {fourth-
order tensors) A fourth-order tensor C, for which C[A] € Sym and A-C[B}=B-
C[Al, VA, B € Lin, is said to be symmetric. For A, Belin A® B is the
fourth-order tensor defined by A ® B(H| = (H-B)A, vH € Lin.

For E € Sym, let e; S ez S €3 be its eigenvalues and

L(E)=trE=e;te2+ €3 (5)
L(E) = %[(m«E)? —tr(BY)], - (6)
I3(E) = det E, (7

its principal invariants. Ii is possible to express the eigenvalues of E as functions
of invariants Iy, I2 and I3 of E. In fact, if B is a spherical tensor, then

1
ey =€z =€3~ gfl(E) (8)

Now, let us suppose that I has at least two distinct eigenvalues. Since e;, ez and
¢g are the roots of the characteristic polynornial

p(N) = 3 ~ L(E)N + I(E)A — I(E), 9)

we can write [9]

1
-E-xcosw+ =1, (10)

B1=—-\/§ 3




2 T 1
- =y =r
€ \/Excos(wA- 3) + 310 (11)
2 T 1
=— — =)+ =T
e3 \/gxcos(w 3) + 3l {(12)
where
2
YL s} (13)
3
oS dw = —--—*——3;/337, (14)
1 2 5
"}’——Ig'—'2'1112+ 27.[]_ (15)

Notice that when E is not a spherical tensor, X s different from 0. In this way
the function &(E) = (e1, e, €3) which associate to each symmetric tensor E its
ordered eigenvalues, is well defined. Moreover, functions ¢; defined from Sym
with values in IR, such that &{E) = e;, are Lipschitz continuous [8].

Let Sym* be the subset of Sym constituted by all symmetric tensors having
distinct eigenvalues. Sym* is an open dense subset of Sym 8].

From the spectral theorem, it follows that, if E € Sym™, then the function
associating the eigenvectors to each symmetric tensor is well defined. In fact,
an eigenvector g; is determined uniquely to within the change of sign by the
equation

Eg; = eig. (16)

Given E € Sym*, let g1, &2 and g3 be its eigenvectors corresponding to ey, €2
and es, respectively, and let us consider the orthonormal basis of Sym,

G, =g1 ® 81, (17)
Go = g2 ® 82, (18)
Gs = g3 ® 83, (19)
1

Gy = -ﬁ(g1®82 + g0 @ 81); (20}
1

Gs = — (g1 ®gs+83Q &) (21)

NG

i

Gg = -\/—-2-(82 ® g3 + g3 ® 82)- (22)

The following proposition summarizes the derivatives of eigenvalues and eigen-
vectors of & symmetric tensor {8].



Proposition 1 For E € Sym”*, the derivatives of eigenvalues and eigenvectors
of E with respect to B are respectively

DEel = G], (23)
.DEEz = G’2) (24)
Dges = Ga, (25)
D =
ELZ1 2er = 62)(gz Qg R®ETEde® g1) +
1
m(gs®g1®g3+g3®gs®g1}, (26)
Drgy = —— e +
£82 = 5 _el)(gl ®g1®g +e ®g el
- . 27
2(62_63)(g3®gz®ga+gs®ga®gz), (27)
Dgpgs = =———
EBS = 5o el)(g1 Qe ®gs+g ®E D8} +
1
— ] 2
2(83Fez)(g2®gz®g3+gz®gs®gz) (28)
Moreover, the relations
1
DG, = G110 Gy + G5 ® Gs, (29)
g —€Eg €1 — €3
1
DEG2 = G4 & G4 + G’ﬁ ® Gﬁ: (30)
1 €2 — €3
DEGs = G; @ Gs + Gg® Ge. (31)
€3 - €1 €3 — €3

hold.
If E has two coincident eigenvalues, for example e1 < ez = €3, relations

DE81 = G1, (32)



1
DE€2 = :{):(I - G1), (33)

DG, = (G4 ® Ga+ G5 ® Gs), (34)

€1 — €9

Dg(I-Gy) = (G4 ® G4+ G5 ® Gs), (35)

€z — €1

take the place of (23)-(25) and (29)-(31).
Finaily, if E is a spherical tensor, E = el, then (83)-(25) and (29)-(81)
reduce to relations

Dge = %I, (36)
DpI=0. (37)

The derivatives of the eigenvalues and eigenvectors of a symmetric tensor
have been already provided in (4] {¢fr. relations (3.1.4) and (3.1.5)) and 8]
(cfr. relations (1.2.4) and (1.2.5)). The results for the two-dimensional case are
summarized in the Appendix.

3 The derivative of the square root

Let us consider the function I, defined from Psym onto Psym which to every
tensor A associated its square root

TI(A) = VA, (38)

11 is infinitely differentiable [8], and its derivative has been explicitly caleulated
by many authors [3], [8]. Here we wish to obtain the derivative of II by using the
3

results set forth in Section 2. Let A = 3 a; gi®g; be the spectral representation
=~
of A, it then holds that '

3
A) = ) Vai g ® g (39)
i=1

Firstly, we suppose that the eigenvalues of A are distinct, namely A € Psymn
Sym*. By differentiating (39) with respect to A, and accounting for relations
(23}-(25) and (29)-(31), we get

1 1 1
DAH{A) = m@q ® Gy + 5—\/7“_-2-‘@2 ®Ga + 2—\/'&_';.(;3 9 Gy +




"‘\/—-( G4®G4+ G5®G5)

1 1
+./an ( Gy ® Gy + Gs@GS) +
ag — Q1 ag — a3

G5 ® Gs + - Gs ® Ge) {40)

(=

From {40), simple calculations yield

1 1
DalI(A ___
all(A) = \/_G1®G1+2\/_@G2®G2+2\/a.§G3®G3+

1 1 1
= —_—— GG+ +————=G® Gg. (41
Ve + e TR @ Gt G e (1)
Relation (41) also holds when A has either two or three coincident eigenval-
ues. (41) is the spectral representation of the symmetric fourth-order tensor
DAH(A) in pa.rt1cular DAII(A) is pos1t1ve definite with eigenvalues » \/_,

é ‘/—Gﬁd W, m and —m and eigenvectors G, Gz, Gy,
4, 3]

Alternative representations of (41) have been given in [3) and {8] (cfr. (1.2, 11)
and (1.2.12)). Specifically, formulae (3.1) and (3.2) in [3] have been obtained by
using the definition of derivative and resolving a tensorial equation of the type
XS+ 8X =T, with § € Psym, T € Sym.

Equation (41) allows calculating the material time derivative of the right
stretch tensor

Gi® Gy +

U =TI(C) = vC, (42)
where
C =FTF, ' (43)

is the right Cauchy-Green strain tensor; with F the deformation gradient. The

expression of U has already been provided in (1] and [3]. Let us now designate
¢1 < e < cg as the eigenvalues of C, and g1, g2, g3 the corresponding eigenvec-
tors; moreover, let G4, ¢ = 1,...,6, be the tensors defined in ( (17)-(22) by using
g1, 2, 83 Applying the c:ham rule to (42) yields

U=DcI(O)[C), (44)
from which, by using {41}, we get

U= —=(G1- )Gl +

2\/“‘ 2\/—



1 1
+—— (G4 C)Gs + —=———=(Gs5-C)Gs +
\/El-+ \/5( 4 ) 4 \/ET+ \/EE( 5 ) 3
bt (G- O)G (45)
Jata oY
From the expressions
. 3 .
C =3 (6Gi+cGi), (46)
i=1
and
Gizgi®gi+gi®gi: i=1,2,3, (47)
we can state that for k = 1,2,3, it holds that
) 3
C-Gr=cp+ ZQCi(éi - gx) (& - 8k) = Ck, (48)
i=1

because (g, - g) = 0, if i = k, and (g; - gx) = 0, if i # k. Moreover, recalling
(20)-(22) we have

C- Gy =+2(c1 ~ c2)1 - 82, (49) -
C . G5 = \/5(61 - Cg)gl ' B3, (50)
C Gg = V2(cz — c3)g2 - B3 (51)

Finally, by taking the foregoing into account, {45) becomes

€3

: & &g
== — —G
U 5 c1G1+2 02G2+2 = 3+

\/5(\@_1. — V) (81 - g2)Ga + \/5(\/51-_ VEs)(g; - 83)Gs -+

+V/2(/E ~ /23) (&2 - £3)Ge. (52)

(52) represents an alternative to the expressions (4.1) and (4.2) in [3] and (41} in
[1] for the time derivative of U. In fact, (52) expresses U in terms of eigenvalues
and eigenvectors of C and their time derivatives, whereas [3] and [1] state it as

a function of R, C, the spatial gradient of velocity FF-1, the left stretch tensor
V = RURT and the principal invariants of U.



Let us now consider the left stretch tensor
V =M(B) = VB, (53)
where
B = FF¥ (54)

is the left Cauchy-Green strain tensor corresponding to F. For the time deriva-
tive of V we have

Qs+

V=DpII(B)[B} = Q wa +ju

V2(y/er — VEz) (4, - @2)Qa + V2(v/E — Ve a - a3)Qs +

+v2(/Cz ~ +/e3)(a2 - 93) Qs (55)

where tensors Q; are defined as G; in (17)-(22), the eigenvectors q; of B replace
the eigenvectors g; of C, and ¢; are the common eigenvalues of C and B.

4 The derivative of the right and left stretch
tensors and rotation tensor

Let us consider the functions U and ‘7’, defined on Lint with values in Psym,
as per

U =U(F) = VFTF, (56)
V =V(F) = VFFT, (57)

which deliver the tensor U and V of the right and left polar decomposition of F,
respectively. In [8] it has been proved that U and V are infinitely differentiable.

The aim here is to obtain explicit expressions for the derivatives of Uand V
with respect to F, distinct from those calculated in [7] and [8].

U is the composition of functions II in (39) and ¥, defined from Lin* into
Psym, ¥(F) =FTF =C,

U(F) = [I(T(F)); (58)
therefore,

DpU(F)H] = Dy I(Y(F))[DF¥(F)(H]], HeLin. = (59)



As before, let 0 < ¢; < ¢p < e denote the eigenvalues of the symmetric definite
positive tensor C = ¥(F), and g1,g2 and gs the corresponding elgenvectors.
By virtue of (41), it holds that

1

DypIl(¥(F) = —=G: ®G1+ :7—=G2 90 G2 + Ga® Gy +
{F) )= 2 es 1 \/— \/—-
+——-1——G RGy+ 1 Gs®G +———1—-~G ®G (60)
Jarve T m g e T e e
By accounting for (60) and the relation
Dp¥(F)=HTF + FTH, VH ¢ Lin, (61)

the chain rule (59) can be rewritten as follows,

DFO(F)H] = J_( - (HTF + FTH))Gy +

(Gy- (HT'F 4+ FTH))Gy + —— 57=(Ga- (HT'F+FTH))G;s +

\/_

1

2\/02
1

e (G - (HTF + FTH) Gy +

_\/a_l_\/zz-'(il( ))4

1
(G5 - (HTF + ¥TH))Gs +
/——Cl \/0—3( 5 ( )) 5

1
+m((}6 . (HTF + FTH))Gs. (62)

It is easy to verify that for i =1, ...,6, we have

G;-(H'F + FTH) = 2FG; - H, VH € Lin, (63)

and thereby, (62) becomes

DrU(F)H] = {““’“Gz 8 FG, + —=Gy @ FGy +

VG VE

1 2
+—G3FG3 + ———G1 ®FGy4 +
T 3 3+\/C_1+\/5 4 4

2 2
— G ® FGg + —————=G @ FG¢}[H]. 64
+\/a+\/§ 5 @ FGg NCTNG 6 ¢ }[H] (64)

10




From (64) and (70), and accounting for the fact that (A ® BT=BgA
and (A W B)T = A X B, for A,B ¢ Sym, we can easily derive the relations

(DrO(E)7 (G =RGx, k=1,2,3. (71)
(D U(F))"[U] = F, (72)
(DFOE)TIU" =RU™, n>2, (73)
(DrR(F))T[RGel =0, k=123 (74)
(DFR(F)T[F] = 0, (75)
(DrR(F)T[RU™ =0, n2>2, (76)

already proven in [6] without explicit calculation of the derivatives of U and R
with respect to F,
For S € Sym, W & Skw, the following relations

FGi-RS= &S -Gk, k=123, (77)
FG,-RS = ﬂgﬂs -Gy, (78)
FGs RS = -@-;——a—‘/as-c}s, (79)
FGs-RS = —\/fg—;f—-‘@s - G, (80)
FG, WF=0, k=1,..,6. (81)

hold. From (64), by using (77)-(81) we get the following equalities already
proven in [7]

DrU(F)RS| =8, VS ¢ Sym, (82)

DrU(F)[WF] =0, YW € Skuw. (83)

12



Moreover, we have (7))

DrR(F)[RS) = DpR(F)SR] =0, VS ¢ Sym, (84)

DrR(F)[WF| = WR, DpR(F)[FW]=RW, YW € Skw.  (85)

By following the procedure used for the derivative of U with respect to F,
we can calculate the derivative of the function defined in (57)

V = V(F) = I(&(F)), (86)

in which @(F) = FFT,
The symmetric definite positive tensor ®(F) has the same eigenvalues 0 <
c] < o < ¢z of U(F), Vectors

a1 =Rg;, q:=Rgy, a3=Reg; (87)

are the eigenvectors of @(F) corresponding to ¢;, ¢z, c3. Let us consider tensors
Q;, i = 1,6, defined as G, where vectors q; take the place of gi; by virtue of
(41), it holds that

Do(mI1(2(F)) = QRQ+ ——=—Qw Qs+

=1 @ Qi+ = \/_

e e

Qs ® Qs + ——1-—Q6 ®Qs.  (88)

Qi@Qs+ NN

1 1
By accounting for (88) and the relation
Dp®(F) = FHT + HF?, VH ¢ Lin, (89)
from {86) we get

DV (F)H] = y}c_;(czl (FHT + HFT))Q, +

s (FHT + HF)Qs +

(FHT + HF))Qs + 5=

\/“ xf”

1 0. (FHT T
+\/a+\/c_2(Q4 (FH" + HF"))Qq +

\/—+\/—(Qs (HTF +FTH))Qs +

13



———(Qs - (FH” + HF"))Qs,

R

It is easily verified that for i = 1,..,,6, we have
Q;-(FHY + HFT) = 2Q;F - H, VH<¢ Lin,

and thereby, (90) becomes

Q®QF + —I—“Qz ® QzF +

DpV(F)[H] = {— =

75

1 .
+—=Q3 @ QsF + Qi@ QF +

2
N e+ v

Qs ® QsF + Qs ® QsF}H].

2
_|..._......_._.
N

Since for k= 1,2, 3, we have

2
NCEING

Q:F = /e QkR,
(92) becomes

DrV(F)H] = {Q 8 QR+ Q ® QR + Qs ® QsR +

2 2
WQ4 @ Q4F + —mQ5 ® QsF +
\/—+\/—Q6®Q6F}[H]

For £ =1,2,3, it holds that

Qr ® QR = Q, 9 RGy = Qi ® (qr B &)
and, moreover, the relations

1
Qu® Q4F =EQ4 ® (Verge ® g1 + /21 ® 82),

Q5®Q5F—\/§ Qs ® {/c1q3 ® g1 + v/C3q1 © g3),

1
Qs ® Q¥ :7§Q6 ® (v/e2qs ® g2 + /C3dz @ 83),

14
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Now we are in the position to calculate the derivatives of U, V and R with

respect to time, From the relation
U = DFU(F)[F],
from (64) and equalities

FG; - F = tr(G,FTF) = tr(G,F'FF'F) =

= tr(LFG;FT) = D - FG,F7,

(107)

(108)

where L = FF~? is the spatial gradient of velocity and D its symmetric part,

we get
. 1 r, 1 T
={— _— FG.F

U { = G1 FGF* + ._ch2® 2 +

+1G®FGFT+ 2 G, ®FGF” +
— — 4

T a/C3 3 8 A/C1+ +/Co 4

+—2—--~G5 QFCFT + wwmz---mGs ® FGFT}[D].
Vet /s Vet 4/C3

The time derivative of R can be obtained from
RU+RU=F,
by accounting for {109), which leads to

: 1
R= LR-{%RG; QFGFT + ~RG; ® FG.FT +
1 2

1 .
+C—RG3 ® FG3FT + RG, ® FG.FT +
3

2
Vo + )

Ré5 ® FGsFT +

2
e T )

RGg ® FGgFT}[D],

2
e T )

where

~ 1
Gy = W(\/a& ® go + /o282 ® 1),

16
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(110)

(111)

(112)



baz b b b
Dby = =221 23 Gy + 13

Vi —az) " Valar - a3)

b —-b b
Dbz = 23 bas — b11 G 12

V2{az — ag)

\/2-(01 - 02) Gat

big baz — bag

\/§(a1 - aa) ot \/5(0:3 —ag)

D abgz =

bi3
\/i(ag —a1) Gat \/§(a3 - a1)G5 * \/i(az - ag)

(135)

(136)

(137)

In particular, in view of (130), (132)-(137), (29)-(31) and (124)-(128), we

have D4 B(A) = 0.

6 Appendix

The two-dimensional case is considered in the following. For E € Sym, let
e1 < eg be its ordered eigenvalues and g, go the corresponding eigenvectors.

Let us set

G =g1 Qg1
Gz =gz ® g2,

1
Gz = 7—5(81 Rg+g2®8g1)

We have

Dge; = Gy,

Dgeg = Ga,

1
D = =y @ G,
EB1 \/ﬁ(el — 62) g2 3

1
D = e g @ i3,
E82 \/ﬁ(ez _el)g1 3
1
DpG; = py—— G3 ® Gg,
1
DGy = p—— Gz ® Gz,

20

(138)

(139)

(140)

(141)

(142)

(143)

(144)

(145)

(146)



for e1 < es, and

1
Dge =1, (147)

Dgl=0, (148)

for e) = e9 =&,
2

Let A =Y a; g;®g; be the spectral representation of A € Psym, then the
i=1
square root of A is A

2
I(A) =) Vaig: ® & (149)
fa=]
The derivative of II with respect to A is
1 1 1
OA) = —G1 838G + —G ® Gy + ——=G3 @ G3. (150
DA()z\/G._11®1+2\/E£2®2+\/CH+\@3 3. (150}

In particular, from (150) we get the material time derivatives of the right stretch
tensor U = [I{C), with C = F¥F and of the left stretch tensor V = [I(B), with
B =F¥rT,

U= =G \/_szf V- V@) & -g2)Gs,  (151)

and

Q1 + 7—=Q2 + V2(vE1 — V&) (41 - 2)Qs, (152)

BT

with ¢1 < ¢ the common eigenvalues of C and B, and g1, g2, qi, 92, the
eigenvalues of C and B, respectively.
Let us now consider the following functions

U=0(F) = vVETF, V=V(F)=VFF', R=R({F)=FUF) (153)

by analogy to the three-dimensional case, it can be shown that

s 2
F) = RG, +G,9R —_— G5 ® FG3, 154
DrUF) =G ® 1+ G2 ® G2+\/c_1+\ﬁ5 s ® FGag (154)

. 2
DeV(F) = R R+ —— Q3 ® QsF, 155
FVF) =i @ QiR+ Q2 ® Q2 +ﬁ+@Qs Qs (155}

21



- 1
DFR(F} =1 U_-l — %RG]_U-l ® FGl —_ ERGQU_I o] FG2 -+
1

2 -1
—_— FG 156
NG ‘/.EZ).RGsU ® FGa, {156)

Considering B € Sym, for each tensor A € Sym*, with eigenvalues a1 < az,
and eigenvectors g, gz, it is possible to write

2

B=) bhi(A)g: @ (157)
i=1
where
sz(A) =gi-" ng. (158)

Now, we wish to evaluate the derivatives of the components b;; (A} of B with
respect to the basis of eigenvectors g1, gs, when A varies in Sym*. In view of
the relation :

D abi;(A)H] = Dygi(A)[H] - Bg;(A) + Bg;(A) - Dag;(A)H], He Sym,

(159)
from (143) and (144) we get
25
Daby(A) = ;C_ ;22 G, (160)
2b
Dabm(a) = 222Gy (161)
bos — b
DAb]_g(A) = ﬁz(%l—m%z_)cra’ (162)

-and from (143) and (144), by virtue of the bilinearity of the tensor product, we
have

1
Dslg1 ®ga) =Do(g1 ®ga) = m(Gz @Gy — G, ®Gz). (163)
1—as

In particular, from (157), by accounting of (160)-(162) and (163), we get
that D4B = Q.
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