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THE MALLIAVIN-STEIN METHOD FOR NORMAL RANDOM

WALKS WITH DEPENDENT INCREMENTS

IAN FLINT, NICOLAS PRIVAULT, AND GIOVANNI LUCA TORRISI*

Abstract. We derive bounds on the Kolmogorov distance between the dis-

tribution of a random functional of a {0, 1}-valued random sequence and the
normal distribution. Our approach, which relies on the general framework

of stochastic analysis for discrete-time normal martingales, extends existing

results obtained for independent Bernoulli (or Rademacher) sequences. In
particular, we obtain Kolmogorov distance bounds for the sum of normalized

random sequences without any independence assumption.

1. Introduction

The Mallavin-Stein method has been introduced in [10] to derive bounds on the
distances between probability laws for the normal approximation of functionals of
Gaussian random fields, and extended to functionals of Poisson random measures
in [12], [13]. Functionals of discrete-time independently distributed Rademacher
sequences have been treated using the Wasserstein distance in e.g. [11] for func-
tionals of symmetric sequences, and in [15] in the case of not necessarily symmetric
sequences. Bounds in the Kolmogorov distance have been obtained in [8], [9], and
bounds in the total variation distance have been derived for the Poisson approxima-
tion in [15] and [7], see also [6] for the Poisson approximation of marked binomial
processes.

In this paper, we extend the Kolmogorov bounds of [8], [9] from independent
Rademacher sequences to the functionals of a suitable discrete-time normal mar-
tingale, see [2]. This allows us to consider functionals of arbitrary, not necessarily
independent, binary random sequences {Yn}n∈N generating a filtration {Fn}n≥−1,
F−1 := {∅,Ω}, and satisfying the normalization condition

E[Yn | Fn−1] = 0 and Var [Yn | Fn−1] := E
[
Y 2
n | Fn−1

]
= 1,

n ∈ N := {0, 1, . . .}, see Proposition 2.1. As an example, the binary sequence
{Yn}n∈N can be driven by a time-inhomogeneous two-state Markov chain, see
Example 2.4.

In particular, in Theorem 3.1 and Corollary 3.2 we provide bounds on the
Kolmogorov distance dK between the distribution of a random functional of a
binary random sequence and the normal distribution. This construction has also
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been used to derive bounds in total variation between the distributions of random
sequences in [4].

Our approach relies on the construction of discrete multiple stochastic integrals
and of Malliavin operators for discrete-time binary normal martingales as in [5],
which extends the framework of Chapter 1 in [14] to possibly dependent normalized
increments. Those operators are used to formulate covariance identities based on
the number (or Ornstein-Uhlenbeck) operator L acting on multiple Wiener-Poisson
stochastic integrals and its inverse L−1.

Under such covariance identities, a general estimate is derived in Theorem 3.1
and yields an upper bound on the Kolmogorov distance dK(F,N ) between the
distribution of a general functional F of {Yn}n∈N and the normal distribution.
This result is then specialized in Corollary 3.2 as a more explicit Kolmogorov
upper bound under additional integrability assumptions.

When F is a first order discrete stochastic integral, the general bound of The-
orem 3.1 is considerably simplified in Section 4. As an application, this yields
estimates on the Kolmogorov distance between the distribution of a linear func-
tional

FN :=

N∑
n=0

fN (n)Yn

of the binary sequence {Yn}n∈N and the normal distribution, see Corollary 4.1.
The paper is organized as follows. In Section 2, we give some preliminary

results on normal random walks. In Section 3 we provide our general Kolmogorov
upper bound, and we make it more explicit in some specific settings. The above-
mentioned applications to discrete-time Markov chains with finite state space and
random walks are given in Section 4.

2. Stochastic Analysis of Normal Random Walks

In this section we introduce some elements of stochastic analysis for normal
random walks, and refer the reader to [2] and [5] for more insight into this subject.

2.1. Normal random walks. Consider the sequence space Ω := {0, 1}N with its
canonical {0, 1}-valued coordinate maps πn : Ω → {0, 1} defined by πn((ωk)k∈N) :=
ωn, for n ∈ N. We endow Ω with the filtration {Fn}n∈{−1}∪N defined by

F−1 := {∅,Ω}, Fn := σ
{
π0, . . . , πn

}
, n ∈ N, (2.1)

and let P be any probability measure on (Ω,F) such that

0 < pn := P
(
πn = 1 | Fn−1

)
< 1, n ∈ N, P-almost surely. (2.2)

In what follows, we consider the predictable processes {v(0)n }n∈N and {v(1)n }n∈N
defined by

v(0)n := −
√

qn
pn

, v(1)n :=

√
pn
qn

, n ∈ N, (2.3)

where qn := 1− pn, n ∈ N. We define

Yn(ω) := v(πn(ω))
n (ω), n ∈ N, ω ∈ Ω. (2.4)
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Proposition 2.1. The process {Y0 + · · ·+ Yn}n∈N defined above through its nor-
malized increments is a one-dimensional normal martingale, i.e.

E[Yn | Fn−1] = 0 and Var [Yn | Fn−1] := E
[
Y 2
n | Fn−1

]
= 1, n ∈ N. (2.5)

Proof. From (2.3) we have the relations

|v(0)n |2 =
1− pn
pn

, |v(1)n |2 =
1− qn
qn

, n ∈ N, (2.6)

which yield the structure equations

pnv
(0)
n + qnv

(1)
n = 0, pn|v(0)n |2 + qn|v(1)n |2 = 1, n ∈ N, (2.7)

and (2.5). �

Lemma 2.2. Let a(i), b(i) : Ω → R, i ∈ {0, 1}, be two random variables. For any
n ∈ N, we have

(pna
(0)v(0)n + qna

(1)v(1)n )(pnb
(0)v(0)n + qnb

(1)v(1)n ) = pnqn(a
(0) − a(1))(b(0) − b(1)),

P-almost surely.

Proof. By the definition of the processes {v(0)n }n∈N and {v(1)n }n∈N, and (2.6), we
have

(pna
(0)v(0)n + qna

(1)v(1)n )(pnb
(0)v(0)n + qnb

(1)v(1)n )

= p2na
(0)b(0)|v(0)n |2 + q2na

(1)b(1)|v(1)n |2 + v(0)n v(1)n pnqn(a
(0)b(1) + a(1)b(0))

= pnqn(a
(0) − a(1))(b(0) − b(1)), n ∈ N.

�

We also note that

{ω ∈ Ω : πn(ω) = i} = {ω ∈ Ω : Yn(ω) = v(i)n (ω)}, i = 0, 1, n ∈ N,

hence Fn = σ{Y0, . . . , Yn}, n ∈ N, and

P
(
Yn = v(0)n | Fn−1

)
= pn = P

(
πn = 0 | Fn−1

)
,

P
(
Yn = v(1)n | Fn−1

)
= qn = P

(
πn = 1 | Fn−1

)
,

n ∈ N.

Remark 2.3. The above construction admits an extension to so-called obtuse sys-
tems in Rd, see [2], [1], in which case (Y0 + · · ·+ Yn)n∈{0,...,N} is a d-dimensional
normal martingale, i.e.

E[Yn | Fn−1] = 0 and Var[Yn | Fn−1] := E[Yn⊗Yn | Fn−1] = In, n ∈ {0, . . . , N}.

Next, we note that our construction allows the binary sequence {Yn}n∈N to be
driven by a time-inhomogeneous two-state Markov chain.

Example 2.4. When

P(πn = 1 | Fn−1) = P(πn = 1 | πn−1), n ∈ N, P-almost surely,
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the process {πn}n∈N becomes a {0, 1}-valued time-inhomogeneous Markov chain
with transition probabilities

P
(n)
i,j := P(πn = j |πn−1 = i), i, j = 0, 1,

and initial distribution p0 = P(π0 = 0), q0 = P(π0 = 1), and we have

{Yn}n∈N :=

{
−1{πn=0}

√
P(πn = 1 |πn−1)

P(πn = 0 |πn−1)
+ 1{πn=1}

√
P(πn = 0 |πn−1)

P(πn = 1 |πn−1)

}
n∈N

.

The next example considers a binomial asset price model with dependence.

Example 2.5. Given a real-valued sequence (σ(n))0≤n≤N , σ(0) := 0, we consider
a binomial asset pricing model. For S0 > 0 an initial positive constant, the
discrete-time risky asset price process (SN )N∈N is defined recursively by the price
dynamics

Sn = Sn−1e
σ(n)Yn/

√
N+1−σ2(n)/(2(N+1))

=


Sn−1e

σ(n)
√

pn/((N+1)qn)−σ2(n)/(2(N+1)), πn = 1,

Sn−1e
−σ(n)

√
qn/((N+1)pn)−σ2(n)/(2(N+1)), πn = 0,

n = 1, . . . , N , yielding

SN = S0 exp

(
1√

N + 1

N∑
n=0

σ(n)Yn − 1

2(N + 1)

N∑
n=0

σ2(n)

)
.

2.2. Discrete multiple stochastic integrals. We denote by κ the counting
measure on N, set ℓ2(Nn) := L2(Nn,P(N)⊗n, κ⊗n) for n ∈ N∗ := N \ {0}, with
ℓ2(N)⊗ 0 := R, and refer to the elements of ℓ2(Nn) as kernels. By ℓ2(N)◦n we
denote the class of symmetric kernels and by ℓ20(N)◦n the family of symmetric
kernels which vanish on the diagonals, i.e., which vanish on the complement of the
set

∆n := {(i1, . . . , in) ∈ Nn : ih ̸= ik, h ̸= k}.
Let fn ∈ ℓ20(N)◦n be a symmetric kernel vanishing on the diagonal. For n ∈ N∗,
the discrete multiple stochastic integral of order n of fn is defined by

Jn(fn) : =
∑

(i1,...,in)∈∆n

fn(i1, . . . , in)Yi1 · · ·Yin

= n!
∑

0≤i1<···<in<∞

fn(i1, . . . , in)Yi1 · · ·Yin , (2.8)

where the random variables Yn are defined in (2.4). We also set J0(c) := c for any
c ∈ R. We call the space spanned by the random variables Jn(f), with f ∈ ℓ20(N)◦n,
the n-th chaos of the normal random walk. Discrete multiple stochastic integrals
of different orders are mutually orthogonal and satisfy the isometry relation

E[Jn(fn)Jm(gm)] = 11{n=m}n!⟨fn, gn⟩ℓ2(N)⊗n , (2.9)

for any couple of symmetric kernels fn, gm, m,n ∈ N∗ (see Proposition 3.4 in
[5]). Discrete multiple stochastic integrals are centered random variables, i.e.,
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E[Jn(fn)] = 0, for any symmetric kernel fn, n ∈ N∗ (see the proof of Propo-
sition 5.1 in [5]). Finally, we recall that, for any real-valued random variable
F ∈ L2(Ω,F ,P), where F :=

∨
n∈N Fn, the chaotic decomposition

F = E[F ] +

∞∑
n=1

Jn(fn) (2.10)

holds, for uniquely determined symmetric kernels fn (see Theorem 5.7 in [5]).

2.3. Malliavin operators. We define the discrete gradient of a random variable
F : Ω → R as

DnF := pnv
(0)
n F 0

n + qnv
(1)
n F 1

n =
√
pnqn(F

1
n − F 0

n), n ∈ N, (2.11)

where F i
n(ω) := F (ωi

n) and ωi
n := (ω0, . . . , ωn−1, i, ωn+1, . . . ), i = 0, 1, n ∈ N. The

following proposition holds (see [5]).

Proposition 2.6. We have:
(i) For random variables F,G : Ω → R,

Dn(FG) = FDnG+GDnF −√
pnqn

[
(F − F 0

n)(G−G0
n)− (F − F 1

n)(G−G1
n)
]
,

n ∈ N.
(ii) For any n ∈ N∗ and symmetric kernel fn,

DkJn(fn) = nJn−1(fn(∗, k)), k ∈ N.

In particular, we have the following corollary.

Corollary 2.7. For random variables F,G : Ω → R,

Dn(FG) = FDnG+GDnF − 2πn − 1
√
pnqn

(DnF )(DnG).

Proof. By (2.11) and Proposition 2.6(i) we have

Dn(FG) = FDnG+GDnF −√
pnqn[(F

1
n − F 0

n)(G
1
n −G0

n)11{πn=1}

−(F 1
n − F 0

n)(G
1
n −G0

n)11{πn=0}]

= FDnG+GDnF − 1
√
pnqn

[(DnF )(DnG)11{πn=1} − (DnF )(DnG)11{πn=0}]

= FDnG+GDnF − 2πn − 1
√
pnqn

(DnF )(DnG).

�

The L2-domain of D, denoted by Dom (D), is defined by

Dom(D) : =

{
F ∈ L2(Ω,F ,P) : E

[∑
n∈N

|DnF |2
]
< ∞

}

=

{
F =

∑
n∈N

Jn(fn) ∈ L2(Ω,F ,P) :
∞∑

n=1

n(n!)∥fn∥2ℓ2(N)⊗n < ∞

}
.
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For F ∈ Dom(D), F =
∑

n∈N Jn(fn), we have

DkF =

∞∑
n=1

nJn−1(fn(∗, k)). (2.12)

Next, we introduce the Ornstein-Uhlenbeck operator L and its (pseudo-)inverse
L−1. The L2-domain of L, denoted by Dom (L), is defined by

Dom(L) : =

{
F =

∞∑
n=0

Jn(fn) ∈ L2(Ω,F ,P) :
∞∑

n=1

n2(n!)∥fn∥2ℓ2(N)⊗n < ∞

}
.

For F ∈ Dom(L), F =
∑∞

n=0 Jn(fn), we put

LF := −
∞∑

n=1

nJn(fn).

For a centered F =
∑∞

n=1 Jn(fn) ∈ L2(Ω,F ,P), we define the (pseudo-)inverse
operator of L as

L−1F := −
∞∑

n=1

n−1Jn(fn).

Next, we introduce the divergence operator δ. The L2-domain of δ, denoted by
Dom (δ), is defined as follows. Let u := (uk)k∈N ∈ (L2(Ω,F ,P))N be such that
there exists a sequence gn+1 ∈ ℓ20(N)◦n ⊗ ℓ2(N), n ∈ N, such that

uk :=
∑
n∈N

Jn(gn+1(∗, k)). (2.13)

We say that u ∈ Dom(δ) if

∞∑
n=0

(n+ 1)!∥g̃n+111∆n+1
∥2ℓ2(N)⊗(n+1) < ∞, (2.14)

and in this case we define

δ(u) :=

∞∑
n=0

Jn+1(g̃n+111∆n+1
). (2.15)

Here, f̃ denotes the canonical symmetrization of f . Note that, for u ∈ Dom(δ),
(2.14) can be rewritten as E[δ(u)2] < ∞.

The following proposition provides an integration by parts formula (see Propo-
sition 8.2 in [5]).

Proposition 2.8. The operator δ is the adjoint of D, i.e., for all F ∈ Dom(D)
and u ∈ Dom(δ),

E[Fδ(u)] = E[⟨DF, u⟩ℓ2(N)]. (2.16)

The next result is standard, and states that the operators D, L and δ are related
by the identity −δD = L.

Proposition 2.9. For any F ∈ Dom(L), we have F ∈ Dom(D), DF ∈ Dom(δ)
and −δ(DF ) = LF .
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Let f : R → R be measurable and F ∈ L2(Ω,F ,P) centered and such that
f(F ) ∈ Dom(D). Then, by Propositions 2.8 and 2.9,

E[Ff(F )] = E[L(L−1F )f(F )]

= −E[δ(D(L−1F ))f(F )]

= E[⟨Df(F ),−D(L−1F )⟩ℓ2(N)]. (2.17)

This relation will be crucial when we develop the Malliavin-Stein method. The
next technical lemma is exploited to prove the Skorohod isometry.

Lemma 2.10. For any u ∈ Dom(δ) and any k ∈ N, we have Dku ∈ Dom(δ).

Proof. Let u ∈ Dom(δ). For k ∈ N fixed and any ℓ ∈ N, we have

Dkuℓ =

∞∑
n=1

nJn−1(gn+1(∗, ℓ, k)) =
∞∑

n=0

Jn((n+ 1)gn+2(∗, ℓ, k))

=

∞∑
n=0

Jn(fn+1(∗, ℓ)), (2.18)

where fn+1(∗, ℓ) := (n+1)gn+2(∗, ℓ, k) (the dependence on k is not made explicit).
We have to prove that

∞∑
n=0

(n+ 1)!∥f̃n+111∆n+1
∥2ℓ2(N)⊗(n+1) < ∞.

We have
∞∑

n=0

(n+ 1)!
∥∥f̃n+111∆n+1

∥∥2
ℓ2(N)⊗(n+1) =

∞∑
n=0

(n+ 1)!(n+ 1)2
∥∥hn+111∆n+1

∥∥2
ℓ2(N)⊗(n+1) ,

(2.19)

where, letting Sn+1 be the permutation group on {1, . . . , n+ 1},

hn+1(x1, . . . , xn+1)11∆n+1(x1, . . . , xn+1)

= 11∆n+1(x1, . . . , xn+1)
1

(n+ 1)!

∑
σ∈Sn+1

gn+2(xσ(1), . . . , xσ(n), xσ(n+1), k).

(2.20)

Note that∥∥hn+111∆n+1

∥∥2
ℓ2(N)⊗(n+1)

=
∑

(x1,...,xn+1)∈Nn+1

∣∣hn+1(x1, . . . , xn+1)
∣∣211∆n+1

(x1, . . . , xn+1)

=
∑

(x1,...,xn+1)∈Nn+1

11∆n+1
(x1, . . . , xn+1)

[(n+ 1)!]2

∣∣∣∣ ∑
σ∈Sn+1

gn+2(xσ(1), . . . , xσ(n), xσ(n+1), k)

∣∣∣∣2.
(2.21)
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Using the fact that gn+2 is symmetric with respect to the first n variables, for a
fixed (x1, . . . , xn+1) ∈ Nn+1, we have∑

σ∈Sn+1

gn+2(xσ(1), . . . , xσ(n), xσ(n+1), k)

= n!

n+1∑
i=1

gn+2(x1, . . . , xi−1, xi+1, . . . , xn+1, xi, k).

Inserting this expression into (2.21) we have∥∥hn+111∆n+1

∥∥2
ℓ2(N)⊗(n+1) =

1

(n+ 1)2

∑
(x1,...,xn+1)∈Nn+1

11∆n+1
(x1, . . . , xn+1)

×
∣∣∣∣n+1∑
i=1

gn+2(x1, . . . , xi−1, xi+1, . . . , xn+1, xi, k)

∣∣∣∣2.
By this relation and (2.19), we have

∞∑
n=0

(n+ 1)!∥f̃n+111∆n+1
∥2ℓ2(N)⊗(n+1)

=

∞∑
n=0

(n+ 1)!
∑

(x1,...,xn+1)∈Nn+1

11∆n+1(x1, . . . , xn+1)

×
∣∣∣∣n+1∑
i=1

gn+2(x1, . . . , xi−1, xi+1, . . . , xn+1, xi, k)

∣∣∣∣2,
and this is a finite quantity due to (2.14). �

The next proposition provides the Skorohod formula for δ. Note that this
formula becomes indeed an isometry if uk is Fk−1-measurable.

Proposition 2.11. For all u ∈ Dom(δ), we have

E[δ(u)2] = E[∥u∥ℓ2(N)] + E
[∑
k,l≥0

DlukDkul

]
− 2E

[∑
k≥0

(
Dkuk

)2]
.

In particular, if uk is Fk−1-measurable for any k, then

E
[
δ(u)2

]
= E

[
∥u∥2ℓ2(N)

]
,

indeed in such a case DlukDkul = 0 for any k, l.

Proof. By (2.15), (2.8) and (2.12), for any u ∈ Dom(δ) we have

δ(u) =

∞∑
n=0

Jn+1(g̃n+111∆n+1
)

=

∞∑
n=0

∑
(i1,...,in+1)∈∆n+1

g̃n+1(i1, . . . , in+1)Yi1 · · ·Yin+1
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=
∑
k≥0

( ∞∑
n=0

∑
(i1,...,in)∈∆n

g̃n+1(i1, . . . , in, k)Yi1 · · ·Yin · Yk

−
∞∑

n=1

n
∑

(i1,...,in−1)∈∆n−1

g̃n+1(i1, . . . , in−1, k, k)Yi1 · · ·Yin−1
·
∣∣Yk

∣∣2)
=
∑
k≥0

(
ukYk −

(
Dkuk

)∣∣Yk

∣∣2). (2.22)

By Lemma 2.10 Dku ∈ Dom(δ) and so from the above formula, we deduce, in
particular, that

δ(Dku) =
∑
l≥0

[
YlDkul −

(
DlDkul

)∣∣Yl

∣∣2]. (2.23)

Note that Yl = J1(11{l}) and so DkYl = 11{k=l}. Therefore, by Corollary 2.7 and
(2.23), we have

Dkδ(u) = Dk

(∑
l≥0

[
ulYl −

(
Dlul

)∣∣Yl

∣∣2])
=
∑
l≥0

[(
Dkul

)
Yl + ulDkYl −

2πk − 1
√
pkqk

(Dkul)(DkYl)−
(
DkDlul

)∣∣Yl

∣∣2
−
(
Dlul

)
Dk

∣∣Yl

∣∣2 + 2πk − 1√
p
(0)
k p

(1)
k

(DkDlul)
(
Dk

∣∣Yl

∣∣2)]
=
∑
l≥0

[(
Dkul

)
Yl −

(
DkDlul

)∣∣Yl

∣∣2 + ulDkYl −
2πk − 1
√
pkqk

(Dkul)(DkYl)

−
(
Dlul

)[
2YlDkYl −

2πk − 1
√
pkqk

(
DkYl

)2]
+

2πk − 1
√
pkqk

(DkDlul)

[
2YlDkYl −

2πk − 1
√
pkqk

(
DkYl

)2]]
= δ(Dku) + uk − 2πk − 1

√
pkqk

Dkuk −
(
Dkuk

)[
2Yk − 2πk − 1

√
pkqk

]
+

2πk − 1
√
pkqk

(DkDkuk)

[
2Yk − 2πk − 1

√
pkqk

]
= δ(Dku) + uk − 2

(
Dkuk

)
Yk,

where we used that DkDkuk = 0. Again by (2.22) and this latter relation, we have

δ(11{k}Dku) = YkDkuk −
(
DkDkuk

)∣∣Yk

∣∣2 = YkDkuk,

and therefore by applying Proposition 2.8 three times,

E[δ(u)2] = E
[∑
k≥0

Dkδ(u)uk

]

= E
[∑
k≥0

(
δ(Dku) + uk − 2

(
Dkuk

)
Yk

)
uk

]
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= E[∥u∥ℓ2(N)] + E
[∑
k≥0

ukδ(Dku)− 2δ(11{k}Dkuk)uk

]

= E[∥u∥ℓ2(N)] + E
[∑
k,l≥0

[
DlukDkul − 211{k}DkukDluk

]]

= E[∥u∥ℓ2(N)] + E
[∑
k,l≥0

DlukDkul

]
− 2E

[∑
k≥0

(
Dkuk

)2]
.

�
Now, we give a generalisation of the integration by parts formula (2.16) which

can be applied to square integrable functionals that do not necessarily belong to
Dom(D). This extension of the integration by parts formula plays a role in the
Gaussian approximation, see the proof of Corollary 3.2.

Proposition 2.12. Let F ∈ L2(Ω,F ,P) and let

u = (uk)k∈N ∈ (L2(Ω,F ,P))N

with uk defined by (2.13) and
∞∑

n=0

(n+ 1)!∥gn+1∥2ℓ2(N)⊗(n+1) < ∞. (2.24)

If, for any k ∈ N, (DkF )uk ≥ 0 P-almost surely, then u ∈ Dom(δ) and (2.16)
holds.

Proof. Although the proof is similar to the proof of Proposition 2.2 in [9], since
we are working in a different context, we provide the details. We start by noticing
that (2.24) implies (2.14) and therefore u ∈ Dom(δ). Since F ∈ L2(Ω,F ,P), by
the chaotic decomposition (2.10) we have

F = E[F ] +

∞∑
n=1

Jn(fn)

for uniquely determined symmetric kernels fn. The isometry formula for multiple
stochastic integrals (2.9) yields, noticing that E[δ(u)] = 0,

E[Fδ(u)] = E

[( ∞∑
n=1

Jn(fn)

)( ∞∑
n=0

Jn+1(g̃n+111∆n+1)

)]

= E

[( ∞∑
n=0

Jn+1(fn+1)

)( ∞∑
n=0

Jn+1(g̃n+111∆n+1
)

)]
=
∑
n∈N

(n+ 1)!⟨fn+1, g̃n+111∆n+1
⟩ℓ2(N)⊗(n+1)

=
∑
n∈N

(n+ 1)!⟨fn+1, gn+1⟩ℓ2(N)⊗(n+1) .

On the other hand, again by (2.9) we have

E[⟨DF, u⟩ℓ2(N)] =
∑
k≥0

E[DkFuk]
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=
∑
k≥0

E

[(∑
n∈N

(n+ 1)Jn(fn+1(∗, k))

)(∑
n∈N

Jn(gn+1(∗, k))

)]
=
∑
k≥0

∑
n∈N

(n+ 1)!⟨fn+1(∗, k), gn+1(∗, k)⟩ℓ2(N)⊗n

=
∑
n∈N

(n+ 1)!
∑
k≥0

⟨fn+1(∗, k), gn+1(∗, k)⟩ℓ2(N)⊗n (2.25)

=
∑
n∈N

(n+ 1)!⟨fn+1, gn+1⟩ℓ2(N)⊗(n+1) .

To complete the proof it remains to justify the exchange between the infinite
sums in (2.25). This is guaranteed by Fubini’s theorem. Indeed, by a repeated
application of the Cauchy-Schwarz inequality and assumption (2.24), one has∑

n∈N

∑
k∈N

|(n+ 1)!⟨fn+1(∗, k), gn+1(∗, k)⟩ℓ2(N)⊗n | < ∞,

see [9] for details. �

We also recall the following covariance representation formula (see Proposition
9.1 in [5]).

Proposition 2.13. For F,G ∈ Dom(D), we have

Cov (F,G) = E

[∑
n≥0

E
[
DnG | Fn−1

]
DnF

]
.

3. A Berry-Esseen Bound

3.1. Stein’s equation. Let Φ be the cumulative distribution function of a normal
standard random variable. It is well-known (see, e.g., Lemmas 2.2 and 2.3 in [3])
that the unique bounded solution fx of the Stein equation

f ′(w)− wf(w) = 11(−∞,x](w)− Φ(x), w, x ∈ R

is such that 0 < fx(w) ≤
√
2π/4, |f ′

x(w)| ≤ 1 for all w ∈ R and

|(w+u)fx(w+u)−(w+v)fx(w+v)| ≤ (|w|+
√
2π/4)(|u|+|v|), for all u,w, v ∈ R.

(3.1)
If we replace w by a random variable F (defined on Ω) in the Stein equation and
we take the expectation, we have E[f ′

x(F ) − Ffx(F )] = P(F ≤ x) − Φ(x) for any
x ∈ R and so

dK(F,N ) := sup
x∈R

|P(F ≤ x)− Φ(x)| = sup
x∈R

|E[f ′
x(F )− Ffx(F )]|, (3.2)

where dK denotes the Kolmogorov distance and N is a standard normal random
variable with cumulative distribution function Φ.
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3.2. General Kolmogorov bound. We now establish a bound on the Kol-
mogorov distance between a centered functional F ∈ Dom(D) and N .

Theorem 3.1. Let F ∈ Dom(D) be such that E[F ] = 0 and let G be a real-valued
random variable on Ω such that

Cov (F, fx(F )) = E[⟨DG,Dfx(F )⟩ℓ2(N)], x ∈ R, (3.3)

where fx is the solution of the Stein equation (see Remark 3.4 below for possible
choices of G). Then

dK(F,N ) ≤ E
[∣∣1−⟨DG,DF ⟩ℓ2(N)

∣∣]+ 1

2

∑
n∈N

E
[(

|F |+
√
2π

4

)∣∣G1
n−G0

n

∣∣∣∣DnF
∣∣2]

+ sup
x∈R

∑
n∈N

E
[∣∣G1

n −G0
n

∣∣DnFDn11{F>x}
]
.

In particular, choosing G := −L−1F (see Remark 3.4 below), Theorem 3.1
shows that

dK(F,N ) ≤ E
[∣∣1− ⟨−DL−1F,DF ⟩ℓ2(N)

∣∣]
+

1

2

∑
n∈N

E
[(
pnqn

)−1/2
(
|F |+

√
2π

4

)∣∣DnL
−1F

∣∣∣∣DnF
∣∣2]

+ sup
x∈R

∑
n∈N

E
[(
pnqn

)−1/2∣∣DnL
−1F

∣∣DnFDn11{F>x}

]
, (3.4)

which extends Theorem 3.1 of [8] and Proposition 4.1 of [9] to possibly non-
independent random sequences. The next corollary specializes the above bound
under an additional integrability assumption, and similarly extends Theorem 4.1
of [9].

Corollary 3.2. Let F ∈ Dom(D) be such that E[F ] = 0, and let

uk := (pkqk)
−1/2DkF |DkL

−1F |, k ∈ N, (3.5)

be such that uk ∈ L2(Ω,F ,P), k ∈ N, and
∞∑

k,ℓ=0

E[(Dℓuk)
2] < ∞. (3.6)

Then, we have

dK(F,N ) ≤ E
[∣∣1− ⟨−DL−1F,DF ⟩ℓ2(N)

∣∣]
+

1

2
E
[(

|F |+
√
2π

4

)〈
(pq)−1/2,

∣∣DL−1F
∣∣∣∣DF

∣∣2〉
ℓ2(N)

]
+ E

[
|δ((pq)−1/2DF |DL−1F |)|2

]1/2
.

Two remarks are in order before proving Theorem 3.1 and Corollary 3.2.

Remark 3.3. If we assume that, under P, the random variables {πn}n∈N are in-
dependent (and so the quantities {pn, qn}n∈N are deterministic), then the bound
(3.4) coincides with that of Proposition 4.1 of [9].
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Remark 3.4. We provide two random variables G which satisfy (3.3). By (2.17)
and the fact that E[F ] = 0, one can take G = −L−1F . Note indeed that for F
satisfying the assumptions of Theorem 3.1 we have fx(F ) ∈ Dom(D). One can
also take G so that Gi

n := E
[
F i
n | Fn−1

]
, i = 0, 1. Indeed, by Proposition 2.13,

Cov (F, fx(F )) = E

[∑
n∈N

E
[
DnF | Fn−1

]
Dnfx(F )

]

= E

[∑
n∈N

√
pnqn E[F 1

n − F 0
n | Fn−1]Dnfx(F )

]
= E[⟨DG,Dfx(F )⟩ℓ2(N)].

Proof. (Proof of Theorem 3.1.) Let fx be the solution of the Stein equation. Due
to (3.2), the claim follows if we properly bound from above the quantity |E[f ′

x(F )−
Ffx(F )]| uniformly in x. Hereon, for ease of notation, we put f := fx. By the
assumption (3.3), we have

E[f ′(F )− Ff(F )] = E[f ′(F )]− Cov (F, f(F )) = E[f ′(F )]− E[⟨DG,Df(F )⟩ℓ2(N)].
(3.7)

By the definition of the gradient and the first relation in (2.7), for any n ∈ N,

Dnf(F ) = pnf(F
0
n)v

(0)
n + qnf(F

1
n)v

(1)
n

= pn(f(F
0
n)− f(F ))v(0)n + qn(f(F

1
n)− f(F ))v(1)n

= pnv
(0)
n

∫ F 0
n−F

0

f ′(F + t) dt+ qnv
(1)
n

∫ F 1
n−F

0

f ′(F + t) dt

= pnv
(0)
n

(∫ F 0
n−F

0

(
f ′(F + t)− f ′(F )

)
dt+

∫ F 0
n−F

0

f ′(F ) dt

)

+ qnv
(1)
n

(∫ F 1
n−F

0

(
f ′(F + t)− f ′(F )

)
dt+

∫ F 1
n−F

0

f ′(F ) dt

)

= f ′(F )DnF + pnv
(0)
n

∫ F 0
n−F

0

(
f ′(F + t)− f ′(F )

)
dt

+ qnv
(1)
n

∫ F 1
n−F

0

(
f ′(F + t)− f ′(F )

)
dt.

By this relation and (3.7), setting for ease of notation p
(0)
n := pn and p

(1)
n := qn,

we have

E[f ′(F )− Ff(F )] = E
[
f ′(F )

(
1−

∑
n∈N

DnF

( 1∑
i=0

p(i)n Gi
nv

(i)
n

)]

−
∑
n∈N

E
[( 1∑

i=0

p(i)n v(i)n

∫ F i
n−F

0

(
f ′(F + t)− f ′(F )

)
dt

)( 1∑
j=0

p(j)n Gj
nv

(j)
n

)]
.

By Lemma 2.2, the above rewrittes as
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E[f ′(F )− Ff(F )] = E
[
f ′(F )

(
1−

∑
n∈N

pnqn
(
F 0
n − F 1

n

)(
G0

n −G1
n

))]

−
∑
n∈N

E
[
pnqn

(
G0

n −G1
n

) ∫ F 0
n−F

F 1
n−F

[
f ′(F + t)− f ′(F )

]
dt

]
.

Since f is solution of the Stein equation, it satisfies

f ′(F + t) = (F + t)f(F + t) + 11(−∞,x](F + t)− Φ(x), ∀t ∈ R

and so for every n ∈ N, we have∫ F 0
n−F

F 1
n−F

[
f ′(F + t)− f ′(F )

]
dt =

∫ F 0
n−F

F 1
n−F

[
(F + t)f(F + t)− Ff(F )

]
dt︸ ︷︷ ︸

=:K0,1(n)

+

∫ F 0
n−F

F 1
n−F

[
11(−∞,x](F + t)− 11(−∞,x](F )

]
dt︸ ︷︷ ︸

=:L0,1(n)

.

Therefore, since ∥f ′∥∞ ≤ 1 we get

∣∣E[f ′(F )− Ff(F )
]∣∣ ≤ E

[∣∣∣∣1−∑
n∈N

pnqn
(
F 0
n − F 1

n

)(
G0

n −G1
n

)∣∣∣∣]
+
∑
n∈N

E
[
pnqn

∣∣G0
n −G1

n

∣∣(∣∣K0,1(n)
∣∣+ ∣∣L0,1(n)

∣∣)]. (3.8)

Now, we shall bound |K0,1(n)| and |L0,1(n)|. We start by bounding |K0,1(n)|.
Applying (3.1) with w := F , u := t and v := 0 yields

∣∣K0,1(n)
∣∣ ≤ (|F |+

√
2π

4

)∫ max{F 0
n,F

1
n}−F

min{F 0
n,F

1
n}−F

|t| dt. (3.9)

In order to bound the integral appearing on the right-hand side of (3.9), we remark
that for x, y ∈ R such that y > x we have

∫ y

x
|t| dt ≤ (y − x)(|x| + |y|)/2. This

inequality is an equality when both x and y have the same sign, and it is easy to
prove geometrically when x < 0 and y > 0. It can be shown more formally by
writing∫ y

x

|t| dt = 1

2

(
11{x>0}

(
y2 − x2

)
+ 11{y≤0}

(
x2 − y2

)
+ 11{x≤0<y}

(
y2 + x2

))
=

1

2

(
11{x>0}

(
y − x

)(
|x|+ |y|

)
+ 11{y≤0}

(
y − x

)(
|x|+ |y|

)
+ 11{x≤0<y}

(
|y| · y − |x| · x

))
≤ 1

2

(
11{x>0}

(
y − x

)(
|x|+ |y|

)
+ 11{y≤0}

(
y − x

)(
|x|+ |y|

)
+ 11{x≤0<y}

(
|y|
(
y − x

)
+ |x|

(
y − x

)))
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=
1

2
(y − x)

(
|x|+ |y|

)
. (3.10)

Taking x := min{F 0
n , F

1
n}−F and y := max{F 0

n , F
1
n}−F in (3.10) and combining

the above bound with (3.9), we obtain∣∣K0,1(n)
∣∣ ≤ 1

2

(
|F |+

√
2π

4

)∣∣F 0
n − F 1

n

∣∣(|F 0
n − F |+ |F 1

n − F |
)
,

and therefore

pnqn
∣∣G0

n −G1
n

∣∣∣∣K0,1(n)
∣∣

≤ 1

2

(
|F |+

√
2π

4

)
pnqn

∣∣G0
n −G1

n

∣∣∣∣F 0
n − F 1

n

∣∣(|F 0
n − F |+ |F 1

n − F |
)
.(3.11)

We now provide an upper bound for |L0,1(n)|. We have

L0,1(n) =

∫ F 0
n

F 1
n

11{u≤x} du−
(
F 0
n − F 1

n

)
11{F≤x}

=
(
F 0
n − F 1

n

)
11{F 0

n≤x, F 1
n≤x} +

(
F 0
n − x

)
11{F 0

n≤x, F 1
n>x}

+
(
x− F 1

n

)
11{F 0

n>x, F 1
n≤x} −

(
F 0
n − F 1

n

)
11{F≤x}

= 11{F≤x}

(
−
(
F 0
n − F 1

n

)
11{F 0

n>x, F 1
n>x}

+
(
F 1
n − x

)
11{F 0

n≤x, F 1
n>x} +

(
x− F 0

n

)
11{F 0

n>x, F 1
n≤x}

)
+ 11{F>x}

((
F 0
n − F 1

n

)
11{F 0

n≤x, F 1
n≤x}

+
(
F 0
n − x

)
11{F 0

n≤x, F 1
n>x} +

(
x− F 1

n

)
11{F 0

n>x, F 1
n≤x}

)
,

and therefore∣∣L0,1(n)
∣∣ = 11{F≤x}

(∣∣F 0
n − F 1

n

∣∣11{F 0
n>x, F 1

n>x}

+
(
F 1
n − x

)
11{F 0

n≤x, F 1
n>x} +

(
F 0
n − x

)
11{F 0

n>x, F 1
n≤x}

)
+ 11{F>x}

(∣∣F 0
n − F 1

n

∣∣11{F 0
n≤x, F 1

n≤x} +
(
x− F 0

n

)
11{F 0

n≤x, F 1
n>x}

+
(
x− F 1

n

)
11{F 0

n>x, F 1
n≤x}

)
≤ 11{F≤x}

∣∣F 0
n − F 1

n

∣∣(11{F 0
n>x, F 1

n>x} + 11{F 0
n≤x, F 1

n>x} + 11{F 0
n>x, F 1

n≤x}

)
+ 11{F>x}

∣∣F 0
n − F 1

n

∣∣(11{F 0
n≤x, F 1

n≤x} + 11{F 0
n≤x, F 1

n>x} + 11{F 0
n>x, F 1

n≤x}

)
=
∣∣F 0

n − F 1
n

∣∣(11{F>x, min{F 0
n,F

1
n}≤x} + 11{F≤x, max{F 0

n,F
1
n}>x}

)
=
∣∣F 0

n − F 1
n

∣∣11{F>x, min{F 0
n,F

1
n}≤x}∪{F≤x, max{F 0

n,F
1
n}>x}. (3.12)

By (3.8), (3.11) and (3.12), taking the supremum over x ∈ R, we have

dK(F,N ) ≤ E
[∣∣∣∣1−∑

n∈N

pnqn
(
F 0
n − F 1

n

)(
G0

n −G1
n

)∣∣∣∣]
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+
1

2

∑
n∈N

E
[(

|F |+
√
2π

4

)
pnqn

∣∣G0
n −G1

n

∣∣∣∣F 0
n − F 1

n

∣∣(|F 0
n − F |+ |F 1

n − F |
)]

+sup
x∈R

∑
n∈N

E
[
pnqn

∣∣G0
n−G1

n

∣∣∣∣F 0
n−F 1

n

∣∣11{F>x, min{F 0
n,F

1
n}≤x}∪{F≤x, max{F 0

n,F
1
n}>x}

]
.

(3.13)

We also have

|F 0
n − F |+ |F 1

n − F |
=

(
|F 0

n − F |+ |F 1
n − F |

)
11{πn=0} +

(
|F 0

n − F |+ |F 1
n − F |

)
11{πn=1}

=
∣∣F 1

n − F 0
n

∣∣11{πn=0} +
∣∣F 0

n − F 1
n

∣∣11{πn=1}

=
∣∣F 1

n − F 0
n

∣∣. (3.14)

Additionally, we note that

{F > x, min{F 0
n , F

1
n} ≤ x}

= {F 0
n > x, min{F 0

n , F
1
n} ≤ x, πn = 0} ∪ {F 1

n > x, min{F 0
n , F

1
n} ≤ x, πn = 1}

= {F 0
n > x, F 1

n ≤ x, πn = 0} ∪ {F 1
n > x, F 0

n ≤ x, πn = 1}
= {max{F 0

n , F
1
n} > x, min{F 0

n , F
1
n} ≤ x, πn = 0}

∪ {max{F 0
n , F

1
n} > x, min{F 0

n , F
1
n} ≤ x, πn = 1}

= {max{F 0
n , F

1
n} > x, min{F 0

n , F
1
n} ≤ x},

and similarly

{F ≤ x, max{F 0
n , F

1
n} > x} = {max{F 0

n , F
1
n} > x, min{F 0

n , F
1
n} ≤ x}.

Thus, by (2.11)

pnqn
∣∣F 0

n − F 1
n

∣∣11{F>x, min{F 0
n,F

1
n}≤x}∪{F≤x, max{F 0

n,F
1
n}>x}

= pnqn
∣∣F 0

n − F 1
n

∣∣11{min{F 0
n,F

1
n}≤x<max{F 0

n,F
1
n}}

= pnqn
∣∣F 0

n − F 1
n

∣∣(11{F 0
n≤x<F 1

n} + 11{F 1
n≤x<F 0

n}
)

= pnqn
(
F 1
n − F 0

n

)(
11{F 0

n≤x<F 1
n} − 11{F 1

n≤x<F 0
n}
)

= pnqn
(
F 1
n − F 0

n

)(
11{F 1

n>x}
(
1− 11{F 0

n>x}
)
− 11{F 0

n>x}
(
1− 11{F 1

n>x}
))

= pnqn
(
F 1
n − F 0

n

)(
11{F 1

n>x} − 11{F 0
n>x}

)
= DnFDn11{F>x}. (3.15)

The proof is concluded by plugging (2.11), (3.14) and (3.15) into (3.13). �

Proof. (Proof of Corollary 3.2.) The claim follows by Theorem 3.1 if we prove

E
[
⟨(pq)−1/2DFD11{F>x}, |DL−1F |⟩ℓ2(N)

]
≤
√

E
[
|δ((pq)−1/2DF |DL−1F |)|2

]
,

(3.16)
uniformly in x ∈ R.

We shall check later on that the integration by parts formula of Proposition 2.12
can be applied with 11{F>x} in place of F and uk := (pkqk)

−1/2DkF |DkL
−1F |.
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We have

E
[
⟨(pq)−1/2DFD11{F>x}, |DL−1F |⟩ℓ2(N)

]
= E

[
⟨D11{F>x}, (pq)

−1/2DF |DL−1F |⟩ℓ2(N)
]

= E
[
11{F>x}δ

(
pq)−1/2DF |DL−1F |

)]
≤ E

[∣∣δ((pq)−1/2DF |DL−1F |)
∣∣]

≤ E
[∣∣δ((pq)−1/2DF |DL−1F |)

∣∣2]1/2,
which gives (3.16).

Now we check the assumptions of Proposition 2.12. We start by noticing that,
for any k ∈ N,

Dk11{F>x}uk = (pkqk)
−1/2Dk11{F>x}DkF |DkL

−1F | ≥ 0, P-a.s.. (3.17)

Indeed,

Dk11{F>x}DkF = pkqk(11{F 1
k>x} − 11{F 0

k>x})(F
1
k − F 0

k ) ≥ 0.

Note that the summability condition (2.24) is guaranteed by (3.6). Indeed, since
uk ∈ L2(Ω,F ,P), we have that uk admits a chaos decomposition. Suppose that

uk =

∞∑
n=0

Jn(gn+1(∗, k)).

Then,

∞∑
k,ℓ=0

E[(Dℓuk)
2] =

∞∑
k,ℓ=0

∞∑
n=1

n2E[|Jn−1(gn+1(∗, ℓ, k))|2]

=

∞∑
k,ℓ=0

∞∑
n=1

n2(n− 1)!∥gn+1(∗, ℓ, k)∥2ℓ2(N)⊗(n−1)

=

∞∑
n=1

n · n!∥gn+1∥2ℓ2(N)⊗(n+1) .

This clearly implies

∞∑
n=2

(n+ 1)!∥gn+1∥2ℓ2(N)⊗(n+1) ≤ 2

∞∑
k,ℓ=0

E[(Dℓuk)
2]

and so the summability condition (2.24) follows by the assumption (3.6). �

4. Application to First Order Stochastic Integrals and Normal
Random Walks

In this section we let fN = {fN (n)}n∈N, for some N ≥ 1, and consider the first
order stochastic integral

FN := J1(fN ) =

N∑
n=0

fN (n)Yn.
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Corollary 4.1. Assume that, for some c > 0,

pnqn ≥ c > 0 P-a.s. for any n ∈ {0, . . . , N}.
We have the bound

dK(FN ,N ) ≤

∣∣∣∣∣1−
N∑

n=0

|fN (n)|2
∣∣∣∣∣

+
1

2
√
c

(√
2π

4
+

N∑
n=0

|fN (n)|2
)√√√√ N∑

n=0

|fN (n)|2

√√√√ N∑
n=0

|fN (n)|4

+
1√
c

√√√√ N∑
n=0

|fN (n)|4.

Proof. A straightforward computation shows that

DnFN = fN (n) and DnL
−1FN = −fN (n), n ∈ N.

In particular,

u(N)
n := (pnqn)

−1/2DnFN |DnL
−1FN | = (pnqn)

−1/2fN (n)|fN (n)|
is Fn−1-measurable, and so by Proposition 2.11 we have

E
[
δ
(
(pq)−1/2DFN |DL−1FN |

)2]
=

N∑
n=0

|fN (n)|4E[(pnqn)−1] ≤ c−1
N∑

n=0

|fN (n)|4.

Thus by Corollary 3.2, we have

dK(FN ,N ) ≤

∣∣∣∣∣1−
N∑

n=0

|fN (n)|2
∣∣∣∣∣+ 1

2
√
c

N∑
n=0

|fN (n)|3E
[
|FN |+

√
2π

4

]

+
1√
c

√√√√ N∑
n=0

|fN (n)|4

≤

∣∣∣∣∣1−
N∑

n=0

|fN (n)|2
∣∣∣∣∣+ 1

2
√
c

(√
2π

4
+

N∑
n=0

|fN (n)|2
)

N∑
n=0

|fN (n)|3

+
1√
c

√√√√ N∑
n=0

|fN (n)|4

≤

∣∣∣∣∣1−
N∑

n=0

|fN (n)|2
∣∣∣∣∣

+
1

2
√
c

(√
2π

4
+

N∑
n=0

|fN (n)|2
)√√√√ N∑

n=0

|fN (n)|2

√√√√ N∑
n=0

|fN (n)|4

+
1√
c

√√√√ N∑
n=0

|fN (n)|4.
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Hence the corollary is proved. �
In particular, if

N∑
n=0

|fN (n)|2 → 1 and

N∑
n=0

|fN (n)|4 → 0, as N → ∞,

by Corollary 4.1 we have

dK(FN ,N ) = O

max


∣∣∣∣∣1−

N∑
n=0

|fN (n)|2
∣∣∣∣∣ ,
√√√√ N∑

n=0

|fN (n)|4


 , as N → +∞.

(4.1)
Taking fN (n) := 1/

√
N + 1, n ∈ {0, 1, . . . , N}, Corollary 4.1 yields the Berry-

Esseen (non asymptotic) bound

dK

(
1√

N + 1

N∑
n=0

Yn,N

)
≤ 1

2
√
c

(√
2π

4
+ 3

)
1√

N + 1
. (4.2)

The above bound is satisfied in particular, in the framework of the Markovian
Example 2.4, provided that

p0 > c, q0 > c, inf
n,i,j

P
(n)
i,j > c,

for some c ∈ (0, 1).
In the framework of Example 2.5, Corollary 4.1 shows that, as N tends to

infinity, SN converges in distribution to the lognormal random variable S0e
N−1/2,

provided that

lim
N→∞

1

N

N∑
n=0

σ2(n) = 1, lim
N→∞

1

N2

N∑
n=0

σ4(n) = 0

and pnqn ≥ c > 0 for any n ∈ N.
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