
Conditions for Compatibility of Components

The case of masters and slaves

Maurice H. ter Beek1, Josep Carmona2, and Jetty Kleijn3

1 ISTI–CNR, Pisa, Italy
2 Universitat Politècnica de Catalunya, Barcelona, Spain

3 LIACS, Leiden University, The Netherlands

Abstract. We consider systems composed of reactive components that collabo-

rate through synchronised execution of common actions. These multi-component

systems are formally represented as team automata, a model that allows a wide

spectrum of synchronisation policies to combine components into higher-level

systems. We investigate the correct-by-construction engineering of such systems

of systems from the point of view of correct communications between the com-

ponents (no message loss or deadlocks due to indefinite waiting). This leads to

a proposal for a generic definition of compatibility of components relative to

the adopted synchronisation policy. This definition appears to be particularly ap-

propriate for so-called master-slave synchronisations by which input actions (for

‘slaves’) are driven by output actions (from ‘masters’).

1 Introduction

In an increasingly connected world in which digital communication outnumbers all

other forms of communication, it is important to understand the complex underlying

interconnections in the numerous systems of systems governing our daily life. In fact,

modern systems are often no longer monolithic, but large-scale concurrent and dis-

tributed embedded systems whose components are again complex systems and which

as a whole offer more functionality and performance than the sum of their component

systems [35]. This requires a deep understanding of various communication and inter-

action policies (e.g. client-server, peer-to-peer, and master-slave) used in such multi-

component systems and the risk of failures they entail (e.g. message loss and dead-

locks can have severe repercussions on reliability, safety and security). One way to

approach this challenge is to lift successful design methodologies and analysis tools

from single systems engineering to systems of systems engineering. In a component-

based bottom-up manner, this can be addressed through correctness by construction,

where correctness is concerned with not only formal verification but also issues like

reliability, resilience, safety, security and even sustainability.

Correctness by construction sees the development of (software) systems (of sys-

tems) as a true form of Engineering, with a capital ‘E’. It advocates a step-wise refine-

ment process from requirements to specification to code, ideally by design tools that

automatically generate error-free (software) implementations from rigorous and unam-

biguous specifications of requirements [22,27,28,36,41]. To establish that components

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-47166-2_55

within a system or a system and its environment always may interact correctly, a con-

cept of compatibility can be useful. Compatibility represents an aspect of successful

behaviour and as such forms a necessary ingredient for the correctness of a distributed,

modular system design [25]. Compatibility failures detected in a system model may re-

veal important problems in the design of one or more of its components, to be repaired

before implementation. Compatibility checks considering various communication and

interaction policies thus significantly aid the development of techniques supporting the

design, analysis and verification of systems of systems.

We are interested in studying fundamental notions for the component-based de-

velopment of correct-by-construction multi-component systems. We represent multi-

component systems by team automata [3–6]. Team automata are useful to specify in-

tended behaviour of reactive systems. Their basic building blocks are component au-

tomata that can interact with each other via shared (external) actions; internal actions

are never shared. External actions are input or output to the components they belong

to. Components can be added in different phases of construction, allowing for hierar-

chically composed systems (of systems). Team automata share the distinction of output

(active), input (passive) and internal (private) actions with I/O automata [38, 39], Inter-

face automata [1, 19–21] and Component-Interaction Automata [10], but an important

difference is that team automata impose less a priori restrictions on the role of the ac-

tions and the permitted type of interactions between the components. This particularly

suits systems of systems that in practice are often composed of different models of

computation that interact according to a variety of synchronisation policies.

In [16], the binary notion of I/O compatibility from [11, 12] was lifted to team

automata consisting of multiple reactive component automata. The aim of the ideas

developed in [12] was to provide a formal framework for the synthesis of asynchronous

circuits and embedded systems. The approach was restricted to two components and a

closed environment, i.e. all input (output) actions of one component are output (input)

actions of the other component. A characterisation was given for compatibility of two

components that should engage in a dialogue free from message loss and deadlocks.

Message loss occurs when one component sends a message which cannot be received

by the other component as input, whereas deadlock occurs when a component is kept

waiting indefinitely for a message that never arrives. Team automata proved to form a

suitable formal framework for lifting the concept of compatibility to a multi-component

setting in [16], in which communication and interaction may take place between more

than two components at the same time (e.g. broadcasting).

In [16], emphasis was on interactions based on mandatory synchronised execution

of common actions (leading to what is a.k.a. the synchronous product of the component

automata). In this paper, we present an initial exploration into lifting the conditions

for compatibility defined in [16] to team automata that adhere to other synchronisa-

tion strategies. We first propose a general notion of compatibility defined with respect

to a given synchronisation policy. Subsequently, we focus on how to handle team au-

tomata that interact according to master-slave cooperations. In such cooperations, input

(for ‘slaves’) is driven by output (from ‘masters’) under different assumptions rang-

ing from slaves that cannot proceed on their own to masters that should always be

followed by slaves. This models a well-known method of communication in which spe-

cific, more authoritative partners unidirectionally control or trigger other partners to

synchronise with them. Examples include peripherals connected to a bus in a computer,

master databases from which data is replicated to (synchronised) slave databases and

master (precision) clocks that provide timing signals to synchronise slave clocks. The

producer-consumer design pattern known from concurrency theory and programming

(e.g. threading) can be seen as a simplified case of master-slave communication, where

a buffer is usually used to avoid message loss.

The main contribution of this paper is thus a proposal: a generalisation of the con-

ditions for compatibility of components defined in [16] to the context of arbitrary sets

of synchronisations. After delineating some of the difficulties involved with the pro-

posed definition, we instantiate compatibility for master-slave policies of synchronisa-

tion and illustrate how this allows to guarantee absence of deadlocks and message loss

for master-slave types of team automata to which the results from [16] cannot be ap-

plied. In the future, we plan to address follow-up questions concerning these types of

systems, like “how is compatibility affected when slaves are added?” and “in what way

does compatibility depend on (the type of) cooperation among slaves?”. Furthermore,

it remains to investigate the applicability of our proposed definition to team automata

composed according to still other synchronisation policies.

Outline After introducing the team automata modelling framework in Sect. 2, we

discuss and illustrate in Sect. 3 two specific synchronisation policies. Section 4 con-

tains our main contribution: we propose a generalisation of the notion of compatibility

in a multi-component environment as defined in [16] from synchronous product to arbi-

trary synchronisation policies. After an application in the context of master-slave syn-

chronisations, we provide some initial observations for a restricted class of so-called

master-slave systems in Sect. 5. We conclude with a list of possible applications of our

approach in Sect. 6, followed by a discussion of related and future work.

2 Component and Team Automata

Notation We use
∏n

i=1 Vi to denote the Cartesian product of sets V1, . . . ,Vn. If v =

(v1, . . . , vn) ∈
∏n

i=1 Vi and i ∈ {1, . . . , n}, then the i-th entry of v is obtained by applying

the projection function proji :
∏n

i=1 Vi → Vi defined by proji(v1, . . . , vn) = vi.

Component automata Team automata are systems composed of reactive component

automata that can interact through synchronised executions of shared actions. Each such

component automaton is a labelled transition system (LTS) in which input, output and

internal actions are explicitly distinguished.

Definition 1. A (reactive) component automaton is an LTS A = (P, Γ, γ, J), with set P

of states; set Γ of actions, such that P ∩ Γ = ∅ and Γ is the union of three pairwise

disjoint sets Γinp , Γout and Γint of input, output, and internal actions, respectively; γ ⊆

P × Γ × P is its set of (labelled) transitions; and J ⊆ P its set of initial states. ⊓⊔

A component automaton (P, Γ, γ, J), with input actions Γinp , output actions Γout and

internal actions Γint can also be specified as (P, (Γinp , Γout , Γint), γ, J). The actions Γ \

Γint = Γout ∪ Γinp are external. For an action a ∈ Γ, we define the set of a-transitions as

γa = γ ∩ (P × {a} × P). Especially in figures, we may append input and output actions

with ? and !, respectively, to indicate their roles (cf. Fig. 1).

The (dynamic) behaviour of a component automaton is determined by the execu-

tion of actions enabled at the current state. We say that a is enabled inA at state p ∈ P,

denoted by a enA p, if there exists p′ ∈ P such that (p, a, p′) ∈ γ. The sequential compu-

tations ofA, denoted by CA, are now defined as those finite sequences p0a1 p1a2 · · · pk

and infinite sequences p0a1 p1a2 · · · such that p0 ∈ J and (pi−1, ai, pi) ∈ γ for all

i ∈ {1, . . . , k} and all i ≥ 1, respectively. A state p ∈ P is said to be reachable if

there exists a finite computation p0a1 p1a2 · · · p j ∈ CA for some j ≥ 0 such that p = p j.

Team automata The components forming a team automaton interact by synchronis-

ing on common actions. Their internal actions however are not meant to be externally

observable and are thus unavailable for synchronisation and cannot be shared. This

leads to the concept of composability.

Let S = {Ai | 1 ≤ i ≤ n } be a set of component automata specified, for each

i ∈ {1, . . . , n}, asAi = (Qi, (Σi,inp , Σi,out , Σi,int), δi, Ii) with Σi = Σi,inp ∪Σi,out ∪Σi,int . Then

S is a composable system if Σi,int ∩
⋃n

j=1, j,i Σ j = ∅ for all i ∈ {1, . . . , n}. Note that every

subset of a composable system is again a composable system.

For the remainder of this paper, we let S as just specified, be an arbitrary but fixed,

composable system. We refer to Σ =
⋃n

i=1 Σi as its set of actions and to Q =
∏n

i=1 Qi as

its state space. The team automata we consider are defined over a composable system

S as above and have set of actions Σ and set of states Q. Their transitions are synchro-

nisations involving transitions of the automata from S.

Synchronisations in a composable system are global transitions that combine one or

more (local) transitions of different component automata; these local transitions are all

labelled with the same action name. Intuitively, each component automaton that partic-

ipates through a local transition in such a synchronisation changes its state accordingly.

The local states of automata not taking part in the synchronisation are not affected.

Definition 2. A transition (q, a, q′) ∈ Q × Σ × Q is a synchronisation on a (in S) if

(proji(q), a, proji(q
′)) ∈ δi, for some i ∈ {1, . . . , n}; moreover for all i ∈ {1, . . . , n}, either

(proji(q), a, proji(q
′)) ∈ δi or proji(q) = proji(q

′).

For a ∈ Σ, ∆a(S) is the set of all synchronisations on a inS, while ∆(S) =
⋃

a∈Σ ∆a(S)

is the set of all synchronisations in S. ⊓⊔

Note that the composability of S implies that in synchronisations on internal actions

always exactly one component automaton is involved.

Team automata over a composable system are determined by their (global) transi-

tions, i.e. a choice from the set of all synchronisations in that system under the additional

condition that all transitions labelled with internal actions are included (combining au-

tomata into teams does not affect their ability to execute internal actions). The actions

of a team automaton comprise the actions of its components. Again we distinguish be-

tween input, output, and internal actions. This division is inherited from the original

roles of the actions in the component automata and is the same for all team automata

over a given composable system. The internal actions of any team automaton over a

composable system are the internal actions of the individual components. For the exter-

nal actions, the idea is that component automata have control over their output actions

whereas input actions are passive (driven by the environment). As a consequence, ac-

tions that appear as an output action in one or more of the components will be output

of the team (even when they are input to some other components). Input actions that do

not appear as output are input actions of the team.

Recall that Σ =
⋃n

i=1 Σi is the set of actions of S. Then Σint =
⋃n

i=1 Σi,int is its set of

internal actions, Σout =
⋃n

i=1 Σi,out its set of output actions and Σinp = (
⋃n

i=1 Σi,inp) \ Σout

its set of input actions. All team automata over S will have Σ as their set of actions,

with Σint as internal, Σout as output and Σinp as input actions. Moreover, I =
∏n

i=1 Ii is

the set of initial states of every team automaton over S. Consequently, it is the choice of

a synchronisation policy over S (i.e. a subset δ ⊆ ∆(S) with δa = ∆a(S) for all a ∈ Σint)

that defines a specific team automaton.

Definition 3. The team automaton over S defined by the synchronisation policy δ over

S is the reactive component automaton T = (Q, (Σinp , Σout , Σint), δ, I). ⊓⊔

Since every team automaton is a reactive component automaton, they can be used to

construct hierarchical systems of systems.

Subteams Given a team automaton over a composable system, one can distinguish

subteams determined by a selection of component automata from the system.

Let T be a team automaton over S and let δ ⊆ ∆(S) be its set of transitions. Let

J ⊆ {1, . . . , n} be such that J , ∅. The subteam SUBJ(S, δ) of T determined by J

is the automaton specified as (
∏

j∈J Q j, (ΣJ,inp , ΣJ,out , ΣJ,int), δJ ,
∏

j∈J I j). Here ΣJ,int =
⋃

j∈J Σj,int , ΣJ,out =
⋃

j∈J Σj,out and ΣJ,inp = (
⋃

j∈J Σj,inp) \ ΣJ,out . It may happen that

an output action of T is an input action in a subteam, namely when it does not have

an output role in any of the component automata forming the subteam. Finally, δJ =

{ (q, a, q′) ∈ δ | (projJ(q), a, projJ(q′)) ∈ ∆({A j | j ∈ J }) }. Hence the transitions

of the subteam are restrictions of those transitions of T in which at least one of the

components from {A j | j ∈ J } is actively involved. It follows that SUBJ(S, δ) is the

team automaton over {A j | j ∈ J } defined by the synchronisation policy δJ .

Input and output domains The domain of an action appearing in a composable

system is determined by the components in which it appears as an action. If it is an

external action it may be an input action for some components and an output action

for others. Thus all external actions of a composable system have a non-empty input

domain or a non-empty output domain or both. A synchronisation on an action that

involves components in which that action is an input action and components in which

it is an output action, models a communication between the input and output subteams

associated with that action.

Let a ∈ Σ be an action of S. Then doma(S) = { i | a ∈ Σi } is the domain of a in

S; doma,inp(S) = { i | a ∈ Σi,inp } is its input domain; and doma,out(S) = { i | a ∈ Σi,out }

is its output domain. Action a is communicating (in S) if both its output domain and

its input domain are not empty. Hence we define the communicating actions of S as

Σcom =
⋃n

i=1 Σi,inp ∩
⋃n

i=1 Σi,out .

For each external action a ∈ Σ, we write Sa,inp = {Ai | i ∈ doma,inp(S) } and

Sa,out = {Ai | i ∈ doma,out(S) } to denote the composable subsystems of S comprising

the input components and output components of a in S, respectively.

Let δ ⊆ ∆(S) be the set of transitions of a team automaton T over S. Let a

be an external action of S. If the output domain doma,out(S) of a is not empty, then

SUBdoma,out(S)(S, δ) is the output subteam of a in T ; it is the subteam of T determined

by the output domain of a and thus a team automaton over the output components of a;

it will be usually be denoted by SUBa,out(S, δ). Similarly, if a ∈ Σ has a non-empty input

domain doma,inp(S), then the input subteam SUBdoma,inp(S)(S, δ) of a in T is denoted by

SUBa,inp(S, δ); it is a team automaton over the input components of a. If no confusion

arises, we may omit referencing S and δ, and write SUBa,out and SUBa,inp, respectively.

3 Specific Synchronisation Policies

Team automata are defined through their synchronisation policies. For all (global, prod-

uct) states and each (external) action enabled at a corresponding local state of at least

one of the components, it has to be decided which synchronisations involving that ac-

tion are to be included as a transition of the team. It will however seldom be the case that

this decision is made explicitly for every candidate synchronisation separately. Rather,

the designer of the system has a certain idea about the interaction between components

when combining them into one system. We will discuss here two such globally defined

synchronisation policies, after which we will introduce the notion of state-sharing. This

is a relevant notion here, since as demonstrated in [16], the concept of compatibility can

be transferred from synchronous products to arbitrary team automata provided that they

are not state-sharing.

Synchronous product A natural and frequently used method for combining com-

ponents into a team automaton, or composing automata in general, is to always and

only include transitions modelling the execution of an action in which all components

participate that have that action in common.

Let a ∈ Σ be an action of S. Then we define

χSa = { (q, a, q
′) ∈ ∆(S) | ∀ i ∈ {1, . . . , n} : a ∈ Σi ⇒ (proji(q), a, proji(q

′)) ∈ δi }

as the set of all product synchronisations on a (in S). We let χS =
⋃

a∈Σ χ
S
a .

Note that χS is a proper synchronisation policy. In particular, χSa = ∆a(S) for every

internal action a. When S is understood, we may omit the superscript to write χ and χa.

Definition 4. The synchronous product (automaton) X(S) over S is the team automa-

ton over S with χS as its set of transitions. ⊓⊔

Master-slave synchronisations Another natural policy, relevant to automata models

that make a distinction between input and output actions, was introduced in [3, 4]. It

focusses on communication and thus relates input and output domains of an external

action. First, we formulate an approach based on relations between actions rather than

between full components. In Section 5, this will be restricted to a simpler set-up at the

level of the components by assuming that they are either output components (without

input actions) or input components (without output actions).

When input actions are seen as passive (under control of the environment) and out-

put actions as active (under the local control of the component), the designer could opt

for a master-slave paradigm underlying the team’s definition. Intuitively, master-slave

cooperation requires that input actions (‘slaves’) are driven by output actions (‘mas-

ters’). This means that in a master-slave synchronisation on an external action a, always

an output component of a participates. In other words, input actions (‘slaves’) never

proceed on their own. This does not exclude the possibility that a is executed by one or

more of its output components without simultaneous execution of a by an input com-

ponent. Thus the policy could be modified by the additional requirement that, if a is

communicating, then there is always an input component of a that also participates (a

master is always accompanied by one or more slaves), or—in a weaker form—masters

are accompanied by slaves whenever possible.

Definition 5. Let a ∈ Σcom , J = doma,out(S) and K = doma,inp(S).

1. The set of all master-slave synchronisations on a in S is defined as MS Sa =

{ (q, a, q′) ∈ ∆(S) | (projJ(q), a, projJ(q′)) ∈ ∆(Sa,out) };

2. The set of all strong master-slave synchronisations on a in S is defined as sMS Sa =

MS Sa ∩ { (q, a, q
′) ∈ ∆(S) | (projK(q), a, projK(q′)) ∈ ∆(Sa,inp) };

3. The set of all weak master-slave synchronisations on a in S is defined as wMS Sa =

MS Sa ∩ { (q, a, q
′) ∈ ∆(S) | (projK(q), a, projK(q′)) ∈ ∆(Sa,inp) if there exists a

k ∈ K such that a enAk
projk(q)) }. ⊓⊔

In addition, we stipulate that if an action a is not communicating, then by default all syn-

chronisations on a are master-slave, strong master-slave and weak master-slave. Thus

MS Sa = sMS Sa = wMS Sa = ∆a(S) for all non-communicating actions a of S. Note

that strong master-slave synchronisations are also weak master-slave synchronisations,

which again by definition, are also master-slave.

LetMS S =
⋃

a∈ΣMS Sa , sMS S =
⋃

a∈Σ sMS Sa and wMS S =
⋃

a∈Σ wMS Sa . The

superscript S may be omitted if this does not lead to confusion. Similar as for syn-

chronous product, we can now define a unique automaton over S by including all and

only those transitions that satisfy the requirements.

Definition 6. The (strong, weak) master-slave team automaton or (sMS -team, wMS -

team)MS -team automaton over S is the team automaton over S with (sMS S, wMS S)

MS S, respectively, as its set of transitions. ⊓⊔

Note that all synchronisations in to the synchronous product are strong master-slave:

χ ⊆ sMS always holds.

State-sharing Given a composable system, the designer chooses the team’s transi-

tions and determines which components participate in the execution of an action with

which local transitions. Hence, it may happen that at some global state, an action can

be executed in a certain way, while a similar synchronisation involving the same local

transitions is not possible at another global state, even though it concerns the same lo-

cal states for all components participating in that synchronisation. This phenomenon,

by which the local states of components not actively involved in a synchronisation de-

termine whether or not it may underlie a global transition, was coined state-sharing

in [24] and formalised in [3].

Definition 7. A team automaton T , specified as in Definition 3, is state-sharing if there

exist a transition (p, a, p′) ∈ δ, and a state q ∈ Q such that proji(q) = proji(p) for

all i such that (proji(p), a, proji(p′)) ∈ δi, while there is no state q′ ∈ Q such that

(q, a, q′) ∈ δ with proji(q
′) = proji(p′) for all i such that (proji(p), a, proji(p′)) ∈ δi, and

proji(q
′) = proji(q) for all other i. ⊓⊔

Thus in a state-sharing team automaton, there is a situation in which the possibility

to synchronise on a common action by certain components depends also on the local

state of one or more components not actually involved in the synchronisation. Hence,

when a team automaton is not state-sharing (or non-state-sharing), then the possibility

of executing a common action depends only on the local states of components that take

part in the synchronisation. As already noted in [16], synchronous product automata

are always non-state-sharing. Moreover, every (strong) master-slave team automaton is

non-state-sharing. This follows from the fact that the (strong) master-slave requirement

refers to participation of certain components and as a synchronisation policy includes

all synchronisations that satisfy that requirement and thus does not exclude any syn-

chronisation because non-participating components are not in a particular local state.

As the next example shows, there exist however weak master-slave team automata that

are state-sharing.

Example 1. Consider the component automataA1 andA2 depicted in Fig. 1.

// p1
a! // p2 // q1

b // q2
a? // q3

Fig. 1. Two reactive component automata:A1 (left) andA2 (right)

Figure 2 depicts the wMS -team automaton T w over {A1,A2}, in which a?! denotes

a synchronisation of action a in its input role a? and its output role a!.

p1
q1

b //

a!
��

p1
q2

a?!

&&

p1
q3

a!
��

p1
q1

b //

a!
��

p1
q2

a! //

a!
��

p1
q3

a!
��

;; ;;

p2
q1

b // p2
q2

p2
q3

p2
q1

b // p2
q2

p2
q3

Fig. 2. Two team automata over {A1,A2}; on the left the wMS -team automaton T w

We see that on the one hand (
(

p1
q1

)

, a,
(

p2
q1

)

), (
(

p1
q3

)

, a,
(

p2
q3

)

) ∈ wMS a, while on the other

hand, (
(

p1
q2

)

, a,
(

p2
q2

)

) < wMS a. This implies that T w is state-sharing: component A1 can

only execute a by itself ifA2 is not in state q2.

Note that (
(

p1
q1

)

, a,
(

p2
q1

)

), (
(

p1
q2

)

, a,
(

p2
q2

)

) and (
(

p1
q3

)

, a,
(

p2
q3

)

) are all master-slave, but none

of them is a strong master-slave synchronisation on a in {A1,A2}. However, (
(

p1
q2

)

, a,
(

p2
q3

)

)

is both master-slave and strong-master slave. ⊓⊔

As shown in [16], any team automaton T (over S) can be converted into a synchronous

product automaton χ(S′) over the new composable system S′ derived from S by using

synchronisations as action names. The behaviour of T (its sequential computations)

can be obtained by a simple mapping from the behaviour of χ(S′). In general χ(S′)

may exhibit too much behaviour. If, however, T is non-state-sharing, then each of the

computations of χ(S′) corresponds to a computation of T (Theorem 13 in [16]).

4 Conditions for Compatibility

We are now ready to continue the investigation of conditions that guarantee a compos-

able system of reactive component automata to be compatible with respect to a certain

synchronisation policy, or in other words, whenever the component automata are com-

posed according to this specific policy, they form a team automaton free from message

loss and deadlocks. This approach to compatibility was originally considered in [12] for

two reactive components in which all external actions are communicating and which are

composed as a synchronous product. In [16], the concept was extended to systems with

an arbitrary (finite) number of components and not necessarily ‘complete’, meaning

that some of the external actions can be non-communicating. This reflects the idea that

a system may be further extended by additional components (or teams). In [16], the

synchronisation policy considered is the synchronous product. However, once it was

demonstrated how non-state-sharing team automata policies can be encoded as syn-

chronous products it was discussed how this might lead to a concept of compatibility

for the original synchronisation policy, though no definite results could be claimed yet.

Before giving the formal definition of compatibility from [16], we recall some notions.

Basic notions LetA be a component automaton specified as in Definition 1.

First we introduce a notion to reflect that components may have a (planned) option

to halt: A state p ∈ P is said to be terminating if no action is enabled at p and A is

terminating if it has at least one reachable terminating state.

The next notion describes the—in general undesirable—situation that a compo-

nent automaton may exhibit interminable internal behaviour, thus avoiding ‘visible’

behaviour and in particular communication:A exhibits a livelock if there exists an infi-

nite computation p0a1 p1a2 · · · ∈ CA, such that all actions a1, a2, . . . are internal actions.

A livelock-free component will always ultimately execute an external action or termi-

nate.

Finally, given a composable system S as before, we introduce a notion to describe

when an external action can be executed by its (input, output) domain.

An external action a ∈ Σ is input-domain (output-domain) enabled at a state q ∈ Q if

a enAi
proji(q) for all i ∈ doma,inp(S) (for all i ∈ doma,out(S), respectively). An external

action is domain enabled if it is both input-domain and output-domain enabled. Note

that input (output) actions which are not communicating in S are output-domain (input-

domain, respectively) enabled at all states in Q, because they have an empty output

(input) domain. It should also be noted here that for an external action with non-empty

input-domain, input-domain enabledness (and similarly output-domain enabledness if

it has a non-empty output-domain) coincides with enabledness in its input subteam

(output subteam) in the synchronous product automaton.

4.1 Compatibility and Synchronous Product

The definition of compatibility proposed in [16] applies to component automata that

together form a composable system and assumes that the team will be defined by the

synchronous product policy.

Definition 8. R ⊆ Πn
i=1

Qi is a compatibility relation for S if Πn
i=1

Ii ⊆ R and for all

p ∈ R the following conditions are satisfied.

Non-communicating progress For all a ∈
⋃n

i=1 Σi \ Σcom : if a enAi
proji(p) for all

i ∈ doma(S), then p′ ∈ R, whenever (p, a, p′) ∈ χSa .

Receptiveness For all a ∈ Σcom : if a is output-domain enabled at p, then a is input-

domain enabled at p, and p′ ∈ R whenever (p, a, p′) ∈ χSa .

Deadlock-freeness If some action a ∈ Σcom is input-domain enabled at p, then there

are b ∈
⋃n

i=1 Σi and p′ ∈ Πn
i=1

Qi such that (p, b, p′) ∈ χS.

S is said to be compatible if each of its component automata Ai is livelock-free and

there exists a compatibility relation for S. ⊓⊔

Thus compatibility is phrased in terms of a relation over the local states (in the binary

case [12] similar to a bisimulation [40]). This relation is a subset of all possible states

of any team over S and always includes all initial states. As long as no communica-

tions take place according to the synchronisation policy, the states thus reached will all

be in the relation (Non-communicating progress). Whenever the output subteam of a

communicating action is enabled, its input subteam is ready for synchronisation on that

action and the resulting state will still be in the relation (Receptiveness). If the input

subteam of a communicating action is enabled, there is always a possibility for the sys-

tem to proceed (Deadlock-freeness); as proved in [16] the new states will be again in the

relation if the conditions of Non-communicating progress and Receptiveness are also

fulfilled. Moreover, the absence of livelocks guarantees that the (synchronous product)

team automaton proceeds visibly as long as there are pending input requests.

As said, in [16] it was shown that compatibility concepts can be transferred from

synchronous product to non-state-sharing team automata. More precisely, violations of

any of the three requirements for a compatibility relation in the obtained synchronous

product were pre-existent in the original team automaton (Definition 6 in [16]).

To ensure deadlock-freedom, [8] uses a method based on system invariants that

relate states of components to approximate global states and the method checks that the

overapproximation matches an equivalent of deadlock-freeness. A difference with the

set-up here is however that our composition is not formulated in terms of interactions

that are added to composite systems.

4.2 Compatibility and Master-Slave Policies

Now we can formulate, as a main contribution of this paper, a proposal for a defini-

tion of compatibility between components without assumptions regarding the actual

synchronisations that may take place. To do so, we lift the concept of compatibility

relations to compatibility with respect to a set of team transitions.

Definition 9. Let δ ⊆ ∆(S) be a synchronisation policy over S. Then R ⊆ Πn
i=1

Qi is

a compatibility relation with respect to δ for S if Πn
i=1

Ii ⊆ R and for all p ∈ R the

following conditions are satisfied.

Non-communicating progress For all a ∈
⋃n

i=1 Σi \Σcom : if (p, a, p′) ∈ δ, then p′ ∈ R.

Receptiveness For all a ∈ Σcom : if a enSUBa,out
projJ(p) with J = doma,out(S), then

a enSUBa,inp
projK(p) with K = doma,inp(S), and p′ ∈ R whenever (p, a, p′) ∈ δ.

Deadlock-freeness For all a ∈ Σcom : if a enSUBa,inp
projK(p) with K = doma,inp(S), then

there are b ∈
⋃n

i=1 Σi and p′ ∈ Πn
i=1

Qi such that (p, b, p′) ∈ δ.

S is said to be compatible with respect to δ if each of its component automata Ai is

livelock-free and there exists a compatibility relation with respect to δ for S. ⊓⊔

Note that a compatibility relation with respect to an arbitrary δ relates to enabledness

of actions in output and input subteams of the team automaton defined through δ, rather

than enabledness of that action in simply the input or output domains as we did for χ.

However, in case of the synchronous product, enabledness in all output (input) compo-

nents is the same as enabledness of the subteam (at the same state). In fact, the above

definition generalises the concept of compatibility defined in [16]. Thus, more precisely,

R is a compatibility relation with respect to the synchronous product χ according to the

above Definition 9, if and only if it is a compatibility relation as defined in Definition 8

(which in its turn is Definition 4 from [16]). In order to see this, one observes first that,

if δ = χ, then a enAi
proji(p) for all i ∈ doma(S) and (p, a, p′) ∈ χSa if and only if

(p, a, p′) ∈ δ. Secondly, output-domain (input-domain) enabledness of an action at a

global state coincides with enabledness of that action in its output (input, respectively)

subteam of the synchronous product automaton at the corresponding (projected) state

of the subteam.

The reason for requiring enabledness in subteams rather than enabledness in indi-

vidual components (forming the output or input subteam) is the generalisation to ar-

bitrary synchronisation policies. There is in general no reason to assume that all com-

ponents that share an action have to participate in all synchronisations on that action.

Hence we view subteams as ‘black boxes’ and treat the synchronisations that take place

within them as given.

Nevertheless, there is still an implicit assumption even in this generalised definition

regarding the collaboration between output and input subteams. According to the re-

quirement of Receptiveness in Definition 9, whenever the output subteam of an action

is ready to execute that action, its input subteam should be ready to participate. There

is however no guarantee that the team will actually synchronise on the action from the

given global state (cf. Example 2 below). It may well be the case that δ has a transition

that combines the transition of the output subteam with a transition from the input sub-

team starting from another state of the subteam (and vice versa). Hence Receptiveness

gives a necessary condition to avoid message loss, but does not impose it on δ.

Example 2 (Example 1 continued). Figure 2 (right) displays a team automaton over the

component automataA1 andA2 depicted in Fig. 1.

Clearly, the output and input subteams of action a in this team automaton are basi-

cally the component automata A1 and A2. We see that both are enabled in state
(

p1
q2

)

,

but the synchronisation (
(

p1
q2

)

, a,
(

p2
q3

)

) is not part of the team. ⊓⊔

Therefore, we propose to investigate the case of master-slave synchronisations, because

these policies express in a natural way the relation between output and input as ex-

pressed by Receptiveness, precluding message loss (reflected by masters followed by

slaves) and deadlocks when the system gets blocked in a waiting state (with slaves that

cannot proceed on their own).

In a preliminary exploration, we reconsider now Definition 9 with δ = sMS S,

δ = wMS S or δ = MS S. Assume that the output subteam defined by δ is currently

(global state p) enabled to execute action a and that the input subteam is also ready

to execute a. We then know that the corresponding transitions of the input subteam in-

volving a occur in δ in combination with all transitions of a in its output subteam, as

desired. However, δ = MS S will also have a transition that does not involve the input

subteam of a (as in the master-slave case, masters may proceed on their own). Thus

even though the input subteam can oblige, messages may still get lost when its partici-

pation cannot be enforced. The weak master-slave and the strong master-slave policies

however would have only transitions in which there is an (ouput-input) communication

role for a. Thus, more restrictive assumptions regarding the collaboration between in-

put and output subteams (rather than their internal workings) would support a general

definition of compatibility like the one we propose here.

Before concluding this section, we recall once more that team automata composed

according to non-state-sharing synchronisation policies may be encoded as synchronous

product automata. Thus we can now use master-slave synchronisation policies to fur-

ther our understanding of general compatibility requirements. For instance, we could

apply this approach to strong master-slave team automata (as observed earlier, these are

non-state-sharing) and investigate how compatibility in the encoded version relates to

compatibility in the original system. Next, after encoding master-slave team automata

(also these are non-state-sharing) as synchronous product automata we can investigate

how compatibility in their encoded versions translates to (desirable) properties in the

original system.

4.3 Applications of Compatibility

A typical example of the usefulness

of a notion of compatibility in a setting

of systems constructed according to syn-

chronisation policies that differ from the

policy of synchronous product may be

found in the context of client-server ar-

chitectures. A common solution to make

such architectures more robust, i.e. re-

silient against server failures, is to repli-

cate the server and thus move from a

centralised architecture to a decentralised one, as depicted in the above figure. Then,

when a server fails, other servers still running will continue to send messages to clients.

It might be important that these servers appear as one to the clients. This can be

achieved by composing the set of servers according to so-called (strong) output peer-

to-peer synchronisations [4]. For now, think of a scenario in which the set of servers

as a whole uses so-called multicast communication to send messages to the clients

(compared to broadcast communication, only clients that are within reach of the server,

i.e. enabled, can receive its messages). This can be achieved by composing the set of

servers (as a whole) with their clients according to weak master-slave synchronisations,

upon which the definition/results of Sect. 4.2 become applicable.

We continue by describing another example, adapted from [16], inspired by the

Esterel program of a ring of stations sharing a bus that was presented in [9].

Consider a system of three identical stations hooked to form a ring (cf. Fig. 3).

A station’s user can perform requests for accessing a common bus. User requests are

granted depending on whether or not the corresponding station has the right to grant

access, which is implemented by means of tokens flowing along the ring. While a station

has the token, it has the right to grant access. To ensure fairness, a user is granted access

for just one clock tick, after which the token is passed on. This implies we assume the

presence of a global clock (not shown in the figure) whose only behaviour is producing

ticks, thus synchronising all components.

The behaviour of the ith station is defined by the component automaton Ti in Fig. 3.

If it has the token, then it checks whether the ith user has requested access within the

current tick. If so, it grants the user bus access, after which the token is passed on upon

the next tick and it returns to the initial state. If not, upon the next tick, the token is

passed on and it returns to the initial state. The (simplified) behaviour of the ith user is

defined by the component automaton Ui in Fig. 3. At any time, it can request access

to the bus, upon which access is granted, unless a tick is received first, after which it

returns to the initial state.

Token2 Token3

Token1

USER 2

USER 1 USER 3

Request2Granted2

Granted1

Request1

Request3

Granted3
3

2

1

Ti

��tick? ..

tokeni?

��

reqi?

��

tick?

��

granti!
��

tokeni+1!
ll

tick?

??

Ui

��tick? ..

reqi!

��
tick?

OO

granti?

kk

Fig. 3. A ring of stations sharing a bus, the ith station Ti and the ith userUi

Now consider the (weak) master-slave team automata over Ti and Ui depicted in

Fig. 4. Note that all occurrences of tick? actually denote synchronisations of input ac-

tions tick? as (peer-to-peer) collaborations between the station and the user.

The master-slave team automatonMS is the one without the dotted red reqi? tran-

sition.4 In this case, message reqi! can obviously be lost. From the initial state, the

sequence reqi! tick? leads back to the initial state with a non-granted access request,

meaning that the user made a request, but the clock tick occurred before the station

reacted. However, MS is non-state-sharing, which means we can apply Theorem 13

and Definition 6 from [16]: there exists a synchronous product automaton χ({T ′
i
,U′

i
})

whose every computation corresponds to a computation ofMS and in which no com-

patibility problems occur that did not exist inMS , i.e.MS has a Receptiveness/Non-

communicating progress/Deadlock-freeness violation at state q if χ({T ′
i
,U′

i
}) does.

4 We have drawn this arc as an explicit example of a non master-slave synchronisation in which

the station executes input action reqi? and does not synchronise with the reqi! of the user.

The weak master-slave team automaton wMS isMS without the dotted red reqi?

transition and it also misses the dashed green reqi! and granti! transitions. Hence, when

a token has arrived in the initial state, the request action is executed synchronously by

the user and the station, after which access is granted by another synchronous execution.

However, also in this case message reqi! can be lost, but—more importantly—this team

is state-sharing, which means that we cannot apply Theorem 13 from [16]. This is where

our new definition of compatibility (Definition 9) comes into play. (Cf. [16] for other

team behaviour.)

(w)MS

tick? ..

reqi!

��

tokeni? //

reqi!

��

reqi?!

$$

tick? //

reqi!

��

tokeni+1!

ww

reqi!

��

tick?oo??

tick?

OO

tokeni?
//

reqi?
//

tick?

55

granti?!

55

granti!

::

tokeni+1!

gg
tick?

dd

Fig. 4. The (weak) master-slave team automaton (w)MS over {Ti,Ui}.

5 Master-Slave Systems

Even without explicit reference to the actual synchronisations that take place within

subteams, it is quite challenging, also in case of master-slave policies, to define com-

patibility in terms of correct input/output behaviour. In fact, which subteams can or

should communicate varies with the evolution of the system as this depends on the

current state of the system (cf. [16]).

In this section, we again consider master-slave synchronisations but now with the

additional assumption that all components of the system are either masters or slaves,

meaning that they can have output actions or input actions, but not both. As a conse-

quence, every component has a fixed role (master or slave) in any communication in

which it is involved. This assumption leads to a simple set-up facilitating the investi-

gation of the communication behaviour. In particular, we expect the static dichotomy

of the system in masters and slaves to support an iterative (bottom-up) approach to the

construction of compatible systems. After a formal definition, we will discuss some

simple cases to illustrate this point.

Definition 10. A component automaton (P, (Γinp , Γout , Γint), γ, J) is a master automaton

if Γinp = ∅ and it is a slave automaton if Γout = ∅.

For a setA of component automata, µ(A) denotes the subset of all master automata

belonging toA and σ(A) denotes the subset of all slave automata belonging toA.

A is a master-slave system ifA = µ(A) ∪ σ(A). ⊓⊔

Clearly, in general, µ(A) ∪ σ(A) = A does not hold, as A may contain automata

with both output and input actions. Moreover, µ(A)∩σ(A) is not necessarily empty as

there may be an automaton inA with only internal actions. A component with external

actions can be either an input component or an output component, but never both.

With every component not capable of receiving input or of providing output (or

both), it is clear that master-slave systems cannot be used to describe ‘protocol’ be-

haviour, i.e. chains of ‘action-response’ events leading to some successful computa-

tion. Instead, master-slave systems behave as ‘producer-consumer’ systems. The type

of chain behaviour described by master-slave systems can be observed in manufactur-

ing systems (cf. [43] and the references therein) and it is also a typical design pattern in

concurrency theory and programming (e.g. threading), where a buffer is usually used to

avoid message loss.

Let A be a master automaton and let A′ and A′′ be two slave automata forming a

composable system. Assume that both S1 = {A,A
′} and S2 = {A,A

′′} are composable

master-slave systems that are strong master-slave compatible (i.e. they are compatible

with respect to sMS S1 and with respect to sMS S2 , respectively). Thus in each of the

team automata, the master is always followed by the slave. Moreover, it is then also

guaranteed that the master will always be followed by the two slaves in a single system

if the two slaves are synchronised (e.g. in a synchronous product construction) and

then the resulting slave (!) automaton is combined with the master. The system that is

obtained in this way, is again a master-slave system and strong master-slave compatible.

Formally, S3 = {A,X({A′,A′′})} is a composable master-slave system compatible with

respect to sMS S3 . A compatibility relation R for the new system S3 can be constructed

from the compatibility relations R′ for S1 and R′′ for S2 by letting (q, q′, q′′) ∈ R iff

(q, q′) ∈ R′ and (q, q′′) ∈ R′′.

As a second example, consider again a master automatonA and two slave automata

A′ andA′′. The component automatonB is constructed fromA′ by changing all (input)

actions it shares with A′′ into output actions. Thus depending on whether A′ shares

none, all, or some of its input actions withA′′, the new B is a slave automaton, a master

automaton, or neither. Here we assume that B is a master automaton. Furthermore, we

suppose that the master-slave systems S4 = {A,A
′} and S5 = {B,A

′′} are composable

and strong master-slave compatible (i.e. they are compatible with respect to sMS S4

and with respect to sMS S5 , respectively). Hence, A′′ is always ready to synchronise

with A′ in X({A′,A′′}). We conjecture that also the composable master-slave system

S6 = {A,X({A′,A′′})} is compatible with respect to sMS S6 (to be proved as above by

combining the compatibility relations for S4 and S5).

6 Applications of Asynchronicity

The main characteristic of the team automata framework is that it caters for component-

based modelling and composition according to a wide range of synchronisation policies.

The usefulness of such a flexible framework for compatibility is witnessed by examples

from both hardware and software in which synchronisation deviates from the standard

synchronous product. Hence the contributions of this paper may open the door to apply

correct-by-construction design techniques in unprecedented areas. We provide in this

section some examples in this direction.

Swarm Intelligence Recently, the notion of swarm networks has appeared as an

alternative computation paradigm in the field of swarm intelligence [34]. In a swarm

network, an agent communicates/cooperates through its sensors, actuators and connec-

tors. Sensors and actuators allow the asynchronous communication through the receiv-

ing and sending of signals. Due to their limited capabilities, agents sometimes need to

self-organise in communities through their connectors, in order to accomplish certain

tasks. This ability resembles the hierarchical construction allowed by the team automata

framework. Because of the huge number of agents a swarm network has, the simula-

tion of such an environment may miss important facts about its correctness. Instead, the

construction of swarm networks with certain compatibility guarantees may represent an

important step towards their satisfactory application.

Hardware Design The end of Moore’s Law may bring in front hardware tech-

nology architectures that provide, i.a., flexible (clock) synchronisation. Hence asyn-

chronous circuits, and—in a more realistic incarnation—globally asynchronous locally

synchronous (GALS) [18] or elastic circuits [13], represent viable alternatives for deal-

ing with phenomena like the problem of clock skew. In the late 80s, David L. Dill

proposed for the first time the theory of conformance between an asynchronous speci-

fication and the corresponding implementation. As happened with conformance almost

thirty years ago, we believe that the notion of compatibility presented in this paper,

which lifts most of the restrictions the conformance notion has, may assist the safe

design of future hardware architectures.

Software Engineering Nowadays the use of the unified modeling language (UML)

still dominates the field of software engineering for the design of systems. Unfortu-

nately, due to UML’s imprecise semantics, the compatibility checking of UML designs

is a challenging task. Current solutions (e.g. [30]) only consider the synchronous prod-

uct of UML State Charts as main composition operation, thus missing out on important

constructs when modelling real systems. We believe that the work proposed in this pa-

per can generalise previous attempts to accomplish the task of compatibility checking

of UML specifications (cf. [29, 30]).

Manufacturing By focussing on particular subclasses of team automata, we have

shown in Sect. 5 very interesting properties on the corresponding hierarchical construc-

tion. The systems modelled in Sect. 5 may represent a wide class of manufacturing sys-

tems, where not a protocol but (a chain of) producer-consumer behaviour is observed.

In the context of manufacturing systems, incompatibility may lead to faults due to dead-

locks or receptiveness violations, which may hamper the manufacturing of items.

Concurrent Asynchronous Programming The last decade, concurrent asynchronous

programming languages have reached a certain maturity, demonstrated by their wide-

spread industrial adoption. Erlang [2] is a prominent example; its asynchronous com-

munication mode allows for a very flexible communication architecture, but on the other

hand if used incorrectly may lead to invalid/suboptimal implementations of a system.

To the best of our knowledge, current approaches follow the verification principle, i.e.

a post-mortem approach to certify certain properties (e.g. liveness, safeness) of Erlang

programs [17,26]. Instead, correct-by-construction design might become possible if the

theories described in this paper are used in the specification of Erlang programs.

Web Services Two services are protocol compatible if every joint execution of these

services leads to a proper final state [23]. In [44], two main types of protocol mis-

matches were defined over a pair of service protocols: unspecified reception (lack of

receptiveness in our setting) and mutual deadlock. In Fig. 2 of [23] we see a clear re-

semblance to our compatibility notion. Again, the limitation of using the synchronous

product to verify compatibility, together with the extreme flexibility of team automata,

might make the theory of this paper well-suited for the description of flexible compati-

bility relations also in the area of Web services.

7 Conclusions

In this paper, we continued the quest of [12, 15, 16] for precise conditions for the com-

patibility of components in systems of systems that (by construction) guarantee correct

communications, free from message loss and deadlocks. We proposed a definition of

compatibility for components that applies to any synchronisation policy allowed by

team automata, after which we briefly discussed its application to master-slave syn-

chronisations. While we still defined the generalised compatibility relation in terms

of Non-communicating progress, Receptiveness and Deadlock-freeness, it refers to the

enabledness of actions in output and input subteams rather than in their constituting

components.

Related work Non-communicating progress prescribes that internal actions do not

lead outside a compatibility relation. This extends the Internal progress condition of the

I/O compatibility from [11, 12] reflecting the role of silent actions in bisimulations.

Receptiveness is a weak version of the input-enabledness requirement imposed on

I/O automata [38, 39] by which output actions can never be blocked by components

not ready to receive this communication as input because in each state, every input ac-

tion has to be enabled. However, I/O automata are composed as synchronous products,

meaning that one cannot distinguish different types of master-slave synchronisations,

since all synchronisations on communicating actions are by definition strong master-

slave (cf. Sect. 3). As the applications sketched in Sect. 6 confirm, input-enabledness

is in general too strong a requirement. This was recognised also in the theory of Inter-

face Automata [20, 21], where a form of receptiveness is achieved without imposing

input-enabledness by a notion of compatibility that always guarantees at least one syn-

chronisation that does not lead to an error state. Its extension into Sociable Interface

Automata [19] moreover allows multi-way communication, while its associated tool [1]

allows to check notions of composability and compatibility.

Deadlock-freeness prescribes that the system cannot terminate if an input subteam

is still waiting for input, thus generalising—as in the case of Receptiveness—the notion

from [12,16] in which this is required at the level of an individual component rather than

a subteam. As noted in [32], interface automata compatibility does not imply deadlock-

freeness.

In [31–33], an approach similar to ours considers communication-safety as a notion

of compatibility in multi-component environments composed according to assembly

theories to express the absence of communication errors. In this case, the modelling

framework is a generalisation of both interface automata and modal I/O-transition sys-

tems [37] but the synchronous product is the only composition operator considered.

Future work Most importantly, we would like to investigate in depth our proposed

definition of compatibility of components with respect to arbitrary synchronisation poli-

cies. This would range from explicitly taking other policies than master-slave synchro-

nisation into account to studying the case of master-slave compatibility in more detail.

In general, we could extend Definition 9 with requirements relating to the actual

synchronisations within the input and output subsystems. For instance, when prescrib-

ing a master-slave policy for an action a, we could require in addition that the output

subteam of a is a synchronous product (masters operating as peers) or that the input

subteam of a is a synchronous product, implying that all components with a as an input

have to follow the master or masters (slaves operating as peers). These additional re-

quirements could also be weakened by requiring such peer-to-peer collaborations only

between enabled components. Also the obligation of slaves following masters may be

formulated in a variety of ways, based on how the participation of input components (of

an action’s input subteam) is realised (e.g. requiring ‘at least one’, ‘exactly one’, ‘all’

or ‘only those in which the action is enabled at the current state’ to participate).

As anticipated in the Introduction, it would be interesting to study how (master-

slave) compatibility is affected when (slave) components are added. Perhaps the com-

bination of non-state-sharing and master-slave-compatible systems may lead to an in-

cremental construction of compatible systems. For instance, assume that we have a

non-state-sharing master-slave-compatible team automaton, and we add a new compo-

nent to the team in a way that the new team is still non-state-sharing. Then what are the

necessary conditions to also preserve the master-slave compatibility?

Finally, it would interesting to study possible cross-fertilisation with work on syn-

thesis. In [14], the binary notion of I/O compatibility from [12] is applied to the syn-

thesis of asynchronous circuits modelled as Petri nets. It would be interesting to see

whether this can be extended to multi-component systems based on the compatibil-

ity of components with respect to synchronisation policies other than the synchronous

product. In [7], supervisory control theory [42] is applied to product lines. This the-

ory provides a means to synthesise a supervisory controller automaton from a set of

components and requirements. If such a synthesised supervisory controller exists, then

the resulting synchronous product of the components and the supervisory controller not

only satisfies the requirements, but it is moreover non-blocking (the system can always

reach an accepted stable state), controllable (only the components’ external actions can

be influenced, internal actions cannot) and maximally permissive (allowing as much be-

haviour of the components without violating the requirements). It would be interesting

to see whether this mechanism can be extended to deal with components synchronised

according to policies other than the synchronous product, possibly in combination with

the product line theories presented in [37].

Acknowledgements We thank the reviewers for their suggestions and additional refer-

ences to related work. M.H. ter Beek was supported by the CNR through a Short-Term

Mobility grant and J. Carmona was supported by funds from the Spanish Ministry for

Economy and Competitiveness (MINECO) and the European Union (FEDER funds)

under grant COMMAS (ref. TIN2013-46181-C2-1-R).

References

1. B. T. Adler, L. de Alfaro, L. D. da Silva, M. Faella, A. Legay, V. Raman, and P. Roy. Ticc: A

Tool for Interface Compatibility and Composition. In T. Ball and R. B. Jones, editors, CAV

2006, volume 4144 of LNCS, pages 59–62. Springer, 2006.

2. J. Armstrong. Erlang. Commun. ACM, 53(9):68–75, 2010.

3. M. H. ter Beek. Team Automata: A Formal Approach to the Modeling of Collaboration

Between System Components. PhD thesis, Leiden University, 2003.

4. M. H. ter Beek, C. A. Ellis, J. Kleijn, and G. Rozenberg. Synchronizations in Team Automata

for Groupware Systems. Comput. Sup. Coop. Work, 12(1):21–69, 2003.

5. M. H. ter Beek and J. Kleijn. Team Automata Satisfying Compositionality. In K. Araki,

S. Gnesi, and D. Mandrioli, editors, FME 2003, volume 2805 of LNCS, pages 381–400.

Springer, 2003.

6. M. H. ter Beek and J. Kleijn. Modularity for teams of I/O automata. Inf. Process. Lett.,

95(5):487–495, 2005.

7. M. H. ter Beek, M. A. Reniers, and E. P. de Vink. Supervisory Controller Synthesis for

Product Lines using CIF 3. In T. Margaria and B. Steffen, editors, ISoLA 2016, LNCS.

Springer, 2016.

8. S. Bensalem, M. Bozga, B. Boyer, and A. Legay. Incremental Generation of Linear Invariants

for Component-Based Systems. In Proceedings of the 13th International Conference on

Application of Concurrency to System Design (ACSD 2013), pages 80–89. IEEE, 2013.

9. G. Berry. The Esterel v5 Language Primer. Ecole des Mines de Paris/INRIA, 2000.

10. L. Brim, I. Cerná, P. Vareková, and B. Zimmerova. Component-Interaction Automata as

a Verification-Oriented Component-Based System Specification. ACM Softw. Eng. Notes,

31(2), 2006.

11. J. Carmona. Structural Methods for the Synthesis of Well-Formed Concurrent Specifications.

PhD thesis, Universitat Politècnica de Catalunya, 2004.

12. J. Carmona and J. Cortadella. Input/Output Compatibility of Reactive Systems. In M. Aa-

gaard and J. W. O’Leary, editors, FMCAD 2002, volume 2517 of LNCS, pages 360–377.

Springer, 2002.

13. J. Carmona, J. Cortadella, M. Kishinevsky, and A. Taubin. Elastic Circuits. IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., 28(10):1437–1455, 2009.

14. J. Carmona, J. Cortadella, and E. Pastor. Synthesis of Reactive Systems: Application to

Asynchronous Circuit Design. In J. Cortadella, A. Yakovlev, and G. Rozenberg, editors,

Advances in Petri Nets, volume 2549 of LNCS, pages 108–151. Springer, 2002.

15. J. Carmona and J. Kleijn. Interactive Behaviour of Multi-Component Systems. In J. Cor-

tadella and A. Yakovlev, editors, ToBaCo 2004, pages 27–31, 2004.

16. J. Carmona and J. Kleijn. Compatibility in a multi-component environment. Theor. Comput.

Sci., 484:1–15, 2013.

17. D. Castro, V. M. Gulías, C. B. Earle, L. Fredlund, and S. Rivas. A Case Study on Verifying

a Supervisor Component Using McErlang. ENTCS, 271:23–40, 2011.

18. D. M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis, Stanford

University, 1984.

19. L. de Alfaro, L. D. da Silva, M. Faella, A. Legay, P. Roy, and M. Sorea. Sociable Interfaces.

In B. Gramlich, editor, FroCoS 2005, volume 3717 of LNCS, pages 81–105. Springer, 2005.

20. L. de Alfaro and T. A. Henzinger. Interface Automata. In ESEC/FSE 2001, pages 109–120.

ACM, 2001.

21. L. de Alfaro and T. A. Henzinger. Interface-Based Design. In M. Broy, J. Grünbauer,

D. Harel, and T. Hoare, editors, Engineering Theories of Software Intensive Systems, vol-

ume 195 of NATO Science Series, pages 83–104. Springer, 2005.

22. E. W. Dijkstra. A constructive approach to the problem of program correctness. BIT Numer.

Math., 8(3):174–186, 1968.

23. M. Dumas, B. Benatallah, and H. R. M. Nezhad. Web Service Protocols: Compatibility and

Adaptation. IEEE Data Eng. Bull., 31(3):40–44, 2008.

24. G. Engels and L. Groenewegen. Towards Team-Automata-Driven Object-Oriented Collab-

orative Work. In W. Brauer, H. Ehrig, J. Karhumäki, and A. Salomaa, editors, Formal and

Natural Computing, volume 2300 of LNCS, pages 257–276. Springer, 2002.

25. G. Gössler and J. Sifakis. Composition for component-based modeling. Sci. Comput. Pro-

gram., 55:161–183, 2005.

26. Q. Guo, J. Derrick, C. B. Earle, and L. Fredlund. Model-Checking Erlang — A Comparison

between EtomCRL2 and McErlang. In L. Bottaci and G. Fraser, editors, TAIC PART 2010,

volume 6303 of LNCS, pages 23–38. Springer, 2010.

27. A. Hall. Correctness by Construction: Integrating Formality into a Commercial Development

Process. In L. Eriksson and P. A. Lindsay, editors, FME 2002, volume 2391 of LNCS, pages

224–233. Springer, 2002.

28. A. Hall and R. Chapman. Correctness by Construction: Developing a Commercial Secure

System. IEEE Softw., 19(1):18–25, Jan/Feb 2002.

29. Y. Hammal. A Modular State Exploration and Compatibility Checking of UML Dynamic

Diagrams. In AICCSA 2008, pages 793–800. IEEE, 2008.

30. Y. Hammal. Behavioral Compatibility of Active Components. In SEFM 2008, pages 372–

376. IEEE, 2008.

31. R. Hennicker and A. Knapp. Modal Interface Theories for Communication-Safe Component

Assemblies. In A. Cerone and P. Pihlajasaari, editors, ICTAC 2011, volume 6916 of LNCS,

pages 135–153. Springer, 2011.

32. R. Hennicker and A. Knapp. Moving from interface theories to assembly theories. Acta Inf.,

52(2-3):235–268, 2015.

33. R. Hennicker, A. Knapp, and M. Wirsing. Assembly Theories for Communication-Safe

Component Systems. In S. Bensalem, Y. Lakhneck, and A. Legay, editors, FPS 2014, volume

8415 of LNCS, pages 145–160. Springer, 2014.

34. T. Isokawa et al. Computing by Swarm Networks. In H. Umeo et al., editor, ACRI 2008,

volume 5191 of LNCS, pages 50–59. Springer, 2008.

35. M. Jamshidi, editor. System of Systems Engineering: Innovations for the Twenty-First Cen-

tury. Wiley, 2008.

36. D. G. Kourie and B. W. Watson. The Correctness-by-Construction Approach to Program-

ming. Springer, 2012.

37. K. G. Larsen, U. Nyman, and A. Wąsowski. Modal I/O Automata for Interface and Product

Line Theories. In R. De Nicola, editor, ESOP 2007, volume 4421 of LNCS, pages 64–79.

Springer, 2007.

38. N. A. Lynch and M. R. Tuttle. Hierarchical Correctness Proofs for Distributed Algorithms.

In PODC 1987, pages 137–151. ACM, 1987.

39. N. A. Lynch and M. R. Tuttle. An Introduction to Input/Output Automata. CWI Quarterly,

2(3):219–246, 1989.

40. R. Milner. Communication and Concurrency. Prentice Hall, 1989.

41. C. C. Morgan. Programming from Specifications. Prentice Hall, 2nd edition, 1994.

42. P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event processes.

SIAM J. Control Optim., 25(1):206–230, 1987.

43. M. Silva and R. Valette. Petri Nets and Flexible Manufacturing. In G. Rozenberg, editor,

Advances in Petri Nets, volume 424 of LNCS, pages 374–417. Springer, 1990.

44. D. M. Yellin and R. E. Strom. Protocol Specifications and Component Adaptors. ACM

Trans. Program. Lang. Syst., 19(2):292–333, 1997.

