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Abstract: We report a computational study at the time-dependent density functional theory (TDDFT)
level of the chiro-optical spectra of chiral gold nanowires coupled in dimers. Our goal is to explore
whether it is possible to overcome destructive interference in single nanowires that damp chiral
response in these systems and to achieve intense plasmonic circular dichroism (CD) through a
coupling between the nanostructures. We predict a huge enhancement of circular dichroism at
the plasmon resonance when two chiral nanowires are intimately coupled in an achiral relative
arrangement. Such an effect is even more pronounced when two chiral nanowires are coupled in a
chiral relative arrangement. Individual component maps of rotator strength, partial contributions
according to the magnetic dipole component, and induced densities allow us to fully rationalize these
findings, thus opening the way to the field of plasmonic CD and its rational design.

Keywords: plasmon; circular dichroism; nanoplasmonics; metal clusters

1. Introduction

Among the wide variety of phenomena which emerge at the nanoscale régime, the
localized surface plasmon resonance (LSPR), typical of nanostructured metals, plays a
major role in nanotechnology due to its ability of focusing the electromagnetic field with
a high energy density in a small region of space [1–3]. This effect has direct application
in enhanced spectroscopic techniques, such as surface enhanced Raman spectroscopy [4],
and in single-molecule spectroscopy [5,6]. Additionally, the possibility of having LSPR
exhibiting chiral features is extremely appealing, because it would allow one to enhance the
specificity and selectivity of sensing devices, especially in the biological applications [7]. It
is worth noting that, while conventional plasmons in extended systems are well understood
as collective motions of conduction band electrons, for finite systems such as nanoclusters
and nanowires, their nature is still debated [8–12]. The picture is even less clear in the field
of chirality, as experiments are here much more difficult to conduct and interpret, and less
conclusive. For all these reasons, contribution from theoretical insight and understanding
is dramatically required.

Chiral systems generally give a non-zero circular dichroism (CD) signal. The CD
response is routinely employed to study biomolecules, while frontier applications are in
the emerging field of chiral sensing [13]. Managing the CD signal is challenging due to its
intrinsic weakness, usually five orders of magnitude less intense than the corresponding
absorption signal, as a consequence of the electric-dipole/magnetic-dipole scalar product
that governs the CD intensity according to the Rosenfeld equation [14]. For this reason, the
amplification of the CD signal in plasmonic systems is quite intriguing, and many attempts
have been reported along this research direction [15–18]. It is convenient to classify plas-
monic CD into structural and induced CD [18], according to its physical origin. A chiral
plasmonic metal cluster or nanostructure gives rise to structural plasmonic CD [19], while
a chiral arrangement of non-chiral systems promotes an induced plasmonic CD. Although

Molecules 2022, 27, 93. https://doi.org/10.3390/molecules27010093 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27010093
https://doi.org/10.3390/molecules27010093
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-8225-6119
https://orcid.org/0000-0001-5337-4450
https://doi.org/10.3390/molecules27010093
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27010093?type=check_update&version=1


Molecules 2022, 27, 93 2 of 18

induced plasmonic CD is easier to obtain at the experimental level, [20] the field of struc-
tural chiral plasmonics, although still in its infancy, offers very promising possibilities,
for example, chiral growth promoted by hot electron mechanisms in nanocrystals [21] or
hot-electron transfer [22]. Despite the interest in these new developments, at present, at
the experimental level, only modest plasmonic CD enhancements have been observed [18].
We believe that a rationalization of both structural and induced plasmonic CD in terms of
quantum mechanics is needed to allow understanding the issues limiting experimental
observations, the design of optimal systems, and the ensuing exploitation of this phe-
nomenon. To this aim, some of us recently studied the CD of a series of chiral plasmonic
gold nanowires by means of time dependent density functional theory (TDDFT) [23]. As a
main outcome of this work, we found that chiral linear gold nanowires do not give rise
to a plasmonic CD, notwithstanding the presence of a very strong and sharp plasmonic
resonance in absorption. In contrast, a very strong plasmonic CD was predicted when the
chiral nanowires were no longer linear, but assumed a helical shape winding around the
external surface of a cylinder. An analysis based on the individual component mapping
of the rotator strength (ICM-RS) [24] allowed us to ascertain that, for linear nanowires,
the absence of CD in correspondence of the plasmon absorption is due to a destructive
interference among huge contributions of opposite sign. This finding then triggered the
present analysis, where we now try to overcome and bypass the destructive interference
phenomenon and also recover a plasmonic CD in linear nanowires (that are much easier to
synthetize) by coupling two chiral nanowires. As we will detail below, the ICM-RS analysis
in fact suggested that the nanowire/nanowire interaction can perturb the interference
between positive and negative contributions to CD, thus greatly decreasing its destructive
character, and therefore leading to plasmonic circular dicroism.

In the present work, we considered various coupling modes between the chiral
nanowires: we started with two chiral nanowires coupled via an achiral relative arrange-
ment (pure structural CD); then we considered two chiral nanowires coupled in a chiral
relative arrangement (structural and induced CD). In the latter case, in order to identify the
effect of pure induced CD, we also considered two achiral nanowires coupled in a chiral
relative arrangement. We then showed that the nanowire coupling indeed produced the
expected effect of strongly diminishing the destructive interference phenomenon, such that
we predicted to the best of our knowledge for the first time an intense plasmonic CD also
in linear nanowire systems. ICM-RS, partial contributions according to the magnetic dipole
components, and induced densities were then exploited to fully rationalize our finding.
In general, gold nanowires are systems which, besides chirality, are interesting for their
properties, e.g., their propensity to form hybrid structures such as encapsulation in single
wall carbon nanowires (SWCN) [25].

2. Discussion

In our previous work [23], the structure of the (5,3)NT nanowire was inspired by
experimental work on the synthesis of helical gold multi-shell nanowires [26]. The starting
point is given by the helical linear structure (constructed according to the prescription of
Senger et al. [27]) that is intrinsically chiral. The calculated plasmon was very intense in
absorption, but no CD signal was found at the energy of the plasmon resonance [23].

Since we found that the plasmon CD was suppressed by destructive interference,
we suggested that a perturbation of the system might remove, at least partially, such
destructive interference. In this work, we explored this idea considering the interaction
between pairs of nanowires.

The simplest interaction between two nanowires is obtained by keeping their axis
parallel to each other and changing only their relative distance. In Figure 1a, the geometry
actually employed in the calculations is reported, where the original structure of the (5,3)NT
taken from ref. [23] has been repeated two times in order to keep the C2 symmetry z-axis:
we will refer to this system in the following as the parallel geometry.
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Figure 1. (a) Structure of a pair of interacting gold chiral nanowires with parallel axis so their
arrangement is not chiral. (b) side view and (c) top view of a pair of interacting gold chiral nanowires
with axis rotated by 45 degrees so their relative orientation is chiral. (d) side view and (e) top view of a
pair of interacting gold achiral nanowires with axis rotated by 45 degrees so their relative orientation
is chiral.

The distance between the two nanowires has been set to 2.88 Å, equal to the bulk
gold–gold interatomic distance. Note that, in this case, the two nanowires were both
chiral but their relative orientation was achiral. The chosen distance between Au atoms
corresponds to the distance of physical systems not otherwise constrained (the nanowires
will tend to touch each other to minimize energy). We have also tried a larger distance
between nanowires equal to 5 Å; however, in that case the nanowires were non-interacting
and we did not obtain an appreciable difference in absorption and CD spectra with respect
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to a single nanowire. Distances between 2.88 Å and 5 Å were difficult to explore because
the chemical bonds connecting the two nanowires were partially broken, making the SCF
difficult to converge.

In Figure 1b,c another geometric configuration is reported, which is derived from the
previous parallel geometry obtained via a rotation of only one of the two nanowires by
45 degrees around the C2 z-axis: we will refer to this system as the rotated geometry. In
Figure 1 we have reported the same system viewed from two different perspectives: in the
side view (b), the chemical bonds connecting the two nanowires are visible, while in top
view (c) it is possible to appreciate the relative rotation of the two nanowires. In this case,
the relative orientation itself is chiral; in fact, in the present relative orientation, we do not
have any symmetry plane and a chiral system is obtained. We may therefore distinguish
between structural chirality (of the single nanowire) and induced chirality (by the relative
orientation between the two objects). In order to distinguish even more clearly the two
effects we have also considered a chiral relative orientation of two achiral nanowires, like
in Figure 1d,e. In this case we first built an achiral nanowire with the same size of the
chiral one (152 gold atoms), whose structure has been generated starting from the Au12
icosahedral cluster with a gold–gold interatomic distance of 2.88 Å, adding 14 equatorial
ribbons of Au10 units, obtaining finally the Au152 cluster with D5d symmetry. Then two
of such clusters were paired in the same way as the rotated geometry of the previous
Figure 1b,c. This new configuration was reported in Figure 1d,e and will be referred to as
rotated achiral; note that, in this case, only induced plasmonic CD is expected.

The photoabsorption (upper panel) and CD (lower panel) for the single chiral nanowire
(red lines) and the pair of interacting gold chiral nanowires with parallel axis (blue line) are
reported in Figure 2. The single chiral nanowire results have been taken from our previous
work [23]. The effect of coupling on the photoabsorption is an intensity enhancement
with the absorption approximately doubled in the two-nanowire systems, and a blue shift
from 1.04 eV to 1.24 eV of the plasmon peak. These results can be rationalized in terms of
plasmon coupling: the induced dipoles on the two nanowires are parallel; as a consequence,
the coupled plasmon energy is increased due to their repulsive interaction. In contrast, the
effect of nanowire coupling on the CD is striking: while the single nanowire gives negligible
CD at the plasmon energy, the pair with parallel axis gives a huge positive contribution,
with a peak value exceeding 10,000 × 10−40 esu2·cm2, i.e., an increase of four orders of
magnitude of the CD signal with respect to the single-nanowire system. This value is
of the same order of magnitude as that obtained for the helical nanowires [23], which
reached a maximum around 40,000 × 10−40 esu2·cm2. In the Figure 3 we have reported the
ICM-RS plots of both present pair of interacting nanowires (boxes (a) and (c)) as well as
those of the single chiral nanowire (boxes (b) and (d)) taken from our previous work [23].
Moreover, we have generated both 2D (boxes (a) and (b)) as well as 3D plots (boxes (c) and
(d)) in order to have a more direct visualization of the effects. All the details regarding
the definition and calculation of the ICM-RS plots have been reported in Appendix A.2
of the Appendix A of the present work. Such plots consist of decomposing the rotator
strength (R) of a given transition in its components in terms of occupied-virtual pairs; on
the x and y axis, the occupied and virtual orbital energies are considered. The presence
of a ‘spot’ indicates that the orbital pair that had the corresponding energy is involved
in the transition. In 2D, the ‘intensity’ of the involvement is given by a colour scale; for
3D plots, the ‘intensity’ corresponds to the scale of the z axis. As observed previously
and considering the present Figure 3b,d, the negligible CD of the single chiral nanowire
is a consequence of a destructive interference of two opposite and large contributions.
These opposite (positive and negative) contributions in the ICM-RS spectrum of the (5,3)
nanowire are individually very large but are practically equal in absolute value. They thus
cancel each other almost perfectly, producing a nearly zero CD spectrum. This suggested
that by perturbing the system with a proper coupling, it should be possible to remove, at
least partially, such a destructive interference, allowing the manifestation of a plasmonic
CD. The present results fully confirm this hypothesis: here we have demonstrated that
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the coupling between a pair of nanowires is sufficient to allow a partial suppression of
the destructive interference phenomenon. Indeed, in Figure 3a,d, we report the ICM-RS
plots of the parallel pair taken at the energy corresponding to the maximum dichroism.
Only the y dipole component was considered (along the direction of maximum nanowire
length), the other components being negligible. It is evident that there was still destructive
interference, since there were regions with the opposite sign, but now the positive region
was wider and more intense than the negative one, such that there was only a partial
cancellation. However, this also shows that the destructive interference had been only
partially removed, and that there was still wide room for further increasing the dichroism,
suggesting a promising path for future work.
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Figure 2. Photoabsorption (upper panel) and CD (lower panel) for the single chiral nanowire (red
lines) and the pair of interacting gold chiral nanowires with parallel axis (blue line). Oscillator
strengths are given in atomic units, while R is given in 10−40 esu2·cm2.
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Figure 3. ICM-RS plots relative to the y component taken at the energy corresponding to the
maximum CD: 1.04 eV for the single nanowire in panels (a,c); 1.24 eV for the pair of interacting gold
chiral nanowires with parallel axis in panels (b,d) as in Figure 1. εi and εa are energies of occupied
and virtual orbitals, respectively.

We then analyzed the rotated geometry described in Figure 1b,c, whose photoab-
sorption and dichroism are reported in Figure 4, together with the results of the parallel
geometry for comparison. The plasmon in absorption of the rotated systems displayed a
red shift with respect to the parallel one, going from 1.24 eV to 1.10 eV, while the oscillator
strengths showed only a modest decrease. The red shift could be easily rationalized if we
described the plasmon as the sum of the dipolar plasmons of the individual nanowires. The
destabilizing interaction between the dipoles was reduced in the rotated systems, producing
a red shift. We tried to study the effect of varying the angle between the nanowires on the
spectral features. This was not a straightforward task, since the mutual orientation between
the two nanowires had to allow a suitable formation of chemical bonds between them; if
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such bonds were too deformed, the SCF procedure would not converge, hampering such
analysis. The only angle we were able to consider was 30◦; we have reported in Figure 4 the
corresponding plots as a red line. Such results (both in terms of photoabsorption and CD)
were very similar to those obtained by a rotation of 45◦, lying in between the 45◦ and the
parallel ones. For this reason, we limit further discussion to the geometry rotated by 45◦.
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In contrast, the difference between the CD profiles is dramatic: while the parallel
system gives in practice only one very strong positive feature up to 10,000× 10−40 esu2·cm2,
the one rotated by 45◦ gave a pair of strong peaks with opposite sign, separated by only
0.14 eV, with rotator strength up to ±50,000 × 10−40 esu2·cm2. This finding suggests
that, in this case, induced plasmonic CD was stronger than structural plasmonic CD,
analogously to what was reported in our previous work for the comparison between
linear and helical nanowires [23]. It is hard to say if this is a general behavior or one
specific to the present systems. In fact, it is worth noting that the structural plasmonic
observed in the parallel situation kept a large amount of destructive interference; therefore,
it is still possible that more effective coupling between nanowires may remove further
the destructive character giving rise to much higher structural plasmonic CD. Induced
densities of the rotated geometry at the two energies corresponding to the maximum and
minimum CD, respectively 0.96 and 1.10 eV, are reported in Figure 5. In both cases, the
induced density displays a clear dipolar shape for each individual nanowire, typical of a
plasmon. However, at lower energy, the individual dipoles of the wires displayed opposite
direction, corresponding to a negative scalar product; at higher energy, the dipoles had the
same direction.

In order to have a better understanding of the phenomenon, we show in Figure 6 the
ICM-RS of the two CD peaks at 0.96 eV (left boxes) and 1.10 eV (right boxes). Both x dipole
component (upper boxes), as well y dipole component (lower boxes), are reported. Such
ICM-RS plots are quite different from that of the parallel system (Figure 3). Indeed, we did
not observe any destructive interference for the rotated geometry for x and y components
of the dipole. In fact, for both energies, the x component was positive and the y component
was negative for all of the spots on the 2D ICM-RS plot. More precisely, at 0.96 eV, the x
component was more positive than the negative y component, a situation that was reversed
at 1.10 eV; here, the order of magnitude of the x component did not change, while the
negative y components increased by two orders of magnitude and became preponderant.
Since the present ICM-RS analysis suggests that the mutual interplay between individual
dipole components was fundamental to rationalize the specific CD behavior, in Figure 7
we have considered, for both parallel and rotated geometries, the photoabsorption and
CD partial profiles from the dipole components. For the parallel geometry the situation
was obviously quite simple: only the y component played a fundamental role for both
photoabsorption and CD, the y axis being along the nanowires axis. For the rotated
geometry, instead, the situation was more interesting: the total photoabsorption peak was
contributed essentially by both x and y components; however, while the y component had
a single maximum at 1.10 eV, the x component displayed two maxima at 0.98 and 1.10 eV.
Consistently with what was already found in the ICM-RS analysis the x component had
very similar values at the two energies, while the y component increased by a factor of
four, going from 0.98 eV to 1.10 eV. In practice, the feature at 0.98 eV almost disappeared in
the total profile; thus, only a sketched shoulder can be hardly seen in the left side of the
peak. Passing to the CD, the partial profiles display similar shape (two maxima for the x
dipole and one maximum for the y dipole); however, the y component was negative, which
explains the observed behavior in the total profile.
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Figure 6. ICM-RS plot relative to the x and y components taken at the energy corresponding to the
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with axis rotated by 45 degrees as in Figure 2. εi and εa are energies of occupied and virtual orbitals,
respectively.
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Figure 7. Dipole components partial contributions of photoabsorption (left panels (a,c)) and CD (right
panels (b,d)) for the pair of interacting gold chiral nanowires with parallel axis (upper panels (a,b))
and rotated axis (lower panels (c,d)). Oscillator strengths are given in atomic units, while R is given
in 10−40 esu2·cm2, x, y, z and total contributions are in red, green, blue and black lines, respectively.

In order to better identify the role of the induced plasmonic CD, we report in Figure 8
the photoabsorption and the CD of the rotated achiral system, whose geometry is reported
in Figure 1d,e, together with the profiles of the rotated chiral system for comparison. We
observed a blue shift for both photoabsorption and CD profiles; the photoabsorption was
slightly attenuated, while, for CD, the weakening seemed more pronounced. The nanowires
that constitute this system are achiral, so the CD is purely an induced one: its maximum
and minimum values of 30,000 × 10−40 and −40,000 × 10−40 esu2·cm2 are roughly a factor
of three larger than the pure structural CD reported in the previous Figure 2 for the parallel
geometry. We may conclude this analysis by saying that, at least for the system considered
in the present study, the strength of the induced CD was roughly three times the structural
one, and these effects sum up when both of them are present in the same system.
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nanowires with rotated axis (black line) and achiral nanowires with rotated axis (red line). Oscillator
strengths are given in atomic units, while R is given in 10−40 esu2·cm2.

3. Conclusions

In this work, TDDFT simulations were performed on a series of dimers (pairs) of chiral
gold nanowires to explore whether an enhancement of circular dichroism at the plasmon
resonance is possible through a coupling between nanostructures.
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We find that, when two chiral nanowires are coupled in an achiral relative arrangement,
a strong enhancement of the plasmonic CD is predicted by theory with respect to the
separate nanowires, which individually did not give any appreciable plasmonic CD. This
demonstrates that coupling between two ‘inactive because of destructive interference’ chiral
plasmonic systems could still give strong structural CD. We fully rationalized this finding
via an analysis of ICM-RS plots. The enhancement is even more pronounced when two
chiral nanowires are coupled in a chiral relative arrangement, because, in this configuration,
the structural and induced effects sum up to give the largest effect. In order to distinguish
between structural CD and induced CD we also considered two achiral nanowires coupled
in a chiral relative arrangement, in which case the plasmonic CD was purely induced. From
such analysis, at least for the gold clusters and the configurations considered in this work,
we found that the induced plasmonic CD is somewhat more intense than the structural
one and the two effects sum up when they are simultaneously present. Further studies
to demonstrate the generality of the present conclusions would be desirable, especially
to identify which are the most effective coupling between chiral systems to produce the
highest plasmonic CD phenomenon. In this respect we can, e.g., hypothesize that the
addition of ligands adsorbed on the wires, thus locally perturbing their wave functions in a
proper way, could be a possible (and technically easier to materialize) alternative to obtain
a strong plasmonic CD with respect to coupling pairs of nanowires as in the present work.
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Appendix A. Theoretical Method

The computational study of CD in plasmons is challenging due to the large size of
the metal clusters involved and the chirality, which implies very low symmetry (if any),
of the system. Therefore, very accurate (explicitly correlated) ab-initio methods are ruled
out, while the density functional theory (DFT) and TDDFT represent reliable options. The
first CD calculation at the TDDFT level has been done by Autschbach and Ziegler [28]
using the Casida scheme [29], which consists of diagonalizing a large matrix, with di-
mensions corresponding to the number of occupied-virtual orbitals pairs. This method
is very efficient to investigate the lowest part of the spectrum, a situation which is not
effective for nanoclusters in which a large number of roots are needed to cover the optical
region. For this reason, a TDDFT algorithm which avoids large matrix diagonalization
has been implemented [30], named polTDDFT, and extended to the calculation of the CD
spectrum [31].
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Appendix A.1. The Complex Polarizability Method

The reader is referred to the original work for a detailed description of the algo-
rithm [30], together with its implementation in the ADF program [32].

In practice, the photoabsorption spectrum σ(ω) is calculated point by point, from the
imaginary part of the dynamical polarizability α(ω):

σ(ω) =
4πω

c
Im[α(ω)] (A1)

This expression is of practical interest when the polarizability is calculated for complex
frequency, i.e., ω = ωr + iωi, where the real part ωr is the scanned photon frequency (energy)
and ωi is the imaginary part that corresponds to a broadening of the discrete lines and can
be interpreted as a pragmatic inclusion of the excited states’ finite lifetime. The complex
dynamical polarizability is calculated by solving the following non-homogeneous linear
system:

[S−M(ω)]b = d (A2)

In Equation (A2) S is the overlap matrix between fitting functions, b is the unknown
vector with the expansion coefficients bµ(ω) of the induced density ρ(1)

z, d is the frequency
dependent vector corresponding to the known non-homogeneous term, and finally the
elements of the frequency dependent matrix M are:

Mµν =
〈

fµ

∣∣χKS(ω)K| fν〉 (A3)

In Equation (A3), χKS refers to the Kohn-Sham frequency-dependent dielectric function
and K to the kernel.

The original characteristic of the polTDDFT method is the introduction of a simple
approximation which enables the construction of M(ω) as a linear combination of frequency
independent matrices Gk with frequency dependent coefficients sk(ω), with the following
expression:

M(ω) = ∑
k

sk(ω)Gk (A4)

With this idea, a set of matrices {Gk} was calculated and stored only once at the
beginning. Then the matrix M(ω) was calculated very rapidly at each photon energyω, as
a linear combination of the {Gk} matrices with the following coefficients:

sk(ω) =
4Ek

ω2 − E2
k

(A5)

where in Equation (A5) Ek refers to the centre of the interval which discretizes the excitation
energy variable and in the original formulation corresponds to the difference between
virtual and occupied orbital energies: εa − εi.

In order to introduce the complex polarizability method to calculate the CD of large
clusters, we briefly recall the basic theory of CD. For a molecule with fixed orientation,
the CD of an electronic transition from the ground state |0 to the n-th excited state |n
corresponds to the difference between the absorbance of left and right circularly polarized
light, which propagates along the X direction as follows [33]:

CD = AL − AR = 2γIm(〈0|µY|n〉〈n|mY|0〉+ 〈0|µZ|n〉〈n|mZ|0〉) (A6)

where in (6) µ and m are the electric dipole and magnetic dipole moment operators and γ
is a constant.
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In solution or in the gas phase molecules are randomly oriented, thus Equation (A6)
must be rotationally averaged, and the Rosenfeld equation is obtained:

CD =
4
3

γIm(〈0|µ|n〉 · 〈n|m|0〉) (A7)

The rotatory strength, R0n, is therefore defined as follows:

R0n = Im(〈0|µ|n〉 · 〈n|m|0〉) (A8)

To calculate R0n by the complex polarizability algorithm [30], it is convenient to
consider the dipole moment induced by an electromagnetic field [34]:

µ′u = ∑
v

αuvEv −∑
v

βuv

c
∂Bv

∂t
. (A9)

In Equation (A9) Ev and Bv are the electric and magnetic field components, c is the
speed of light, α is the dynamical polarizability tensor and β is the optical rotation tensor,
which is related to the rotatory strength by the following sum over states (SOS) expression:

β =
1
3∑

u
βuu =

2c
3 ∑

n

R0n

ω2
0n −ω2

(A10)

In Equation (A10) ω is the photon energy and ω0n corresponds to the |0→|n excitation
energy. Therefore, it is convenient to extract R0n from the β imaginary part as in conven-
tional photoabsorption. From Equation (A9), β consists in the electric dipole moment
induced by a time-dependent (TD) magnetic field and can be calculated by the following
expression:

βzz(ω) =

(
− ic

ω

)occ

∑
i

virt

∑
a
〈φi|mz|φa〉P

a
i (A11)

with

P
a
i = tk(ω)

[
〈φa|µz|φi〉+

f it

∑
µτ

(
Ak
)+

ia,µ
Lµτbτ

]
(A12)

In Equations (A11) and (A12), the Ak
µ,ia are integrals between the auxiliary fitting

function fµ and the product between the i-th occupied and the a-th virtual orbitals, ϕi|µz|ϕa
and ϕi|mz|ϕa are the electric and magnetic dipole moment matrix elements respectively,
between the same occupied-virtual (ia) orbitals pair, the matrix L is defined by Equation (28)
of Ref. [31], tk is given by:

tk(ω) =
1

ω−ω0n + iε
+

1
ω + ω0n + iε

(A13)

and the vector b is the solution of the linear system (2).
In practice, the resolution of the TDDFT equations is recast to the linear system

(2) (see Ref. [30] for a detailed description), which was already solved to calculate the
photoabsorption, so the CD calculation is computationally irrelevant. It is worth noting
that the linear system (2) was solved by employing the auxiliary density fitting functions
as a basis set to represent vectors and matrixes. This means that the dimension of (2) was
much smaller with respect to the Casida approach.

Equation (A2) was then solved point by point for each photon energy. Moreover,
the real part of the photon energy was supplemented with a small imaginary part, thus
generating a Lorentzian broadening of the discrete transition.
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Appendix A.2. Individual Component Maps of Rotatory Strength (ICM-RS) Analysis

Recently, an analysis tool of the absorption spectra derived from TDDFT simulation
has been proposed [35], i.e., individual component maps of oscillatory strength (ICM-OS)
plots, which allows one to investigate the connection between absorption and single-particle
excitations (ICM-OS). This field is subject to intense research efforts, and there are currently
many efforts to find a proper method to rationalize CD (or in general spectral features)
obtained from response calculations [36].

The same approach has been extended from the oscillator strength to the rotator
strength, so in an analogous way we defined individual component maps of rotatory
strength (ICM-RS) plots [24] as analysis tools of chiro-optical linear response spectra
derived from TDDFT simulations. Starting with the expression of rotator strength at each
given frequency (z component) calculated as the imaginary part of the zz diagonal element
of the circular dichroic tensor:

CDz(ω) = −3ε

2
Re

(
occ

∑
i

virt

∑
a
〈φi|mz|φa〉P

a
i [z]

)
(A14)

where in Equation (A14) ε corresponds to the Lorentzian energy broadening, P
a
i is the

density-matrix element given by previous Equation (A12), due to the perturbation induced
by the z-component of the electric dipole, and ϕi|mz|ϕa is the matrix elements of the
magnetic dipole over a pair of occupied/virtual single-particle molecular orbitals. Then

the plot of the individual ϕi

∣∣∣mz

∣∣∣ϕaP
a
i [z] components as functions of the single-particle

energies of occupied (εi) and virtual (εa) orbitals is generated. ICM-RS (ω) plots allow
one to visualize the source of chiral response in momentum space, including signed
contributions, therefore highlighting cancellation terms that are ubiquitous and critical in
chiral phenomena.

Appendix A.3. Computational Details

The geometry of the single gold nanowire (5,3)NT has been taken from our previ-
ous work, see Figure 1 in Ref. [23]. The DFT calculations have been performed with a
Triple Zeta plus Polarization (TZP) basis set of Slater Type Orbitals (STO) functions. The
LB94 [37] exchange-correlation (XC) potential with the correct asymptotic behaviour has
been employed. All the systems considered in this work belong to the C2 point group,
the z axis being the binary rotation axis, such symmetry has been exploited in the calcula-
tions. Core electrons have been kept frozen up to the Au 4f level. Relativistic effects have
been considered at scalar level employing the zero order regular approximation (ZORA)
level [38].

The TDDFT equations have been solved by means of the polTDDFT method [30,31]
assuming adiabatic local density approximation for the response XC kernel.

In the polTDDFT scheme we have divided the excitation energy in intervals with a
step of 0.025 eV and a cutoff of 2 eV above the excitation energy has proven accurate. An
imaginary part of 0.060 eV has been employed in the photon energy, corresponding to an
intrinsic lorentzian broadening of the same HWHM value.

All the calculations have been performed with the AMS–ADF suite of programs [39].
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