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Floor Identification in Large-Scale Environments
with Wi-Fi Autonomous Block Models

Abstract—Traditional Wi-Fi based floor identification methods
mainly have been tested in small experimental scenarios and,
generally, their accuracies drop significantly when applied in
real large and multi-storey environments. The main challenge
emerges when the complexity of Wi-Fi signals on the same floor
exceeds the complexity between the floors along the vertical
direction, leading to a reduced floor distinguishability. A second
challenge regards the complexity of Wi-Fi features in envi-
ronments with atrium, hollow areas, mezzanines, intermediate
floors, and crowded signal channels. We propose an adaptive
Wi-Fi based floor identification algorithm to achieve accurate
floor identification also in these environments. Our algorithm,
based on the Wi-Fi RSSI and spatial similarity, firstly identifies
autonomous blocks parcelling the whole environment. Then, local
floor identification is performed through the proposed Wi-Fi
models to fully harness the Wi-Fi features. Finally, floors are
estimated through the joint optimization of the autonomous
blocks and the local floor models. We have conducted extensive
experiments in three real large and multi-storey buildings greater
than 140,000 m2 using nineteen different devices. Finally, we
show a comparison between our proposal and other state-of-the-
art algorithms. Experimental results confirm that our proposal
performs better than other methods and it exhibits an average
accuracy of 97.24%.

Index Terms—floor identification, Wi-Fi model, fingerprint,
smartphone, autonomous block, multi-storey buildings.

I. INTRODUCTION

INDOOR location-based services (ILBS) with smartphones
have received increasing attention due to the high demand

for location-aware applications [1][2]. In order to satisfy ILBS
requirements, researchers have investigated several indoor po-
sitioning technologies, including Wi-Fi [3][4], Bluetooth Low
Energy (BLE) [5], Pedestrian Dead Reckoning (PDR) [6],[7],
vision camera based [8], and magnetic field [9][10][11]. These
technologies applied in user localization, have shown good
accuracies in 2D planes but their results are worse in 3D
environments, especially in wide and multi-storey buildings.

In these environments, correct floor identification is a funda-
mental primary goal to effectively deploy an ILBS. Solutions
based on a combination of Wi-Fi and barometer information
have been widely investigated. In fact, information about the
atmospheric pressure, theoretically, can be exploited as reliable
discriminators to identify different floors. Unfortunately, the
absolute value is difficult to be precisely measured with cheap
barometers thus the air pressure is usually used to estimate
relative floor changes. As an example, in HYFI [12], the
authors updated the reference pressure of a floor with the Wi-
Fi floor classification and evaluated short-term floor changes
through air pressure information. However, the majority of
commercial smartphones are not equipped with barometers
and, therefore, Wi-Fi is still the most important information
to develop floor identification methods. Consequently, Wi-
Fi based methods are generally modelled as classification
problems, including linear discriminant analysis (LDA) [13],
k-means clustering [14], and deep neural network [15]. In

literature, several works rely on labelling the Wi-Fi fingerprints
with the floor number where the readings have been collected
and, then, by leveraging appearances of access points (APs)
in fingerprints to mark the features as significant for the floors
[12]. In those cases, the working hypothesis is considering
the Received Signal Strength Indicator (RSSI) from an AP
gathered at one floor stronger than the RSSI received from the
same AP on other floors due, for example, to the attenuation
introduced by walls. However, in wide and multi-storey build-
ings, the attenuation effect along horizontal direction becomes
as obvious as the effect on different floors due to the presence
of walls, rooms, people, and furniture which contribute to
propagation loss. For each APs, the RSSI becomes weak at
different floors but also at faraway places of the same floor.
Although many Wi-Fi based methods have been presented,
challenges for precise floor identification in complicated multi-
storey environments are still open.

The first main challenge arises when the complexity of the
environment on the same floor is comparable to the complexity
along different floors. HYFI [12] leveraged probabilities of AP
appearances in the whole floor as features. This system needs
much time to collect enough samples and to ensure a correct
balance across the floor. The slow convergence is a limitation
and a drawback of the system. HyRise [16] only utilized the
strongest signal strength to shrink the feature coverage, but the
system also discards many information that could potentially
improve the positioning performance. In order to tackle this
problem, we propose to classify the building into multiple 3D
autonomous blocks through a clustering algorithm based on
Wi-Fi fingerprint using RSSI and spatial similarity. We define
an autonomous block as a small spatial cell that contains
similar RSSI and spatial features. Considering an autonomous
block, the Wi-Fi fingerprints have reworked RSSI features thus
decreasing the effect of the complexity on the same floor, and,
successively, fine-grained Wi-Fi models are used to improve
floor identification performance for each autonomous block.

A second challenge regards the handling of Wi-Fi failures
in complex environments, which include open spaces, mezza-
nines and intermediate floors, large and multi-storey areas, and
crowded signal channels. A failure during a Wi-Fi scan might
also be caused by too weak signals from a faraway AP or by
channel interferences due to crowded signal channels. Existing
works [17],[13] suggest to fill failed AP scans with the mini-
mum detectable RSSI value, for example −90dBm. However,
if the failure is caused by channel interference, the minimum
value will wrongly indicate that the signal is coming from a
remote AP. Considering the Wi-Fi characteristic in complex
scenarios, we propose a fine-grained Wi-Fi model to discern
them and fully utilize the available Wi-Fi features. Then,
we estimate different floors through the joint optimization of
autonomous block detection and local floor identification. We
have performed several experiments in real-world scenarios,
and we claim that the proposed algorithm improves the floor
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identification accuracy in complex environments.
Specifically, we provide the following contributions:
• Augmented K-means clustering algorithm, based on Wi-

Fi RSSI and spatial similarity, to overcome the complexity on
the same floor.
• Enhanced Bayesian Wi-Fi models for fine-grained indoor

positioning able to fully utilize all the available information
from a Wi-Fi scan. Our algorithm automatically identifies
several autonomous blocks inside the whole environment and
then it optimizes the floor identification.
• We have conducted extensive experiments to test our

algorithm in 3 real-world buildings. The deployment area is
greater than 140, 000m2. Results reveal that the proposed
algorithm achieves high accuracies and robust performances
as compared with state-of-the-art methods.

The rest of the paper is organized as follows. Related
works are reviewed in section II. Section III describes Wi-
Fi fingerprints and provides a system overview. Section IV
introduces the autonomous block clustering algorithm. section
V shows the proposed fine-grained Wi-Fi model and our floor
identification methods. Implementation details and experimen-
tal results are presented and discussed in section VI. Finally,
Section VII concludes this paper and analyses future works.

II. RELATED WORK

A. Wi-Fi based Floor Identification

Wi-Fi based floor identification has been usually approached
considering Wi-Fi fingerprints collected at the same floor
similar and grouped together. A supervised learning model has
been used to identify the right floor. Luo et al. [13] proposed
the linear discriminant analysis (LDA) to build a multi-floor
Wi-Fi fingerprint database. They leveraged a majority voting
mechanism to identify the floor. Their work solved the high
computation complexity problem existing in several works
containing a similar approach. Kim et al. [15] analysed the
hierarchical and different nature of the building/floor/location
estimation and designed a single-input and multi-output deep
neural network (DNN) to enable the hybrid regression. How-
ever, these works ignored the inherent complexity of radio-
wave propagation in indoor environments. ViFi [18] proposed
a Wi-Fi RSSI prediction method based on a multi-wall and
multi-floor (MWMF) propagation model to generate a discrete
RSSI radio map, which allowed a sevenfold reduction in
the number of measurements to be collected. The inherent
complexity of Wi-Fi propagation in indoor environments in-
creases the risk of identifying a sequence of floors at different
levels, so introducing a sequence of vertical jumps of the final
position estimation. Consequently, researchers have attempted
to refine the vertical motion detection in order to perform
floor identification updating the estimation only when vertical
motions have been detected.

B. Integrated Floor Identification

Generally, acceleration and pressure information are used
to detect vertical motions. HyRise [16] modelled the pres-
sure with a finite state machine, then it updated the Wi-Fi
probabilities of each floor according to the pressure states.

TABLE I
A COMPARISON BETWEEN FLOOR IDENTIFICATION ALGORITHM

Ref Method Wi-Fi Pressure IMU
[13] Linear discriminant analysis

√

[15] Deep neural network
√

[18] Multi-wall and multi-floor model
√ √

[16] Markovian probability
√ √

[19] HORUS algorithm
√ √ √

[12] Bayesian Classification
√ √

[20] Indoor outdoor detection + WKNN
√ √

Banerjee et al. [19] leveraged pressure values to adjust floor
change probabilities in their Wi-Fi based algorithms. The
authors also leveraged stationary detection to eliminate the
barometer drift problem. Since the atmospheric pressure de-
creases when the altitude increases, researchers have proposed
several barometer-based floor identification solutions. In order
to estimate the absolute floor number, a reference barometer
station is necessary: HYFI [12] utilized Wi-Fi positioning
results as virtual reference stations; Bisio et al. [20] proposed
an indoor/outdoor (I/O) detection to determine the first-floor
pressure as the virtual reference station. However, barometers
are only equipped in few models of smartphones, thus limiting
the real application of pressure based methods.

As TABLE I reveals, although the accelerome-
ter/gyroscope/pressure patterns have been used to improve
the performance of floor identification, based on the analysis
of existing works, we can conclude that Wi-Fi is still the
most important and common signal for enabling a ubiquitous
floor identification. Seldom the works in literature have fully
considered also the issues encountered in real large-scale
multi-storey environments, including the problem of an
increased signal heterogeneity on the same floor, and a strong
channel interference. Our work analyses the two issues and
proposes the clustering method to identify autonomous blocks
and Wi-Fi models to implement robust and accurate floor
identification.

III. SYSTEM OVERVIEW

In this section we first describe the working principles of
Wi-Fi fingerprint and, successively, we describe the system
overview.

A. Working principles of Wi-Fi Fingerprints

As shown in Fig. 1, our system consists of two phases: an
offline-phase to train a floor model and an online phase to
detect floors based on the model. In the off-line phase, a site-
surveyor walk around the building holding one smartphone to
periodically collect Wi-Fi fingerprints and fingerprint coordi-
nates of all reachable areas at different floors (inputted by the
same site-surveyor). The combination of a Wi-Fi fingerprint
and its coordinates is called a sample. Samples of the whole
building are sent to a training server, then are processed to
get a floor detection model. Considering the discernibility of
Wi-Fi signals, the distance between two samples is less than
two meters, comparable to the positioning accuracy of RSSI
based positioning systems [21]. On the other hand, it is sug-
gested to collect fingerprints at the working time so assuring
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TABLE II
NAMING CONVENTION OF VARIABLES, SUPERSCRIPTS, AND SUBSCRIPTS

Item Description

Superscript
(e.g., NS , NA)

To discriminate variables of different types. E.g.,
NS , NA, NB represent the total number (N ) of
samples (S), APs (A), and autonomous blocks (B).

Subscript
(e.g., rh,i)

To represent data indexes.h, i, j, k are indexes of
samples, APs, floors, and autonomous blocks. E.g.,
rh,i is the RSSI (r) of AP i observed in sample sh.

Script
character (e.g.,
NFB ,NFF )

To represent the events after a Wi-Fi scan in the
autonomous block and local floor detections. E.g.,
NFB is the event “negative AP and false scan” NF
for an autonomous block (B). NFF is the event
“negative AP and false scan” (NF ) for the local
floor (F ).

SamplesAP

AP Floor model

Site surveyor 
device

End user 
device

Off-line phase

Fingerprints

Online phase

Fingerprints

Results

Training server

Fig. 1. The data flow of off-line and online phases.

realistic features of collected fingerprints in accordance with
the supposed use of the system.

In the online phase, end-users download the floor detection
model form the training server using a dedicated smartphone
app. The smartphone collects real-time Wi-Fi fingerprints and,
based on the model, estimates the floor where the user is.

For clarity, the naming convention of variables used in
this paper is summarized in TABLE II. The representations
of fingerprint coordinates and fingerprints are as follows. As
shown in equation (1), according to TABLE 2, the system
utilizes loch, a triple of real numbers, to represent the fin-
gerprint coordinates. Variable z contains the number of the
floor. NS is the total number of samples collected into the
building. The maximum Wi-Fi sampling frequency is around
0.5Hz thus the time used for sampling is approximated to 2
seconds. When the average sample density is greater than
1 sample/m2, the proposed system reaches a stable floor
identification accuracy. Accordingly, the sampling time is
around two times the building area in square meters. Equation
(2) reveals the structure of a Wi-Fi fingerprint fph, a list of
observed MAC and RSSI pairs at location loch. The total
number of APs is NA. In equation (3), rh,i depicts the RSSI
of a smartphone scanning AP i at location loch. If an AP is
successfully scanned, the smartphone collects the RSSI as a
negative integer. Otherwise, we set the RSSI value with Null.
Samples collected during the off-line phase can be represented
in equation (4). A sample sh is a couple of location loch and
the observed Wi-Fi fingerprint fph. During the online phase,
the user position is unknown and, therefore, we utilize fp and
ri to represent online fingerprint and RSSI.

loch ∈ {(xh, yh, zh)|xh, yh, zh ∈ R} , h ∈
[
1, NS

]
(1)

fph = {〈MACh,i, rh,i〉i ∈ [1, NA]}, h ∈ [1, NS ] (2)
rh,i ∈ {N− ∪ {Null}}, h ∈ [1, NS ], i ∈ [1, NA] (3)

sh = 〈loch, fph〉, h ∈ [1, NS ] (4)

Autonomous block clustering

Off-line phase

Real-time phase

Probability estimation of 

autonomous blocks

Probability estimation of 

local floors

Model training for 

autonomous blocks 

Model training for 

local floors

Joint probability estimation

Floor estimation with maximum likelihood estimationFloor estimation with maximum likelihood estimation

Real-time Wi-Fi fingerprintReal-time Wi-Fi fingerprint

The whole building dataset of Wi-Fi fingerprints 

and fingerprint coordinates

The whole building dataset of Wi-Fi fingerprints 

and fingerprint coordinates

Fig. 2. Overview of the proposed system.

B. System Architecture

The proposed system architecture, shown in Fig. 2, relies on
seven functional modules: (a) autonomous block clustering, (b)
model training for autonomous blocks, (c) model training for
local floors, (d) probability estimation of autonomous blocks,
(e) local floor probability estimation, (f) joint probability
estimation, and (g) floor estimation with maximum likelihood
estimation (MLE).

(a) Autonomous block clustering: the module clusters the
training Wi-Fi dataset of a building into several autonomous
blocks, within which the Wi-Fi fingerprints have similar RSSI
and spatial features.

(b) Model training for autonomous block: based on the
clustered Wi-Fi fingerprints, the module performs the model
training for autonomous block detection by evaluating the
statistical features of each autonomous block.

(c) Model training for local floor identification: for each
autonomous block, based on the floor number of the Wi-Fi
dataset, the module performs the model training for the local
floor identification by evaluating the statistical features of each
floor.

(d) Probability estimation of autonomous block: in the
online phase, when a real-time Wi-Fi fingerprint is collected,
the module calculates the probabilities of the fingerprint for
each autonomous block.

(e) Probability estimation of local floor: the module calcu-
lates the probabilities of the received fingerprint for every floor
in every autonomous block.

(f) Joint probability estimation: the module calculates the
joint probability of all the combinations of autonomous blocks
and their local floors, given the received fingerprint.

(g) Floor estimation with MLE: the module estimates the
final floor number of the real-time Wi-Fi fingerprint by select-
ing the floor number with the maximum likelihood probability
of all the joint probabilities.

IV. AUTONOMOUS BLOCK CLUSTERING WITH RSSI AND
SPATIAL SIMILARITY

The basic principle of Wi-Fi based floor identification is to
consider the APs signal variation at different floors. However,
as the size of the building enlarges, AP signals are also
attenuated by walls and propagation loss along the horizontal
direction. Therefore, when the building size is large enough,
the Wi-Fi signal heterogeneity along the horizontal direction is
even wider than the heterogeneity along different floors. This
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Fig. 3. Wi-Fi fingerprint comparison of different floors and areas.
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Fig. 4. Clustering autonomous block through Wi-Fi fingerprint.

phenomenon leads to inaccuracies. For example, Fig. 3 shows
a comparison between Wi-Fi fingerprints collected in three
different areas, 100m2 large, of the same building. Place 1 and
2 belong to the same floor. Place 1 and 3 belong to different
floors and place 3 is below place 1 of 4 meters. The total
number of APs observed in the building is 4058. We collected
40 Wi-Fi fingerprints in each of the three places. The figure
shows a comparison of the fingerprints collected based on the
presence of APs. If an AP occurs in a fingerprint, the AP is
represented as a blue pixel, otherwise as a yellow pixel. Pixels
of the same row represent the occurrences of APs in a Wi-
Fi fingerprint. Pixels of the same column show occurrences
of an AP in different fingerprints. In the example shown, the
fingerprints heterogeneity increases from floor 3 to floor 2 in
the same area 1 thus they can be used to discriminate floors
in the area 1. Unfortunately, the Wi-Fi heterogeneity between
place 1 and place 2 on the same floor 3 is even greater than the
previous (i.e., the correlation coefficient between Area 1 and
2 is -0.03 and the coefficient between Area 1 and 3 is 0.18).
In fact, the spatial distance between place 1 and place 2 is
about 80 meters and, due to the many obstacles in the middle,
we observe strong Wi-Fi signals attenuation. This problem is
common in large and multi-storey buildings and, therefore,
indoor positioning systems reach low performances in floor
identification.

To address this problem, we propose to divide the en-
vironment into several autonomous blocks with clustering
techniques. Inside each autonomous block, Wi-Fi fingerprints
have similar features both in RSSI and spatial spaces. Then,
we can construct local floor identification models for each
autonomous block thus reducing the interferences on the same
floor.

Fig. 4 shows a graphic representation of our autonomous
block clustering. Four APs are deployed on different floors of
a building. Considering the weak penetration of Wi-Fi signals,
the building can be divided into three autonomous blocks
based on observable APs.

Floors and walls divide the whole building into several
blocks, thus APs in the same autonomous block have two

(a) The cluster of an autonomous block (b) The real testing environment

Fig. 5. An example of an autonomous block clustering.

features: they are close to each other and only few obstacles
are in the middle. Therefore, also the fingerprints collected
into the same block are similar to each other. In other words,
as Fig. 3 reveals, place 2 is more different to place 1 than place
3, but these differences are irrelevant for floor detection. Our
system clusters place 1 and 2 into two different autonomous
blocks to isolate the differences of fingerprints on the same
floor.

Fig. 5 shows an example in which one dot corresponds to
a location on which a Wi-Fi fingerprint has been collected.
Based on these samples, our system performs clustering to
create autonomous blocks. The red dots in Fig. 5(a) belong
to the same autonomous block, the blue dots belong to other
blocks. As stated before, our algorithm clusters Wi-Fi finger-
prints with similar signal similarity and spatial proximity into
the same autonomous block which generally covers multiple
floors. Also, fingerprints collected at lobbies, hallways, and
mezzanines are clustered into the same autonomous block.
Therefore, we apply a local fine-grained Wi-Fi model to refine
and improve the floor detection performances.

Wi-Fi fingerprint samples gathered into a multi-storey envi-
ronment compose a large dataset. Therefore, we propose the
efficient K-means method [22], shown in Algorithm I, as the
clustering algorithm for the autonomous block identification.
The input D is the whole building dataset of Wi-Fi fingerprints
and fingerprint coordinates D = {sh|h ∈ [1, NS ]}. NB is the
target number of the autonomous blocks. The algorithm clus-
ters Wi-Fi fingerprints and produce NB autonomous blocks
with the related fingerprint sets. When the algorithm starts, the
centroids of each autonomous block are randomly initialized.
Then, it analyses all the instances sh and evaluates the distance
dh,k from sh to all centroids. Successively, the autonomous
block membership membh of sh is classified as the centroid
ctrk(1 ≤ k ≤ NB) with the minimum distance.

As equation (5) reveals, the centroid ctrk of an autonomous
block consists of two parts: fingerprint centroid fctrk and
spatial centroid sctrk. The form of fctrk and sctrk are equals
to fph and loch respectively.

ctrk = 〈fctrk, sctrk〉, k ∈ [1, NB ] (5)
Accordingly, our algorithm leverages the Jaccard [23] and

Euclidean distance to measure the similarity and proximity
of Wi-Fi fingerprints. As Fig. 4 reveals, considering the weak
penetration of Wi-Fi signals, the RSSI of AP 1 is undetectable
in autonomous block 2 because the signal becomes too weak.
In other words, the RSSI of an AP is only detectable in a small
area of a large building. Therefore, our system leverages the
similarity of detectable AP set as a gauge for clustering. As
equation (6) reveals, the detectable AP set is the MAC part of
the equation (2).

fmh = {MACh,i|i ∈ [1, NA]}, h ∈ [1, NS ] (6)
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Algorithm 1 The autonomous block clustering algorithm
Require: D,NB

1: Initilize autonomous block centroids ctrk randomly
2: repeat
3: for each sh ∈ D do
4: Init shortest distance sdh ←MaxDistance
5: Init membership membh ← null
6: for each ctrk do
7: dh,k ← calculate distance from sh to ck
8: if dh,k < sdh then
9: sdh ← dh,k

10: membh ← ctrk
11: end if
12: end for
13: end for
14: Update autonomous block fingerprint centroid fctrk
15: Update autonomous block spatial centroid sctrk
16: until Converge

Specifically, we utilize the normalized Jaccard distance
jdish,k to measure the similarity of detectable AP sets. It is
defined as the size of the intersection divided by the size of
the union of the sample sets. As equation (7) reveals, fctrk is
the Wi-Fi fingerprint of the centroid ctrk. |fmh∩fctrk| is the
number of common occurrences of AP MACs in two Wi-Fi
fingerprints. The factor is normalized by the possible maxi-
mum number of |fmh∩fctrk|. Basically, fingerprint samples
with the greatest number of common APs are clustered into
the same autonomous block.
jdish,k = 1− |fmh ∩ fctrk|

max
1≤u1≤NS ,1≤u2≤NB

∣∣fmu1 ∩ fctru2
∣∣ ,

h ∈ [1, NS ], k ∈ [1, NB ]

(7)

APs within the same autonomous block are also physically
close to each other, thus we utilize the Euclidean distance
edish,k to measure the proximity between fingerprints in
the spatial domain. As equation (8) reveals, sctrk is the
coordinates of the centroid ctrk. The factor is normalized by
the possible maximum spatial distance of ‖ loch − sctrk ‖2.

edish,k =
‖ loch − sctrk ‖2

max
1≤u1≤NS ,1≤u2≤NB

‖ locu1 − sctru2 ‖2
,

h ∈ [1, NS ], k ∈ [1, NB ]

(8)

Jaccard and Euclidean distances are two important factors
that influence the performance of autonomous block clustering
and floor identification. The distance dh,k from the sample
sh to the centroid ctrk is a combination of the Jaccard and
Euclidean distances, as shown in equation (9). Considering
the complexity of indoor environments, the proportion α of
the two distances should be determined empirically.

dh,k = α · jdish,k + (1− α) · edish,k,
h ∈ [1, NS ], k ∈ [1, NB ]

(9)

When an iteration ends, the centroids of each autonomous
block are recalculated. As equation (10) shows, the RSSI
centroid fctrk is the union of all the AP MACs classified
as the centroid. The union operation guarantees that Wi-Fi
fingerprints that have more common MACs are classified as
the same autonomous block.

fctrk = union
membu==ctrk

(Fu), k ∈ [1, NB ] (10)
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Fig. 6. Wi-Fi features in different indoor scenarios.

The spatial centroid sctrk shown in equation (11) is the
average coordinates of all the fingerprints that belong to the
same autonomous block. In the training phase, the algorithm
iterates until the centroids of autonomous blocks converge so
training samples are clustered into autonomous blocks.

sctrk =

vectorSum(locu)
membu==ctrk

count(membu == ctrk)
, k ∈ [1, NB ] (11)

Possible autonomous blocks range from 1 to NS . In order
to find the optimal value, we leverage the elbow method
[24]—an effective way to find the right K in K-means based
clustering—to determine the value of NB . As equation (12)
reveals, the distortion of the resulting cluster is the sum of the
squared distance between a sample and its centroid. A lower
distortion means that the samples within a cluster are closer
to each other. The basic idea of the elbow method is that the
distortion decreases as the number of clusters increases. It first
decreases fast then slowly after a critical K value. The critical
K value is the elbow point and, in our algorithm, it represents
the right number of autonomous blocks.

distortion =

NS∑
h=1

(dh,membh)
2 (12)

V. WI-FI MODEL AND ACCURATE FLOOR IDENTIFICATION

As previously discussed, Wi-Fi signals are affected by
many factors, including obstacles, building structures, channel
interferences, and propagation loss. For example, Fig. 6(a)
shows a simple scenario in which AP signals are attenuated
by floors and, therefore, a floor can be identified through the
AP detection. Generally, in large and multi-storey buildings,
raised or intermediate floors, and mezzanines are often present.
In Fig. 6(b), no floor causes an AP signal attenuation on floor
2. Then, the signal is still strong at F1 and F2, decreasing the
floor distinguishability. On the contrary, in Fig. 6(c), when a
smartphone is too far from an AP, the AP signal is attenuated
by walls along the horizontal direction, making it weak on the
same floor and other floors. When more APs are deployed, it
is worth noting that the AP channel number is limited, so the
risk of channel interference increases. In Fig. 6(d), smartphone
S2 may fail to correctly scan AP1 due to channel interference
introduced from AP2. In this situation, the Wi-Fi information
may appear as retrieved on F1.

Fig. 7. shows a summary of the scenarios discussed in
Fig.5. Basically, only when a smartphone successfully scans



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Wi-Fi Scan 

results

Success

Failure

Contains RSSI values

No RSSI values

Good signals

Weak Signals

Channel interference

Fig. 7. Potential Wi-Fi scan results.

SuccessSuccess

Channel
interference Too weak

signal

Success

Channel
interference Too weak

signal

(a) Traditional Wi-Fi model (b) Proposed Wi-Fi model 

Too weak
signal

Too weak
signal

Success

Channel
interference

Success

Channel
interference

Positive AP

Negative AP

Failure 
evaluation

The two cases of failure 
combined together

Fig. 8. Wi-Fi model comparison.

an AP it detects the RSSI of the AP. The RSSI value can
be used to depict the smartphone’s proximity to the AP. A
failed Wi-Fi scan might be caused by a too weak signal
or due to channel interference. A failure due to too weak
signal suggests that a user is far away from the AP. Instead,
a failure due to channel interference may occur also when
a user is close to the AP. Unfortunately, the failure due to
channel interference is less easily recognizable. Traditional
Wi-Fi based floor identification methods generally ignore the
reasons of scan failures, therefore limiting the performances.

A. Probability Estimation of an Autonomous Block

In order to accurately identify floors in complex scenarios,
it is necessary to precisely model the features of Wi-Fi scans.
Considering a real-time Wi-Fi fingerprint, no information is
available to directly discern the reasons of a Wi-Fi scan
failure. We propose to identify failures for too weak signals by
labelling out far away APs in the training phase. Specifically,
the space of the whole building is divided into several small
cells based on the clustered autonomous blocks. In other
words, a cell is a small portion of the building which has
similar RSSI features. We classify the APs into two types:
positive and negative. For each cell, positive APs are the
ones that appeared at least once in the cell, corresponding
to success or interference case in Fig. 8 (b). Negative APs
are the ones that never appeared in the cell considered but
appeared in other cells, corresponding to the too weak signal
case. Then, considering a failed Wi-Fi scan in a real-time Wi-
Fi fingerprint, if the AP is marked as negative in a cell, the
failure is considered as a failure due to a too weak signal for
the cell. On the other hand, if the AP is positive, then the
failure is considered a failure due to channel interference.

The paper proposes a hierarchical probability model to
represent the Wi-Fi fingerprints feature of a block. Based on
the order of magnitudes, the probabilities can be classified
into three level of granularity. The high granularity is related
to faraway APs. The middle granularity is related to the
appearance of the AP into the block. The low granularity is
related to received signal strength from an AP of the block.
TABLE 3 shows detail of the enhanced Bayesian Wi-Fi model
for autonomous block detection proposed in this paper. For the
real-time phase, when a new Wi-Fi fingerprint is available, we
classify the APs into the fingerprint as true or false. True APs
are the ones that have been detected in the fingerprint and have

TABLE III
WI-FI MODEL FOR AUTONOMOUS BLOCK DETECTION

Autonomous block model
AP results in online fingerprint
True scan (T ) False scan (F )

Off-line
autonomous
block model

Positive AP (P) P (ri, S
B
i,k) P (FB

i,k)

Negative AP (N ) P (NT B) ≡ 0 P (NFB) ≡ 1

appeared in the off-line phase. False APs are the ones that have
appeared in the off-line phase, but they have not been detected
in the new fingerprint. The joint probability of a positive AP
and a true scan (PT ) result is P (ri, SB

i,k), S
B
i,k is the event of

successful detecting the ith AP in the kth autonomous block.
As equation (13) reveals, P (ri, SB

i,k) equals to the product of
P (ri|SB

i,k) and P (SB
i,k). P (ri|SB

i,k) is modelled as Gaussian
distribution. µB

i,k and σB
i,k are the RSSI mean and variance of

the ith AP in the kth autonomous block. P (SB
i,k) is the scan

success probability.
P (ri,SBi,k) = P (ri|SBi,k)P (SBi,k)
P (ri|SBi,k) = N(µB

i,k, σ
B
i,k)

P (SBi,k) =
SuccessfulScanNumber

TotalScanNumber

(13)

As equation (14) reveals, PB
k (FB

i,k) is the probability of
a positive AP and a false scan (PF). In other words, the
probability of a failure in detecting the not far ith AP. The
probability reflects the channel interference level.

P (FB
i,k) = 1− P (SBi,k) (14)

The probability of a negative AP and a true scan (NT )
result P(NT B) is constant to zero, indicating that an AP
is far away from an autonomous block and, if the AP is
detected, then the user should not be in the autonomous block.
However, considering that the sample time is limited, for a real
application, we replace the zero with a small probability value.
The probability of a negative AP and false scan (NF) result
P(NFB) is constant to one.

In the offline phase, the system calculates P (SB
i,k), µ

B
i,k

and σB
i,k for all AP in every autonomous block to get the

autonomous block detection model. Then, based on the model,
in the online phase, given a real-time Wi-Fi fingerprint fp and
an autonomous block Bk, the probability P (Bk|fp)—fp lies
in Bk—can be calculated. Based on TABLE 3, all the ri of
fp can be classified into four sets: setPTk , setPFk , setNTk and
setNFk , corresponding to the PT , PF , NT and NF events
that occur during the online phase.

Based on the Bayesian rule, given the initial probabilities
of every autonomous block are equal, then P (Bk|fp) is
proportional to P(fp|Bk) which is the probability of observing
the fp in block Bk, shown in equation (15).

P (Bk|fp) =
P (fp|Bk)P (Bk)∑Nc

l=1 P (fp|Bk)P (Bk)
∝ P (fp|Bk) (15)

Considering that APs are independent of each other, there-
fore, as equation (16) reveals, P (fp|Bk) is the joint probabil-
ity of every ri in the block Bk.
P (fp|Bk) =

∏
ri∈setPT

k

P (ri,SBi,k)∏
ri∈setPF

k

P (FB
i,k)

∏
ri∈setNT

k

P (NT B)
∏

ri∈setNF
k

P (NFB)
(16)

Taking the equation (16) into (15) and considering the
P (NFB) constantly equals one, then the probability of an
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TABLE IV
WI-FI MODEL FOR FLOOR IDENTIFICATION

Floor model
AP results in online fingerprint
True scan (T ) False scan (F )

Off-line
floor

model

Positive AP (P) P (ri, S
F
i,j,k) P (FF

i,j,k)

Negative AP (N ) P (NT F ) ≡ 0 P (NFF ) ≡ 1

autonomous block Bk given an online fingerprint fp can be
calculated with equation (17).
P (Bk|fp) ∝∏
ri∈setPT

k

P (ri,SBi,k)
∏

ri∈setPF
k

P (FB
i,k)

∏
ri∈setNT

k

P (NT B) (17)

After normalization, we can conclude the equation (18), the
final form of autonomous block probability estimation.
P (Bk|fp) =∏

ri∈setPT
k

P (ri,SB
i,k)

∏
ri∈setPF

k

P (FB
i,k)

∏
ri∈setNT

k

P (NT B)

∏
u∈setB

( ∏
ri∈setPT

u

P (ri,SB
i,m)

∏
ri∈setPF

u

P (FB
i,m)

∏
ri∈setNT

u

P (NT B)

)
(18)

where setB is the set of all the available autonomous blocks.

B. Probability Estimation of a Floor in an Autonomous Block

Evaluated the probabilities of the autonomous blocks, we
construct a similar Wi-Fi model in order to estimate the floor
probability into the blocks. Basically, we separate too weak
signals and failures due to interferences with the granularity
of the floor. For each floor, as shown in TABLE 4, APs in the
training model of a floor have also been classified into positive
and negative. The positive AP is the one that has appeared
on the floor. Negative APs only appear on other floors of the
autonomous block. In TABLE 4, the event SFi,k,j is a successful
detection of the ith AP in the kth autonomous block at the
jth floor. The event FF

i,k,j is a failed scan of a positive AP.
The event NT F is a true scan of a negative AP. NFF is a
false scan of a negative AP.

The model training of floor detection in an autonomous
block is similar to the autonomous block detection model. The
system calculates the probability of successful detecting the ith
AP in the kth autonomous block at the jth floor P (SFi,k,j), and
corresponding mean µF

i,k,j and variable σF
i,k,j Then, comparing

to the equation (15), we can conclude that P (Fj |fp,Bk) is
the floor Fj probability in the autonomous block Bk, given
an online scan result fp, shown in equation (19). Given that
the prior probabilities of the user’s location distributed on
different floors of the autonomous block are equal, P (Fj |Bk)
is equal for each floor. The factor P (fp|Bk) is a constant
value for each floor. Therefore, P (Fj |fp,Bk) is proportional
to P (fp|Fj , Bk), that is, the probability of observing the scan
result fp at the Fj floor in the autonomous block Bk.

P (Fj |fp,Bk) =
P (fp|Fj , Bk)P (Fj |Bk)P (Bk)

P (fp|Bk)P (Bk)

=
P (fp|Fj , Bk)P (Fj |Bk)

P (fp|Bk)
∝ P (fp|Fj , Bk)

(19)

Based on the AP independence, P (fp|Fj , Bk) is the joint
probability of every ri appearing at the Fj floor in the block

Bk. Comparing to the equation (16) and (17), we can conclude
that:
P (Fj |fp,Bk) ∝∏
ri∈setPT

k,j

P (ri,SFi,k,j)
∏

ri∈setPF
k,j

P (FF
i,k,j)

∏
ri∈setNT

k,j

P (NT F )

(20)
where setPTk,j , setPFk,j , setNTk,j correspond to the PT , PF and
NT AP set at the jth floor in the kth autonomous block. After
normalization, we can write the equation (21),
P (Fj |fp,Bk) =∏

ri∈setPT
k,j

P (ri,SF
i,k,j)

∏
ri∈setPF

k,j

P (FF
i,k,j)

∏
ri∈setNT

k,j

P (NT F )

∏
u∈setF

k

( ∏
ri∈setPT

k,u

P (ri,SF
i,k,u)

∏
ri∈setPF

k,u

P (FF
i,k,u)

∏
ri∈setNT

k,u

P (NT F )

)
(21)

where setFk is the set of all the available floor indexes in the
autonomous block k.

C. Joint Optimization and Final Floor Identification

Our system estimates the final floor with the joint optimiza-
tion of autonomous blocks and related floors. As equation
(22) reveals, P (Fj , Bk|fp) is the joint probability of floor
Fj and autonomous block Bk, given an online Wi-Fi scan
result fp. setF and setB are the sets of all the available floor
and autonomous block numbers of the building. The estimated
floor number is the one that maximizes the probability of
P (Fj , Bk|fp).

[Fj , Bk] = argmax
j∈setF ,k∈setB

P (Fj , Bk|fp) (22)

As equation (23) shows, the probability P (Fj , Bk|fp) is
equal to the product P (Bk|fp) and P (Fj |fp,Bk), which have
been calculated in equations (18) and (21).

P (Fj , Bk|fp) =
P (Fj |fp,Bk)P (Bk|fp)P (fp)

P (fp)

= P (Bk|fp)P (Fj |fp,Bk)

(23)

Taking the equation (23) into (22), the equation (22) can be
updated as the equation (24).

[Fj , Bk] = argmax
j∈setF ,k∈setB

P (Bk|fp)P (Fj |fp,Bk) (24)

Taking the equation (18) and (21) into the equation (24),
through the equation (25) we estimate the floor on which the
user is located.
[Fj , Bk] = argmin

j∈setF ,k∈setB
−lgP (Bk|fp)− lgP (Fj |fp,Bk)

(25)
As a summary, in the offline phase, Wi-Fi fingerprint sam-

ples are clustered into autonomous blocks. Then the system
evaluates every block and every related floor to construct the
autonomous block and local floor detection models. Finally, in
the online phase, the system utilizes equation (25) to calculate
the joint probability of every autonomous block and the floor
probabilities within every block and select the maximum
probability prediction as the result.

The time complexity of the system is O(NA), that is
proportional to the number of all the APs detected in the
building.
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Fig. 9. The floor plan of our experimental training center building.

VI. IMPLEMENTATION AND RESULTS EVALUATION

A. Experimental Environment

We have conducted our experiments in a large conference
centre shown in Fig. 9. The building has four floors and
sprawls over an area of 108m × 203m. The floor height is
4m. Three floors are above the ground and one floor is below
the ground. The building contains two large hollow spaces
and several small courtyards. The size of the two large hollow
spaces is 1150 and 1250 m2 respectively.

We have collected Wi-Fi data of the whole building with
two Huawei Mate 9 and a Xiaomi Mix 2 smartphones. We
developed a sampling application to collect Wi-Fi fingerprints.
A site-surveyor inputted start and end point in the application,
then he slowly walked along a line to periodically collect
fingerprints. We used one sample line for corridors narrower
than 4 meters, and parallel lines for that greater than 4 meters.
It takes about half a day to sample the whole building once
with a single smartphone. The Mate 9 A collected 6486
samples on July 1st and collected 6517 samples on August
17th. The Mate 9 B collected 6408 samples on August 1st. The
Mix 2 only collected 1630 samples on August 2nd, because
the sampling frequency of the Mix 2 is about one-fourth of
the Mate 9. Each data collection fully covers the four-floor
60,000m2 testbed. These data have been collected while users
were walking. Based on our survey, 4058 MACs have been
detected in this testbed. The number of Wi-Fi stations is
about one-third of the total number of MACs, because most
of the APs generate three different MAC for different kinds
of users, including guests, employees, and administrators.
Besides, these APs automatically adjust their broadcasting
power every day to optimize the communication capacity, but
the adjusting rule is unknown. We also tested our algorithm
on a commercial smartphone and the average running time for
one request was 160ms.

B. Cluster Evaluation

The weight coefficient α in equation (2) is a key parameter
in clustering fingerprints. This test examines the clustering
effect of different weight coefficients. Fig. 10 reveals three
typical cases we have examined: clustering with only RSSI
similarity (α = 1), clustering with only spatial similarity
(α = 0), clustering with RSSI and spatial similarity (α = 0.5).
Fig. 10 (a)(c)(e) depict with different colours where the
autonomous blocks have been identified on floor 1 (F1). Fig.
10 (b)(d)(f) illustrate the fingerprints of an autonomous block
choosing different α value. A comparison between (a) and
(c) shows that the RSSI similarity based only on clustering is
not able to properly represent the entire building structures.

(a) Spatial relation with a =1 (b) Fingerprints of an autonomous block with a =1(a) Spatial relation with a =1 (b) Fingerprints of an autonomous block with a =1(a) Spatial relation with a =1 (b) Fingerprints of an autonomous block with a =1

(a) Spatial relation with a =0 (b) Fingerprints of an autonomous block with a =0(a) Spatial relation with a =0 (b) Fingerprints of an autonomous block with a =0(a) Spatial relation with a =0 (b) Fingerprints of an autonomous block with a =0

(a) Spatial relation with a =0.5 (b) Fingerprints of an autonomous block with a =0.5(a) Spatial relation with a =0.5 (b) Fingerprints of an autonomous block with a =0.5(a) Spatial relation with a =0.5 (b) Fingerprints of an autonomous block with a =0.5

Fig. 10. The similarity of spatial relationships and clustered fingerprints with
different weight coefficients.

Spatial proximity dominant RSS similarity dominant

Optimal alpha

Fig. 11. Floor identification accuracy with different α.

On the other hand, comparing (b) and (d), it can be found
that fingerprint consistency is low in (d). Therefore, as (e) and
(f) reveal, when both RSSI similarity and spatial proximity are
considered, for example, α = 0.5, fingerprints within the same
autonomous block reveal better consistency both in RSSI and
Euclidean spaces.

Fig. 11 shows the influence of different α value in floor
identification performances. It can be observed that a proper
combination of RSSI similarity or spatial proximity is helpful
in improving autonomous block clustering and floor identifi-
cation accuracy. In this experiment, α = 0.8 is the optimal
value.
C. Number of Autonomous Blocks

This experiment examines the efficiency of the elbow
method in finding the optimal autonomous block number. As
Fig. 12 reveals, the floor detection accuracy quickly improves
as the number of autonomous blocks increases and reaches
the maximum around the elbow point. In other words, a good
fingerprint clustering is also a good separation of autonomous
blocks. Around the elbow point, Wi-Fi fingerprints of the
same autonomous block are more similar. Consequently, by
reducing the influence of the fingerprints gathered at faraway
places on the same floor, the floor detection accuracy of our
model improves. Fig. 13 depicts the autonomous blocks of the
testing site. A point in the figure represents a sample. It can
be observed that autonomous blocks around hollow areas tend
to include multiple floors.
D. Evaluation of Sample Density

The proposed model is based on the Bayesian theory,
thus the number of samples directly influences the model
efficiency and the floor identification accuracy. Fig. 14 re-
veals the relationship between floor identification accuracies,
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The elbow point

Accuracy = 98.77%

Fig. 12. Setting K with the elbow method.

Fig. 13. Autonomous blocks of the building.

Suggested minimum

sample density

Fig. 14. Floor identification accuracy of different sample densities.

sampling time, and average sample density. It can be found
that accuracy improves as the sample density increases. When
the sample density is greater than 1 sample/m2, the floor
identification accuracies become stable. We also estimate the
relative minimum sampling time is about 2.5 hours.
E. Evaluation of Signal Strength Related Factors

In order to evaluate the performance of signal strength
related factors, we conducted three group of comparisons:
under a certain AP and 10 meters away from the AP; slow
(∼ 0.8m/s) and fast walking (∼ 2m/s); workday (less users)
and weekend (more users). The result is shown in Fig. 15 (a).
It can be found that our system is robust to signal strength
variance.

The robustness is a consequence of the features we use
in the system. In fact, signal strength mainly influences the
performance in atrium areas. As Fig. 15 (b) reveals, we tested
the importance of the three level of granularity. The high gran-
ularity PN is the probability of P (NT ); middle granularity
PNF is the joint probability of P(NT ), P(F) and P(S), and
low granularity is the joint probability of P(NT ), P(F), P(S)
and the signal strength factor P (r|S). In small or narrow
areas, for example a corridor, the improvement of adding
signal strength factors is trivial because the distinguishability
of negative APs is prominent. Even in wide or atrium areas,
higher and middle granularity already reach a decent accuracy
and the improvement of signal strength factors are limited.
Finally, our system leverages the probability of multiple APs
to estimate the results, therefore, even when the signal strength
of a single AP varies (because the user approaches or leaves
an AP), other AP will ensure the system robustness.

F. Performance Comparison with Different Time/Devices
In order to evaluate the performance of the proposed al-

gorithm, we compare our algorithm with three state-of-the-
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Fig. 15. Signal strength influnce and factor importance analysis.
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Fig. 16. Floor identification accuracy comparisons of different algorithms.

art floor identification methods—HYFI [12], LDA [13], and
XGBoost [25]—in the testing of time migration, device het-
erogeneity, and performance in the hollow area. All methods
are trained with the data collected by Mate 9 A on July 1st.
Fig. 16 (a) reveals the time migration test. It examines floor
detection accuracies with the August 1st data collected by
the same Mate 9 A of the training dataset. The result shows
that the four algorithm reaches remarkable accuracies. The
proposed and XGBoost methods are better than the other two
algorithms.

Fig. 16 (b) and (c) show the results of the device heterogene-
ity test. Due to hardware differences (e.g., antenna gains and
different Wi-Fi chips), the received AP RSSI in fingerprints
varies for different devices. The (b) is two devices of the same
brand and the (c) is of different brands. Although all the per-
formances of the four algorithms drop, our algorithm is more
robust than others because the proposed enhanced Bayesian
Wi-Fi model fully utilizes the probabilities of PF , NT and
NF events. The probabilities of these events are more robust
than RSSI features used in state-of-the-art algorithms.

Hollow areas, for example, the autonomous block 1 in
Fig. 4, are more challenging in floor detection than non-
hollow areas because no obstacles are present to attenuate
AP signals on different floors. Fig. 16 (d) reveals that the
proposed algorithm is more adaptive to complicated buildings
with hollow area scenarios. In fact, our algorithm is able to
detect the coarse area in which the fingerprints have been
collected through an autonomous block clustering. Then, it
leverages a suitable local Wi-Fi model to exactly estimate at
which floor the user is. For example, the LDA method assumes
that all the APs are visible on each floor of the building, thus
the method is not suitable to be directly applied in large and
multi-storey environments.

G. Evaluation of different devices

We also perform tests on extensive devices based on the
UJIIndoorLoc [26] dataset. The selected dataset was collected
with 18 different devices in 2 buildings at Universitat Jaume.
15268 samples were collected, 4422 of them are used for
training, and 10846 samples for validation. The evaluation
results of the four algorithms are shown in TABLE 5. It
is worth noting that every device only covers a part of the
building and the number of samples collected from the devices
is also different. Therefore, the last row of the table also
calculates the average accuracy of these devices. Again, the
proposed algorithm is more accurate and robust if compared
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TABLE V
FLOOR IDENTIFICATION ACCURACY WITH MORE DEVICES

No.
Building 1 Building 2

Prop. HYFI LDA XGB Prop. HYFI LDA XGB

1 100% 100.0% 92.5% 98.7% 98.9% 87.40% 82.0% 98.2%

2 100% 100.0% 97.0% 99.3% 98.2% 81.24% 83.5% 98.2%

3 100% 99.6% 96.6% 100% 93.9% 60.2% 77.1% 86.7%

4 100% 99.6% 84.0% 96.8% 91.4% 75.5% 71.2% 86.1%

5 100% 95.3% 100.0% 100%

6 100% 95.6% 96.8% 100% Deveic List

7 100% 23.4% 91.8% 99.6% GT-I8160 HTC One

8 98.2% 90.7% 86.7% 97.7% GT-I9100 LT22i

9 97.2% 51.6% 70.9% 94.8% GT-S5360 LT26i

10 96.5% 89.5% 95.0% 96.2% GT-S6500 M1005D

11 96.2% 89.6% 85.4% 97.1% Galaxy Nexus Nexus 4

12 95.1% 87.4% 97.1% 99.0% Orange Monte Carlo BQ Curie

13 92.3% 84.6% 77.8% 93.2% Transformer TF101 Celkon A27

14 90.6% 70.3% 79.6% 67.1% HTC Wildfire S HTC Desire

15 88.2% 84.2% 80.2% 93.98%

16 88.1% 98.1% 79.9% 98.98%
Aver
age 96.4% 84.4% 87.9% 95.8% 95.6% 76.1% 78.5% 92.3%

to the other three algorithms. Performances of the XGBoost
algorithm show wide differences in No. 14 building 1 and No.
3 and 4 building 2 because the three devices only appeared in
the test dataset. We suppose that the XGBoost algorithm tends
to overfit.

VII. CONCLUSION

In large and multi-storey environments, the complexity
of Wi-Fi signals on the same floor exceeds the complexity
between the floors along the vertical direction, leading to a
reduced floor distinguishability. Furthermore, the increasing
complexity of Wi-Fi features in complex environments, includ-
ing atrium/hollow areas, large floor size, and crowded signal
channels reduce the performance of Wi-Fi based system for
floor identification. Therefore, we propose the adaptive Wi-
Fi based floor identification algorithm. Our proposal clusters
Wi-Fi fingerprints of a large-scale building into multiple
autonomous blocks that have similar RSSI and spatial features.
Then, Wi-Fi models are applied to tackle Wi-Fi complexity.
We have tested our algorithm with 19 devices, different in
types and brands. The experimental results show that our
proposal reaches averages accuracies of 97.84%, 96.42%, and
95.67% in three real large buildings.
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