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Abstract: The advantages of a treatment modality that combines two or more therapeutic agents with
different mechanisms of action encourage the study of hybrid functional compounds for pharmaco-
logical applications. Molecular hybridization, resulting from a covalent combination of two or more
pharmacophore units, has emerged as a promising approach to overcome several issues and has also
been explored for the design of new drugs for COVID-19 treatment. In this review, we presented an
overview of small-molecule hybrids from both natural products and synthetic sources reported in the
literature to date with potential antiviral anti-SARS-CoV-2 activity.

Keywords: molecular hybridization; small molecules; natural product hybrids; antiviral activity;
drug design; COVID-19; SARS-CoV-2 Mpro

1. Introduction

Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), is an infectious disease that is mainly responsible for acute res-
piratory symptoms but is also associated with other symptoms such as hypertension,
thrombosis (blood coagulation in the vessels), pulmonary embolism, heart attack and
stroke. A sanitary emergency, generated by the pandemic of COVID-19 on the global
population causing over 7 million deaths to date [1], has dramatically impacted public
healthcare systems and has posed a huge challenge to global health for searching strategies
mitigating the damage caused by the disease. Several strategies have been carried out to
fight the pandemic. Unprecedented vaccine development and global mass vaccination
represent a very successful approach; however, a relevant proportion of the global popula-
tion remains unvaccinated due to the inability to vaccinate owing to preexisting conditions
or recalcitrance due to personal beliefs. Moreover, the appearance of new SARS-CoV-2
variants reduces the effectiveness of existing vaccines that are not efficient in prevent-
ing disease onset [2]. Among the different therapeutic strategies proposed to counteract
SARS-CoV-2 infection, the development of small-molecule antiviral drugs targeting viral
proteins required for virus replication can help to overcome SARS-CoV-2 immune escape
since the mechanism of action is unaffected by spike protein changes. In this light, several
direct-acting antiviral small-molecule drugs approved for other therapeutic applications
have been repurposed [3]. Among them, remdesivir [4] and molnupiravir [5], nucleoside
analogs targeting viral genome replication, as well as paxlovid [6–8], which combines nir-
matrelvir, an inhibitor of the viral protease chymotrypsin-like cysteine (3CLpro), with the
main protease (Mpro) inhibitor ritonavir, were quickly developed and approved for human
use. However, these antiviral drugs present significant limitations in clinical use, such as
the exclusive intravenous administration of remdesivir, the outcome that molnupiravir is
not effective in reducing mortality and hospitalization even though it has been recognized
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to accelerate the rehabilitation of COVID-19 patients [9,10], and drug–drug interactions
with concomitant medications that limit the use of paxlovid [11]. Therefore, the research for
complementary antiviral agents, which still represent an important therapeutic treatment
option, remains a pressing matter [12].

In this scenario, we reported herein advances in research on small hybrid molecules
potential antiviral candidates against SARS-CoV-2 with regard to the in silico and in vitro
data reported in literature to date. Molecular hybridization (MH) is a well-established
strategy in drug discovery for developing multitarget drug candidates for complex diseases.
MH is a useful tool to optimize the therapeutic effect of active products by improving
bioavailability and reducing toxicity as well overcoming multidrug resistance. MH consists
of the conjugation through covalent bonds of two or more pharmacophore units, resulting
in a single molecule multiple targets with improved pharmacological and pharmacokinetic
profiles respect to the parent pharmacophores used alone or in combination [13]. The
hybridization of two active molecules can be achieved in different ways: merged and
fused hybrids are obtained by using functional groups initially present on the combination
partners, whereas the introduction of a linker unit, not present in either of the starting
pharmacophores, leads to linked hybrids (Figure 1).
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Figure 1. Design strategy for hybrid compounds.

It is worth noting that the linker itself can influence biological activity by improving
the pharmacological, pharmacokinetic or physiochemical profiles of the resulting hybrid,
as in the case of a triazole ring introduced by click chemistry, a cycloaddition reaction
widely employed in the field of medicinal chemistry [14,15]. The generation of fused,
merged or linked hybrids is generally driven by the nature of the targets, the availability
of functional groups and the chemical feasibility. The MH approach leads to larger and
more complex less drug-like molecules. When the overlap between the combination
partners is maximized and, in turn, the size of the resulting hybrids is minimized, drug-like
features may be retained. Thus, in principle, merged and fused hybrids might have more
chances to keep drug-like properties compared to linked hybrids. From a synthetic point
of view, many reactions can be employed for the conjugation. For instance, condensation
reaction represents a simple and efficient method to achieve conjugates leading to ether,
ester or amide derivatives depending on the nature of the reactive moieties available
on the pharmacophores. The click chemistry, involving a terminal carbon–carbon triple
bond and an azido group, is also widely employed to obtain linked hybrids through the
formation of the biocompatible triazole ring stable under both chemical and enzymatic
conditions [14,16].

MH can involve both natural and synthetic products [17,18]. In particular, the molecu-
lar complexity of biologically active natural products makes them ideal templates for the
design of new hybrid drugs. In the case of the COVID-19 emergency, the repurposing of
approved drugs as pharmacophores for MH was also taken into account to accelerate the
discovery of new cures and possibly shorten the approval time.
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2. Coronaviruses Overview

Insight into coronaviruses and their mechanisms of action was reported to support a
rational design on the basis of new hybrids as well as the rationale behind the choice of
repurposed drugs with potential antiviral anti-SARS-CoV-2 activity.

2.1. Coronaviruses Genomic Organization

Coronaviruses (CoVs) are known as harmless respiratory pathogens to humans. Cur-
rently, six human coronaviruses have been confirmed; two of them belong to the alpha-
coronavirus genus (HCoV-NL63 and HCoV-229E) and four belong to the beta-coronavirus
genus (HCoV-OC43, HCoV-HKU1, SARS-CoV, and MERS-CoV). All coronaviruses typically
contain positive-strand RNAs that differ in size, ranging from 26 kb to 32 kb. The genome
includes a variable number of open reading frames (ORF) from six to fourteen, in the case
of SARS-CoV-2. The first one (ORF1) is the largest, distinguished in two main transcrip-
tional units, ORF1a and ORF1ab, encoding two overlapping polyproteins, the pp1a and
pp1ab, respectively. The pp1a and pp1ab polyproteins embed 11 and 16 non-structural pro-
teins (nsp1-16), respectively, which form the complex replicase machinery. Of the 16 nsps,
the main protease (Mpro), also known as chymotrypsin-like cysteine protease (3CLpro),
encoded by nsp5, and the papain-like protease (PLpro), encoded by nsp3, cleave the non-
structural proteins into the two overlapping pp1a and pp1ab polyproteins. Both PLpro and
Mpro, together with other non-structural proteins, Helicase (Hel) and RNA-dependent RNA
polymerase (RdRp), are involved in the transcription and replication of CoVs and have
shown high conserved genome sequences, sharing more than 90% sequence similarity with
the corresponding beta-coronavirus genus [19,20]. Since PLpro and Mpro are considered
key enzymes in the viral life cycle, playing a fundamental role in viral gene expression and
replication, they can be viewed as two attractive targets for anti-CoVs drug design. It is
important to note that the substrate specificity of proteolytic enzyme Mpro is dissimilar
to human proteases since it exclusively cleaves polypeptide sequences after a glutamine
residue, making it an ideal drug target. Differentially, the protease PLpro recognizes the
C-terminal sequence of ubiquitin that is also present in the host cells. Therefore, substrate-
derived inhibitors of PLpro would be expected to also inhibit host–cell deubiquitinases,
making drug discovery campaigns against PLpro challenging [21–23].

The remaining ORFs of coronaviruses encode accessory and structural proteins, in-
cluding spike surface glycoprotein (S), small envelop protein (E), matrix protein (M) and
nucleocapsid protein (N), which are essential for virus–cell-receptor binding and virion
assembly for RNA-dependent RNA polymerase (RdRp) encoded by nsp12 and Helicase
(Hel) encoded by nsp13 (Figure 2).

2.2. Mechanism of Action of CoVs into Host Cells

In humans, coronaviruses (CoVs) usually cause mild to moderate upper-respiratory
tract illnesses; however, the rarer forms of CoVs belonging to Betacoronavirus have gener-
ated Middle East respiratory syndrome (MERS-CoV) and severe acute respiratory syndrome
(SARS-CoV), which in some cases have been lethal. Both syndromes have predominantly
respiratory manifestations, but extrapulmonary features may occur in severe cases such as
thrombosis, renal failure, heart attack and stroke.

Viruses infecting mammalian cells, activating specific pattern recognition receptors
and immune signal transduction, result in pro-inflammatory cytokine production and the
activation of innate immunity [24].

Viral infection stimulates the initiation of a complex series of events characterized
by the early response of virus-infected cells to the innate production of cytokines and the
induction of emergency innate immune response of neutrophils and macrophages. These
events subsequently engage and amplify NK and T cells- mediated adaptive immune
response for the production of further proinflammatory cytokines that are the basis of
the cytokine storm observed in COVID-19 patients. The elevated circulating levels of
cytokines impact a wide range of physiological processes and are associated with a variety
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of infections, having a direct role in the activation of anti-microbial effector functions and in
providing regulatory signals for immune response [25]. The clinical consequence of elevated
circulating levels of cytokines (most notably IL-1, Il-2, IL-6 and tumor necrosis factor TNF)
is systemic inflammation that leads to progressive organ failure and cell death [26]. Apart
from triggering inflammatory and immune responses, many viral infections can cause
programmed cell death in infected cells. Evidence suggests that the induction of cell death
by coronaviruses may significantly contribute to viral infection and pathogenicity [27].
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Figure 2. Schematic representation of the genome organization and functional domains for SARS-
CoV-2. The single-stranded RNA genome of SARS-CoVs has two large genes, the ORF1a and
ORF1b genes, which encode 16 non-structural proteins (nsp1–nsp16) that are highly conserved
throughout coronaviruses. The structural genes encode the structural proteins, spike glycoprotein (S),
envelope (E), membrane (M) and nucleocapsid (N), which are common features of all coronaviruses.
Polyproteins pp1a and pp1ab embed 11 and 16 non-structural proteins (Nsps), respectively; the green
and pink triangles indicate the cleavage sites of the protease PLpro and Mpro, respectively. Fifteen sites
where polyproteins pp1a and pp1ab are cut by proteases are represented with arrows. PLpro cleaves
at three distinct sites while Mpro cleaves at twelve distinct sites, including those for RNA-dependent
RNA polymerase (RdRp) encoded by nsp12 and Helicase (Hel) encoded by nsp13.

Organ dysfunction and tissue damage have been observed as consequences of SARS-
CoVs infection. It has been reported that SARS-CoV-2 coronavirus spike protein-induced
apoptosis can be regulated in host cells via the increased reactive oxygen species (ROS),
which inhibits the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin
(mTOR) pathways [28].

Although cell death is an effective host defense strategy, hyperactivation of the antiviral
response and inflammatory cell death can cause systemic inflammation and pathology [27].

In the case of SARS-CoV and SARS-CoV-2, these viruses enter the host cells mainly by
targeting the Angiotensin-Converting Enzyme 2 (ACE2) receptors, which are expressed
in most mammalian cells, such as cardiac muscle cells, cardiac fibroblasts, the coronary
vascular endothelium, kidneys, the liver, the small intestine, testes, the brain, lung alveolar
epithelial cells, leukocytes, arterial cells and venous endothelial cells, as well as arterial
smooth muscle cells [29,30].

SARS-CoV and SARS-CoV-2 interact with ACE2 receptors via the surface glycoprotein
S (homotrimer) [31]. The N-terminal of the S glycoprotein contains a peptide signal via the
S1 and S2 subunits. The S1 subunit binds to the peptidase domain of ACE2 via the receptor
binding domain (RBD) and the S2 subunit mediates the fusion of the viral membrane and
host cell membrane and facilitates viral genomes’ entry into the host cells. Shang et al.
reported that, unlike SARS-CoV, SARS-CoV-2 shows an increased affinity with ACE2 due
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to amino acid replacement in the RBD of protein S, hypothesizing that this is the reason for
the high rate of the virus spread [32]. Once the virus binds to ACE2 receptors, the fusion
peptide (FP) in the S2 subunit interacts with lipid layers in the host cell membrane and
induces the fusion of the virus and host membranes and the formation of endosomes, in
which cysteine proteases cathepsin B and L and transmembrane serine protease TMPRSS2
cleave protein S and facilitate the release of viral genomes into the cytoplasm [33]. In cells,
virus amplification takes place by viral RNA polymerase, and the viruses then infect the
surrounding cells (Figure 3).

Molecules 2024, 29, x FOR PEER REVIEW 5 of 25 
 

 

apoptosis can be regulated in host cells via the increased reactive oxygen species (ROS), 
which inhibits the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamy-
cin (mTOR) pathways [28]. 

Although cell death is an effective host defense strategy, hyperactivation of the anti-
viral response and inflammatory cell death can cause systemic inflammation and pathol-
ogy [27].  

In the case of SARS-CoV and SARS-CoV-2, these viruses enter the host cells mainly 
by targeting the Angiotensin-Converting Enzyme 2 (ACE2) receptors, which are ex-
pressed in most mammalian cells, such as cardiac muscle cells, cardiac fibroblasts, the 
coronary vascular endothelium, kidneys, the liver, the small intestine, testes, the brain, 
lung alveolar epithelial cells, leukocytes, arterial cells and venous endothelial cells, as well 
as arterial smooth muscle cells [29,30].  

SARS-CoV and SARS-CoV-2 interact with ACE2 receptors via the surface glycopro-
tein S (homotrimer) [31]. The N-terminal of the S glycoprotein contains a peptide signal 
via the S1 and S2 subunits. The S1 subunit binds to the peptidase domain of ACE2 via the 
receptor binding domain (RBD) and the S2 subunit mediates the fusion of the viral mem-
brane and host cell membrane and facilitates viral genomes’ entry into the host cells. 
Shang et al. reported that, unlike SARS-CoV, SARS-CoV-2 shows an increased affinity 
with ACE2 due to amino acid replacement in the RBD of protein S, hypothesizing that this 
is the reason for the high rate of the virus spread [32]. Once the virus binds to ACE2 re-
ceptors, the fusion peptide (FP) in the S2 subunit interacts with lipid layers in the host cell 
membrane and induces the fusion of the virus and host membranes and the formation of 
endosomes, in which cysteine proteases cathepsin B and L and transmembrane serine pro-
tease TMPRSS2 cleave protein S and facilitate the release of viral genomes into the cyto-
plasm [33]. In cells, virus amplification takes place by viral RNA polymerase, and the vi-
ruses then infect the surrounding cells (Figure 3).  

 
Figure 3. Schematic representation of virus infection and replication mechanism in host cell. Figure 3. Schematic representation of virus infection and replication mechanism in host cell.

Although SARS-CoVs’ entry into host cells is mainly dependent on its interaction
with ACE2 receptors, studies on patient samples have described a downregulation of the
ACE2 expression in SARS-CoV-2-infected cells similar to SARS-CoV with implications for
circulatory homeostasis [34].

Lu et al. explored the mechanism by which SARS-CoV-2 downregulates ACE2 in
in vitro and in vivo models and suggest that the virus induces clathrin- and AP2-dependent
endocytosis, leading to ACE2 degradation in the lysosome [35].

ACE2 viral-induced dysregulation changes the equilibrium of the ACE2-catalyzed re-
action with the consequent accumulation of ACE2 substrates, such as Angiotensin II, apelin-
13 and dynorphin-13, and decreases the concentration of products such as Angiotensin
(1–7), Angiotensin (1–9), apelin-12 and dynorphin-12 in the human body. Substrate accumu-
lation ultimately induces inflammation, angiogenesis, thrombosis and neuronal and tissue
damage, while diminished products lead to the loss of anti-inflammatory, anti-thrombotic
and anti-angiogenic responses.

Recent reports of excessive inflammation signaling, leading to elevated serum cytokine
levels associated with coronavirus disease (COVID-19) have raised questions about the rela-
tionship between cytokine storms and severe pulmonary and cardiovascular complications
associated with this infection [26]. In SARS-CoV-2 patients, the cytokine storms seem to be
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mainly due to Angiotensin II accumulation and concomitant reduction in the concentration
of positive anti-inflammatory, anti-thrombotic and anti-fibrotic functions Angiotensin (1–7)
and Angiotensin (1-9) factors. In COVID-19 patients, either Angiotensin II accumulation or
the reduced concentration of Angiotensin (1–7) and Angiotensin (1-9) are essentially due to
dysregulation, internalization and shedding of ACE2 receptors.

Angiotensin II stimulates inflammatory responses in leukocytes, endothelial cells and
smooth muscle cells by activating NF-κB signaling, enhancing the transcription of TNF-α,
IL-1 and Interleukin 6 (IL-6) inflammatory cytokines, as well as different chemokine and
adhesive molecules such as VCAM-1 and ICAM-1. On the other hand, Angiotensin (1–7),
throughout the binding of MAS receptors (MASR), can attenuate inflammatory responses
by reducing neutrophil influx, downregulating CXC chemokine ligand (CXCL); IL-6, TNF-α
and IL-1b cytokines; and Endothelin-1 (a vasoconstrictor and monocyte chemoattractant
protein-1 (MCP-1)). Similar to Ang (1-7), Ang (1-9) are produced from AngII in a reaction
catalyzed by ACE2 receptors. Ang (1-9), throughout the binding to AT2R, inhibit the
AngII–AT1R signaling axis and balance the vasoconstrictive to vasodilatory axis in the
heart, thus improving cardiovascular conditions. Ang (1-9)/AT2R-derived signaling also
reduces inflammation and tissue fibrosis mainly in the heart and lungs, downregulating
proinflammatory cytokines such as IL-6, IL1b, TNF-α and MCP-1 [36,37] (Figure 4).
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3. Design of Hybrid Molecules

Considering that SARS-CoV-2 has disseminated globally and is likely to continue
circulating in humans with the possible emergence of new variants that may render vac-
cines less effective, the discovery and development of new virus-based and host-based
therapeutic options are urgently needed. Antivirals targeting conserved viral components,
such as spike proteins and proteases, or host targets and new therapeutics that can precisely
modulate the immune response during infection could be possible approaches to reduce
the harmful effect of viral infection.
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3.1. Artemisinin-Based Hybrids

Several antimalarial drugs have been repurposed to tackle the COVID-19 pandemic [38],
including artemisinin, a highly effective bioactive component of Artemisia annua (A. an-
nua) [39]. Active components of A. annua have been reported to have effective antiviral
properties and immunosuppressive effects in vivo. In particular, artemisinin is reported
to decrease the infiltration of immunomodulatory cells and inflammatory cytokines [40].
Belonging to the active component of A. annua, isorhamnetin [41] and quercetin can prevent
the SARS-CoV-2 virus from entering by disrupting the viral S protein Angiotensin-converting
enzyme 2 (ACE2) receptor interface and can also interfere with virus replication by interacting
with SARS-CoV protease Mpro (3CLpro) [42].

Recently, a network pharmacology strategy has been used to predict the main active
compounds and key targets of A. annua for the treatment of COVID-19 [43]. From this
analysis, Tang et al. postulated that A. annua acts on COVID-19 mainly by regulating
inflammatory responses, transcription and proliferation. In particular, molecular docking
simulation and computing binding affinity identified artemisinin, quercetin, isorhamnetin
and kaempferol as the main potentially active compounds of A. annua to fight virus infection.
An excellent binding affinity of these compounds with 7 key target inflammatory mediators
related to the pathogenesis of COVID-19 have been identified and referred to vascular
endothelial growth factor-A (VEGF), the proinflammatory TNF cytokine, MAPKs and
pro-apoptotic caspases and p53 transcription factor (Figure 4). An excellent binding affinity
of these compounds with 7 key target inflammatory mediators related to the pathogenesis
of COVID-19 have been identified and referred to vascular endothelial growth factor-A
(VEGF), the proinflammatory TNF cytokine, MAPKs and pro-apoptotic caspases and p53
transcription factor (Figure 4).

Among artemisinin and its derivatives, collectively called artemisinins, dihydroarte-
misinin (Figure 5A) was found to be able to inhibit SARS-CoV-2 replication in vitro by
decreasing viral protein production [44]. However, the clinical application of artemisinins
is limited by their short half-life, poor solubility and lack of bioavailability. In order to
overcome the unfavorable properties of artemisinins above-reported, MH has been widely
employed over recent decades to design artemisinin-derived hybrids for cancer therapy [17].
Dihydroartemisinin anti-SARS-CoV-2 activity, together with suitable chemical features for
conjugation, has encouraged MH with the aim to obtain new hybrid molecules that can act
synergistically and improve upon the simple drug combination.

Thymoquinone (Figure 5B) is a monoterpene obtained from Nigella sativa’s black seed
oil characterized by wide-ranging pharmacological properties, including antioxidant, anti-
inflammatory, antidiabetic, antihistaminic, antimicrobial, anticonvulsant and anticancer
effects [45]. The pandemic also prompted the exploration of thymoquinone antiviral poten-
tial against SARS-CoV-2. Recent studies reported that thymoquinone has a high potential
of binding at the SARS-CoV-2/ACE2 interface; therefore, it could be predicted to be a
plausible inhibitor to disrupt viral–host interactions [46]. Moreover, in silico studies have
shown that thymoquinone may have inhibitory activities against SARS-CoV-2 Mpro [47],
which has been evaluated as one of the most attractive viral proteins and as a possible
SARS-CoV-2 druggable target [22,48]. The remarkable toxicity of thymoquinone has encour-
aged the use of MH with artemisinins for the preparation of less toxic thymoquinone-based
hybrids [17]. In particular, Tsogoeva’s research group reported extensive studies on the
design and synthesis of artemisinin–thymoquinone hybrids successfully evaluated for
anticancer, antiviral and antimalarial activities [49–51]. De Oliveira et al. [52] repurposed
a selection of Tsogoeva’s artemisinin–thymoquinone hybrids as potential inhibitors of
SARS-CoV-2 Mpro through a computational approach [53]. Among the hybrids consid-
ered in the referred study, two series of hybrids were depicted in Figure 5B: the series of
dihydroartemisinin-derived hybrids 1 characterized by stable linkers of different lengths
and the series of artesunate-derived hybrids 2 with cleavable ester linkers of different
lengths. The safety profile of the hybrids was found to be improved in respect to the parent
thymoquinone, which showed mutagenicity as well as carcinogenicity in both mouse and
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rat models. Indeed, all hybrids were negative for mutagenicity and hybrid 1 was also found
to be negative for carcinogenicity in both mouse and rat models. Molecular docking studies
showed a significant interaction between all hybrids considered and the active fraction of
the enzyme of Mpro compared to some reference drugs, including remdesivir. The analyses
of the physical–chemical properties of the hybrids considered indicated that the hybrids
were able to permeate cell membranes wishing for a good pharmacokinetic profile.
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Hermann et al. reported the synthesis of a library of artesunate–quinoline hybrids
obtained in a condensation reaction between artesunate and chloroquinoline derivatives
(Figure 5C) [54]. Quinoline alkaloids are an important class of N-heterocyclic compounds
showing many pharmaceutical properties, including antibacterial, antiviral, anticancer and
antiparasitic effects [55,56]. Quinoline rings represent an attractive scaffold in rational drug
design since they can improve physical and chemical properties as well as the pharmaco-
logical behavior of resulting hybrids. Among others, hybrid 3 and hybrids 4a–c, which
also contain a 1,2,3-triazole ring unit, were tested for cytotoxicity and antiviral activity
against SARS-CoV-2 in African green monkey epithelial kidney cells Vero E6. All hybrids
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considered showed interesting inhibitory activity with EC50 in the range of 11–19 µM,
outperforming unconjugated artesunate even though they were found to be ca. three to
five-fold less active in respect to the reference drug remdesivir. On the other hand, hybrids
4a–c were found to be significantly less cytotoxic in Vero E6 cells than both unconjugated
artesunate and the reference drug remdesivir.

Navacchia et al. repurposed some dihydroartemisinin–ursodeoxycholic bile acid
hybrids (Figure 5D), already tested in selected cancer cell lines [57], for antiviral anti-SARS-
CoV-2 activity evaluation [58]. Indeed, much evidence of the therapeutic potential of
ursodeoxycholic bile acid in SARS-CoV-2 has been reported. Brevini et al. demonstrated in
ex vivo experiments that ursodeoxycholic bile acid plays a role in downregulating ACE2
levels, thus reducing susceptibility to SARS-CoV-2 [59]. Ursodeoxycholic bile acid has also
been reported to be beneficial in the regeneration of the damaged airway epithelium [60]
and in the prevention of SARS-CoV-2 [61]. Hybrids 5 and 6 reported in Figure 5D were
the most active of the series [57,58]. Hybrid 5 was prepared with click chemistry, leading
to the formation of the stable triazole linker [57]. In turn, hybrid 6 was prepared with a
direct condensation reaction between the dihydroartemisinin hemiacetal group and the
ursodeoxycholic bile acid carboxylic moiety, leading to the formation of the corresponding
fused hybrid through a cleavable ester bond [57]. Hybrids 5 and 6 were tested in Vero
E6 as well as human epithelial lung cells Calu-3. Hybrid 5 was found to be the most
effective compound in decreasing the SARS-CoV-2 load in a dose-dependent manner at
all stages of viral infection with LR (log reduction) > 2.5 in Vero E6 and LR > 1.2 and
1.4 in Calu-3, respectively, in pre- and co-infection phases and LR = 4.97 in Vero E6 and
LR = 4.04 in Calu-3 when administered post-infection. On the other hand, hybrid 6 showed
the best effect on the pre-infection phase with LR = 1.84 in Vero E6 and LR = 1.50 in
Calu-3. It is worth noting that both dihydroartemisinin and ursodeoxycholic bile acid alone
exhibited LR ≤ 1 in all stages of the infection, thus demonstrating the effectiveness of
MH. Moreover, hybrids 5 and 6 showed much lower cytotoxicity in both healthy Vero
E6 and Calu-3 cells than the parent dihydroartemisinin. The in vitro study reported on
both infected Vero E6 and Calu-3 cell lines revealed that click hybrid 5 can be considered
a potential candidate for the post-infection treatment of SARS-CoV-2 infection due to a
significant reduction of viral replication, no cytotoxicity and chemical stability. Preliminary
mechanism studies indicated that the viral replication reduction showed by hybrid 5 after
post-infection treatment may be ascribable to the down-regulation of ACE2 expression,
possibly via the inhibition of Farnesoid X receptor signaling, as reported in the literature
for ursodeoxycholic bile acid [59].

3.2. Peptidomimetic Inhibitor 2-Pyrrolidone-Based Hybrids

Several viral proteins as potential SARS-CoV-2 druggable targets have been evaluated.
Among these, Mpro has been reported as the most appealing target for drug design being a
highly conserved viral protein commune to all coronaviruses, not present in mammalian
cells [62]. Indeed, the covalent inhibition strategy has been extensively applied for the
development of small-molecule peptidomimetic hybrid Mpro inhibitors [63].

In particular, Pfizer discovered some potent peptidomimetic Mpro inhibitors of SARS-
CoV-2, and among which, nirmatrelvir (Figure 6) was developed for oral administration
and commercialized in combination with ritonavir as paxlovid [6–8]. This result has
strongly addressed the research of antiviral anti-SARS-CoV-2 drugs towards the design
of structure-based peptidomimetic hybrids targeting the SARS-CoV-2 Mpro. Due to the
extensive research and the related review papers already published on this topic [64–66],
we reported herein only a representative selection of peptidomimetic hybrids characterized
by the presence of the pyrrolidone key pharmacophore in P1 and different warhead groups
such as nitriles, ketones, aldehydes and α-ketoamides (Figure 6).



Molecules 2024, 29, 5403 10 of 24Molecules 2024, 29, x FOR PEER REVIEW 12 of 25 
 

 

 
Figure 6. Peptidomimetic-based hybrids: molecular structures of starting frameworks; molecular 
structures of hybrids and selected biological data. 

3.3. 1,2,3-Triazole-Based Hybrids 
The emerging field of click chemistry offers a unique approach to the synthesis of 

new hybrid molecules through the formation of the 1,2,3-triazole ring, stable to metabolic 
degradation. Although the 1,2,3-triazole ring is primarily considered a linker and a bi-
oisoster since it mimics different functional groups, the triazole moiety is more than just 
a passive linker and its role as a pharmacophore has been recognized [75,76]. Indeed, the 
1,2,3-triazole is capable of hydrogen bonding and dipole interactions, which can be favor-
able in the binding of biomolecular targets. Despite the 1,2,3-triazole moiety not occurring 

Figure 6. Peptidomimetic-based hybrids: molecular structures of starting frameworks; molecular
structures of hybrids and selected biological data.

An approach to peptidomimetic hybrid molecules effective against SARS-CoV-2 is
represented by the rational design reported by Kneller et al. [67] of new hybrids based
on hepatitis C virus protease inhibitors boceprevir or narlaprevir [68,69] and nirmatrelvir
(Figure 6). Hybrids 7-9, depicted in Figure 6, were obtained by shuffling pyrrolidone key
pharmacophore, which is characteristic of the reference drug nirmatrelvir, to boceprevir
and narlaprevir scaffolds and by changing the aldehyde warhead moiety to a nitrile or an
electrophilic arylketone group. In particular, hybrids 7 and 8 present the peptidomimetic
structure of boceprevir and narlaprevir, respectively, as well as the same pyrrolidone and
nitrile warhead moieties of reference drug nirmatrelvir (Figure 6). In turn, hybrid 9 presents
the peptidomimetic structure of boceprevir, the same pyrrolidone of hybrids 7 and 8 and the
reference drug nirmatrelvir in position P1, but a different warhead such as an electrophilic
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arylketone (Figure 6). Thermodynamic measurements demonstrated that hybrids 7 and 8
effectively inhibit the Mpro in vitro. Antiviral activity studies in Vero E6 infected cells
showed that all hybrids tested are up to 16-18-fold less active than the reference drug
nirmatrelvir with EC50 in the range of 14-16 µM (Figure 6). The antiviral activity of
hybrids 7–9 as well as of nirmatrelvir was also assessed in the presence of CP-100356
P-glycoprotein inhibitor. Under these conditions, the antiviral activity was found to be
significantly improved in all cases. In particular, hybrid 7 showed a 17-fold increase
in antiviral potency with EC50 in the same order of magnitude as the reference drug
nirmatrelvir (EC50 = 0.88 and 0.25, respectively) (Figure 6).

Dai et al. reported the design and synthesis of several peptidomimetic hybrids char-
acterized by an aldehyde warhead with high inhibitory activity against Mpro [70,71]. The
authors reported first the synthesis of hybrids 10 and 11a, depicted in Figure 6 [70]. Both
hybrids 10 and 11a showed potent inhibitory activity against SARS-CoV-2 Mpro with EC50
= 0.53 and 0.72 µM, as well as excellent antiviral activity with IC50 = 0.053 and 0.040 µM,
respectively. In vivo pharmacokinetic studies in mice allowed for the identification of 11a
as the lead compound. Further in vivo pharmacokinetic and toxicity studies of 11a were
performed in Sprague Dawley rats and beagle dogs to identify 11a as good candidates for
clinical studies. In a following paper, the same authors reported on the rational design and
synthesis of a series of peptidomimetic hybrids having the same phenyl ring at P2 and
an aldehyde warhead, but different pharmacophore units at P3 [71]. Hybrids 11b and 12,
depicted in Figure 6, were the most active series as inhibitors of SARS-CoV-2 Mpro, with
IC50 = 0.034 µM and 0.120, respectively. Among all, hybrids 11b and 12 also showed the
best antiviral activity with IC50 = 0.29 and 0.25 µM, and selectivity indexes (SI) of 2786 and
1192, respectively. The preliminarily results in mice after intraperitoneal, subcutaneous
and intravenous administration of hybrid 11b indicated a good pharmacokinetics profile,
and therefore, hybrid 11b could also be considered an interesting starting point for further
optimization studies.

More recently, Summa et al. reported the design and synthesis of a series of pep-
tidomimetic hybrids with an aldehyde warhead and a variously substituted proline moiety
at P2 [72]. Overall, hybrid 13, reported in Figure 6, was considered the most active one. In
particular, hybrid 13 showed excellent SARS-CoV-2 Mpro inhibition in the low nM range
with IC50 = 5.0 nM, good antiviral activity in Vero E6 infected cells with IC50 = 5.3 µM that
decreased up to 0.21 µM in the presence of CP-100356 P-glycoprotein inhibitor and high
SI (>476).

Hilgenfeld et al. reported the synthesis of a hybrid series characterized by an α-
ketoamide warhead [73]. Among all, pure (S,S,S)-diastereomer hybrid 14 [73,74], reported
in Figure 6, was the most active inhibitor of SARS-CoV-2 Mpro, with IC50 = 0.12 µM [74].
The antiviral activity evaluated in Calu-3 infected cells was found to be dose-dependent,
with EC50 = 2.4 µM. Hybrid 14 also showed interesting peroral as well as inhalation
bioavailability [74].

3.3. 1,2,3-Triazole-Based Hybrids

The emerging field of click chemistry offers a unique approach to the synthesis of new
hybrid molecules through the formation of the 1,2,3-triazole ring, stable to metabolic degra-
dation. Although the 1,2,3-triazole ring is primarily considered a linker and a bioisoster
since it mimics different functional groups, the triazole moiety is more than just a passive
linker and its role as a pharmacophore has been recognized [75,76]. Indeed, the 1,2,3-
triazole is capable of hydrogen bonding and dipole interactions, which can be favorable
in the binding of biomolecular targets. Despite the 1,2,3-triazole moiety not occurring in
nature, the synthetic molecules that contain the 1,2,3-triazole unit show diverse biological
activities [77].

Pyrazolone, a five-membered heterocycle with two adjacent nitrogen atoms (Figure 7), is
a synthetic structural motif widely employed in medicinal chemistry for the development
of new hybrid molecules with various biological activities due to remarkable therapeutic
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effects and robust pharmacological potency [78]. In particular, several molecules contain-
ing the pyrazolone ring have been reported to display antiviral activity against coron-
aviruses [79–81]. Aouad et al. reported a library of Cl-phenylpyrazolone–1,2,3-triazole
hybrids, synthesized with a click reaction, that presents a stable ether linkage between the
two pharmacophore units [82]. In turn, the 1,2,3-triazole moiety was further functional-
ized with lipophilic aryl-substituted groups by direct linkage or through an amide linker
(15a and 16a, Figure 7) [82]. All hybrids were investigated for cytotoxicity in Vero E6 cells
as well as for antiviral and Mpro inhibitory activity against SARS-CoV-2 and compared with
the reference drug boceprevir. The hybrids that present the amide linker were found to be
more effective with respect to the non-amide ones. In particular, hybrid 15a was found
to be the most active of the non-amide series and hybrid 16a was found to be the most
active compound of the amide series (Figure 7). Hybrids 15a and 16a showed the same
inhibition of replication (62% and 63%, respectively) but hybrid 16a was more effective
in Mpro inhibition, with IC50 of 3.16 µM, with respect to 5.08 µM reported for hybrid 15a
(Figure 7). Computational studies for the prediction of drug-likeness and ADME properties
were also carried out for hybrid 16a. Hybrid 16a showed greater potential drug-like value;
a similarly low risk for mutagenicity, teratogenicity and irritant effects; but a higher risk for
reproductive effects compared to the reference drug boceprevir. In a following paper, the
same authors reported the synthesis of a series of 1,2,3-triazole hybrids by replacing the
Cl-phenylpyrazolone pharmacophore with a phthalimide moiety with the aim to improve
the protein binding and the anti-SARS-CoV-2 activity [83] (15b and 16b, Figure 7). Indeed,
phthalimide has been employed in the design of potential anticancer, antimicrobial and
anti-inflammatory drug candidates [84–86]. Similarly to the previous work, all hybrids
were tested in Vero E6 cells. Among all, hybrids 15b and 16b, depicted in Figure 7, were
the most active of the series, showing almost comparable antiviral activity to the reference
drug remdesivir at 1 µM concentration (83.58, 87.82 and 92.72%, respectively). In partic-
ular, hybrid 16b showed the highest viral inhibition among all tested compounds with
EC50 = 0.038 µM, comparable to that of the reference drug remdesivir (EC50 = 0.029 µM)
(Figure 7). Selected hybrids were also assayed in vitro for Mpro inhibition. Differently
from the corresponding Cl-phenylpyrazolone-based hybrids, the tested hybrids with the
phthalimide scaffold were found to be ineffective in Mpro inhibition (Figure 7). Lopinavir
and boceprevir were used as reference drugs for ADMET studies on a selection of hybrids.
Among others, hybrid 16b showed a safe toxicity profile and a drug score of 0.28 compared
to 0.17 for lopinavir and 0.37 for boceprevir.

Al-Humaidi et al. reported a study on benzimidazole–1,2,3-triazole hybrids containing
a variety of pharmacophore units such as 1,2,4-triazole-3-thione derivatives, isatin and
sulfisoxazole [87]. Among others, hybrid 17, depicted in Figure 7, which contains the
sulfisoxazole core characterized by antimicrobial activity, was the most promising one.

Ceftazidime, a promising potential anti-SARS-CoV-2 drug, was chosen by the authors
as the reference drug [88]. Hybrid 17 exhibited the best binding score (−7.27 Kcal/mol)
among all test compounds and a significantly higher binding score than the reference
inhibitor ceftazidime against the SARS-CoV-2 spike protein. Hybrid 17 also showed strong
and stable interactions with the spike Receptor Banding Domain (RBD) while exhibiting
no binding interactions with ACE2 receptors. Similar results were obtained against the
Omicron spike protein. Hybrid 17 was assayed in vitro for enzymes as well as cytopathic
inhibition in human Vero E6 cells. The compound showed similar IC50 values against both
the SARS-CoV-2 spike protein (74.51 nM) and the spike protein of the Omicron variant
(75.98 nM). Moreover, the cytopathic (CPE) inhibition assay revealed that SARS-CoV-2
was effectively inhibited by hybrid 17 with a high selectivity index (SI) (Figure 7). Other
than the antiviral activity, hybrid 17 was found to exert a significant anti-inflammatory
activity by reducing the cytokines’ (IL-1 and IL-6) protein expression levels. The overall
data proved the interesting activity of hybrid 17.
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Tsogoeva et al. reported the synthesis and inhibitory profile of novel quinoline–
morpholine hybrids 18a–b embedding a 1,2,3-triazole ring as a stable linker (Figure 7) [89].
The quinoline–morpholine hybrids 18a–b tested in both Caco-2 and Vero E6 cells displayed
similar or stronger anti-SARS-CoV-2 activity with respect to the reference drug chloroquine
(Figure 7).

3.4. Thiazole Analogs and Coumarin-Based Hybrids

The synthesis and in vitro evaluation of the antiviral activity of a novel series of
benzothiazolyl–pyridine [90] as well as of benzothiazolyl–coumarin [91] hybrids were
reported (Figure 8). The rationale of these studies lies in the fact that the benzothiazoles
have shown potential antiviral activity [92] and that the MH of two or more diverse
heterocyclic moieties can lead to a new hybrid molecule with enhanced bioactivity [93].
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Metwally et al. [94] reported the synthesis of 5-benzothiazolyl-1-(aryl)-pyridine-2-ones
19a-e in which the phenyl ring was substituted with one or more methoxy electron-donating
groups and one or more electron-withdrawing groups such as bromine, chlorine and
fluorine atoms. This study demonstrated that the introduction of one halogen-withdrawing
group at the 4-position of the benzene ring increased the anti-SARS-CoV-2 activity in Vero
E6 infected cells (4-Cl: IC50 = 142.2 µM < 4-Br: IC50 = 73.84 µM < 4-F: IC50 = 10.520 µM) in
respect to the introduction of a methoxy group (4-OMe: IC50 = 994.3 µM). On the other hand,
the introduction of a second donating or withdrawing group at the 2-position dramatically
decreased the antiviral activity (Figure 8). Among halogen atoms, the introduction of
fluorine gave the highest activity. The best result was obtained by increasing the number
of atoms of fluorine at the 3-position by introducing a trifluoromethyl group (hybrid 19c,
Figure 8). Further mechanism studies of anti-SARS-CoV-2 activity were performed on
hybrids 19a–c. In particular, hybrid 19a was found to reduce the virucidal inhibition by ca.
50% and ca. 25% at 10 and 0.1 µM, respectively. On the one hand, hybrids 19b,c were found
to reduce the virucidal inhibition by ca. 80% independent of the concentration in the range
of 10-0.1 µM. SARS-CoV-2 3CLpro inhibition was also evaluated in the case of hybrids 19a–c
and compared with that of the reference drug lopinavir (IC50 = 129.8 µg/mL). Hybrid 19c
(3-CF3: IC50 = 240.6 µg/mL) showed higher SARS-CoV-2 3CL protease inhibition than 19a
(4-F: IC50 = 544.6 µg/mL) and 19b (2,3-F: IC50 = 868.2 µg/mL). The overall data suggest that
fluorine-containing hybrids 19a–c could be considered lead compounds. In particular, the
presence of the trifluoromethyl group can be relevant for the inhibition of viral replication
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in Vero E6 infected cells. It is worth noting that hybrids 19a–c displayed low toxicity in the
host cells, as evidenced by the SI values reported in Figure 8.

Abdallah et al. [91] reported the synthesis of a series of benzothiazolyl–coumarin
hybrids. It is worth noting that coumarins are considered interesting combination partners
for MH due to their potent biological activity [17]. Moreover, a recently reported molecular
docking investigation showed that natural coumarin analogs displayed a remarkable inhibi-
tion ability against SARS-CoV-2’s main protease [95]. The authors reported the synthesis of
a series of hybrids 20a–f with different substituents, such as electron-withdrawing groups
(NO2, Cl, Br, etc.) on the phenyl ring of the coumarin moiety (Figure 8). All hybrids have
been fully characterized and molecular docking and binding energy investigations allowed
for the demonstration of a promising binding with nucleocapsid protein NI63 (PDB ID:
5epw). In particular, hybrid 20f was the most potent of the series as it forms five bonds.
The presence of two bromine atoms was responsible for the enhanced activity.

In turn, Vishwanath et al. [96] reported the conjugation of coumarin with a thiouracil
moiety in order to obtain anti-SARS-CoV-2 hybrids able to inhibit RdRp. The rational design
of the thiouracil–coumarin hybrids reported was based on the ether linkage of different
lengths, different numbers and the nature of substituents on the phenyl ring linked to the
thiouracil unit and on the phenyl ring of coumarin moiety. Hybrids 21 and 22, depicted
in Figure 8, were the most active of the series with EC50 = 14.3 and 6.59 µM, respectively,
in Vero E6 infected cells and no significant toxicity to host cells. All hybrids were also
tested on some SARS-CoV-2 variants such as D614G and B.617.2. Some of the hybrids
were found to be effective against both variants with IC50 < 10 µM; for instance, hybrid 21
showed IC50 < 10 µM with SI = 20 in both cases. The in silico molecular interaction studies
evidenced that hybrid 22 has a common catalytic site of RdRp with the antiviral drug
remdesivir but not with suramin, which is an inhibitor of SARS-CoV-2 RdRp. The in silico
ADMET property studies of hybrids 21 and 22 showed that the maximum recommended
therapeutic dose of both hybrids was comparable to that of the antiviral drug remdesivir.
Some pharmacokinetic studies were also carried out for lead hybrid 21. Male Wistar albino
rats were treated by a single oral gavage administration at a dose of 10 mg/kg, which gave
a plasma Cmax of 0.22 µg/mL and a final elimination half-life time of 73.30 h.

Seliem et al. reported the synthesis of a series of novel pyrazolothiazole hybrids that
were evaluated for their potential inhibitory activity of SARS-CoV-2 Mpro following the
virtual screening strategy [97]. Both combination partners pyrazole and thiazole as well as
pyrazolothiazole derivatives have been reported to exhibit broad biological activity [98,99]
and are pharmacophore units present in antiviral drugs such as pyrazofurin and ritonavir.
In particular, the interactions of the hybrids with SARS-CoV-2 Mpro were evaluated through
in silico molecular docking. The molecular docking of hybrids 23a–c and 24a–c, depicted
in Figure 8, within the binding pocket of SARS-CoV-2 Mpro showed the high potency
of ligands 23a–c and 24a–c due to their ability to form stable protein–ligand complexes
strengthened by hydrogen bonding and interactions such as hydrophobic, Pi–alkyl, Pi–Pi
stacking, Pi–sigma and Pi–sulfur. These findings indicate that hybrids 23a–c and 24a–c can
be candidates for further in vitro studies.

3.5. Miscellanea

Abdel-Rahman et al. repurposed a series of quinazoline–trihydroxyphenyl Schiff base
hybrids, previously evaluated in vitro for the inhibition of phosphodiesterase and antipro-
liferative activity in some cancer cell lines [100], as potential inhibitors of Mpro SARS-CoV-2
and RdRp [101]. Quinazoline represents an important class of N-heterocyclic compounds
with a wide range of pharmaceutical properties, including antiviral effects [56,102,103].
On the other hand, the ability of the trihydroxyphenyl moiety to act as a metal chelator
can help bind the excess of intracellular iron present in the case of COVID-19 infection
derived from iron dysmetabolism. Hybrids 25a–d, depicted in Figure 9, were studied in
silico. Molecular docking studies showed that both the quinazoline moiety and tri-hydroxy
group may be effective in the inhibition of SARS-CoV-2 Mpro and RdRp. In particular,
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molecular docking showed the high potency of ligand hybrid 25b characterized by the
presence of a fluorine atom on the quinazoline side. Furthermore, the authors explored
pharmacokinetic and toxicological properties via ADMET. All hybrids showed significant
values for oral absorption. Among others, hybrid 25c showed the best water solubility and
no mutagenicity. However, all hybrids were found to be significantly toxic in T. pyriformis.
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Panda et al. reported [104] the design and synthesis of a series of hybrids obtained
by MH of quinoline [55], indole [105] and rhodanine [106], which are privileged scaffolds
in medicinal chemistry. A trifluoromethyl group was also introduced in position 2 of the
quinoline ring. It is worth noting that fluorine has been playing a relevant role in modern
pharmaceuticals [107]. All hybrids were tested in Vero E6 normal and infected cells. Hybrid
26, depicted in Figure 9, showed the best activity and SI even though it was significantly
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less active than the reference drugs hydroxychloroquine and remdesivir (data reported in
Figure 9). ADME studies indicated that all hybrids had good water solubility and intestinal
absorption as well as plasma protein binding.

Fayed et al. reported the synthesis of novel spiro-oxindoles based on the MH of
isatin, pyridine and a pyrimidine scaffold such as uracil [108]. As reported by the authors,
the combination partners chosen are on the basis of some antiviral drugs such as arbidol
(isatin), chloroquine (pyridine) and acyclovir (uracil). All hybrids were tested for antiviral
activity in Vero E6 cells using chloroquine as the reference drug. Hybrids 27a–d, reported
in Figure 9, were the most active of the series with IC50 in the range of 4.30–5.95 µM,
and were thus 2–2.6 times less active than the reference drug chloroquine (IC50 = 2.24 µM)
(Figure 9). Viral replication inhibition percentage was also assessed for all hybrids at
different concentrations. In particular, hybrids 27a–d showed 84, 99, 80 and 91% inhibition,
respectively, at 5 µM concentration. Mechanisms of action such as inhibition of RdRp
and spike glycoprotein were also investigated for hybrids 26a–d using chloroquine as the
reference drug. Hybrids 27a–d exhibited potent inhibitory activity towards RdRp with
IC50 in the range of 40.30–44.90 nM vs. IC50 = 45 nM for chloroquine, and towards spike
glycoprotein with IC50 in the range of 40.27–44.83 nM vs. IC50 = 45 nM for chloroquine.

Meunier et al. reported the synthesis and biological evaluation of two series of hybrids
based on an emodin scaffold covalently linked to diphenylmethylpiperazine derivatives
such as norchloryclizine, hydroxyzine (Figure 9) and cetrizine, and to alkyl polyamines
of different length [109]. Emodin is an anthraquinone-based natural product with a broad
range of biological activities still in use by traditional Chinese medicine. Other than the wide
spectrum of pharmacological effects, for instance, anticancer, antiviral and antibacterial,
emodin shows poor bioavailability and significant toxicity that limit a possible clinical
use [110]. MH can help to overcome emodin’s drawbacks as well as to exploit its therapeutic
potential. Diphenylmethylpiperazine derivatives are anti-histamine drugs, whereas alkyl
polyamines were chosen as combination partners due to their regulatory roles in immune
cell functions, and therefore, to counteract the cytokine response. Hybrids 28 and 29,
reported in Figure 9, were the most active of each series. All hybrids were tested in Vero
E6 infected cells. Among all, hybrid 28 showed the best antiviral anti-SARS-CoV-2 activity
with EC50 = 1.9 µM and SI = 6.8 comparable to that of the reference drug remdesivir
(EC50 = 2.6 µM, SI > 8). Moreover, hybrid 28 exhibited inhibition of viral replication > 90%
at 6.25 µM.

Molecular docking and dynamics simulation has revealed the potential inhibitory
activity of fullerene C60 against SARS-CoV-2 by blocking the target protein 3CLpro, Mpro

and RdRp [111]. In this light, Suarez et al. [112] repurposed the C60 scaffold for MH with
steroids and monosaccharides in order to improve C60 biological activity and bioavail-
ability. Hybrids 30a–d, depicted in Figure 9, were synthetized and fully characterized.
The molecular docking studies suggested that hybrids 30a–d are able to inhibit the Mpro,
and therefore, the possible application of these compounds as anti-SARS-CoV-2 might
be considered.

Hamdy et al. reported the design and synthesis of a library of new hybrids with the
aim of obtaining multiple targeting molecules [113]. The hybrids were designed to target
SARS-CoV-2 RdRp, required for viral replication, as well as human transmembrane serine
protease TMPRSS2, required for spike protein activation and viral entry. The dual inhibitor
approach can also help to overcome future drug resistance. The rational design is based on
the use of a guanidine moiety that mimics the natural substrate L-arginine at the cleavage
site of the protein. Moreover, phenyl-guanidine derivatives have displayed therapeutic
potential [114]. The phenyl-guanidine scaffold was conjugated with nucleoside/nucleobase
analogs through an amide cleavable bond or coumarin-like moiety through a cleavable
ester bond. Nucleosides as well as nucleoside analogs can behave as antimetabolites and
can inhibit cellular division and viral replication by their incorporation into DNA or RNA,
resulting in potential antiviral agents [115]. Hybrid 31, incorporating the same adenosine
analog present in remdesivir, and hybrid 32, containing coumarin pharmacophore, were the
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most active of the series (Figure 10). All hybrids were tested in Vero E6 cells. In particular,
hybrids 31 and 32 showed significantly higher antiviral activity compared to remdesivir, with
IC50 12-16-fold lower as well as an improved SI (Figure 10). Moreover, hybrids 31 and 32
displayed significant inhibition activity with IC50 in the low nM range against both TMPRSS2
and RdRp (Figure 10).
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Zhou et al. reported the design and synthesis of novel hybrid 3CLpro inhibitors [116,117].
In their first paper, the authors reported the discovery of hybrid 33 (Figure 10) after high-
throughput screening of SARS-CoV-2 3CLpro [116]. Hybrid 33 presents a 2-quinolone unit
belonging to a versatile therapeutic compound class [118] and a piperazine moiety. Hybrid 33
showed a high inhibitory effect against 3CLpro, good anti-SARS-CoV-2 activity and negligible
cytotoxicity in Vero E6 cells infected by the SARS-CoV-2 Delta variant (Figure 10). Hybrid 33
was also tested in mice for pharmacokinetic evaluation with good results. In vivo assays in a
K18-hACE2 mice model infected by the SARS-CoV-2 Delta variant confirmed good 3CLpro

inhibitory and antiviral activities at a dosage of 300 mg/kg twice a day by intraperitoneal
injection. In their second paper, the authors reported the rational design of a library of hybrids
based on deep insight into the structure–activity relationship of hybrid 33 [117]. The hybrids
were tested in Vero E6 cells infected by the SARS-CoV-2 Delta variant. Among all, hybrid
34 embedding a 2-quinolone fluorine-derivative was the most active (Figure 10). Hybrid 34
showed antiviral activity and 3CLpro inhibition ca. 26 and 7 times higher than hybrid 33,
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respectively. Hybrid 34 efficacy was also investigated in vivo in a K18-hACE2 mice model
infected by the SARS-CoV-2 Delta variant. Hybrid 34 was tested for toxicity in vivo upon
the oral administration of 500 mg/kg twice a day, displaying a safe toxicity profile. Oral
treatment with a hybrid 34 compound at a dose of 200 mg/kg significantly reduced lung
viral copies in a K18-hACE2 transgenic mouse model. The overall data both in vitro and
in vivo indicated hybrid 34 as the best lead compound in respect to the previously reported
hybrid 33.

4. Conclusions

Researchers have made a great effort to discover new antiviral anti-SARS-CoV-2 drugs
by either isolation from natural resources or the synthesis of organic small molecules
over the past five years. Drug repurposing strategies have also been considered as a
viable alternative to the more usual and time-consuming drug development process. This
present review is limited to small hybrid molecules obtained by the conjugation of both
natural and synthetic compounds that exert anti-SARS-CoV-2 activities. Based on the data
reported, a selection of hybrids could be considered lead compounds for the development
of new drugs for treating COVID-19 infection, although a lack of in vivo assays should be
underlined. Among all, the main protease inhibitors emerged as the most appealing target
drugs. In particular, peptidomimetic hybrids have been receiving much attention due to the
successful marketing of nirmatrelvir, the first oral drug to treat severe forms of COVID-19.
Some of the reviewed papers evidenced the relevance of computational chemistry in the
identification of scaffolds able to lead to new potential drugs.

COVID-19 therapeutics remain an active area of research due to the persistence of
COVID-19 infection in the world and the continuous rise of new variants even though
the mitigation of the virus’ effects due to booster vaccinations has strongly limited the
clinical development of lead compounds. Meanwhile, information on the clarification of
structure–activity relationships together with the rational application of new technologies
and strategies such as artificial intelligence can contribute to identifying novel antiviral
drugs that meet the requirements of the clinical treatment of COVID-19 as well as other
virus-related diseases in order to prevent the future development of pandemics.
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