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ABSTRACT

Face Recognition is among the best examples of computer vision problems where the supremacy of deep
learning techniques compared to standard ones is undeniable. Unfortunately, it has been shown that they
are vulnerable to adversarial examples - input images to which a human imperceptible perturbation is
added to lead a learning model to output a wrong prediction.

Moreover, in applications such as biometric systems and forensics, cross-resolution scenarios are easily
met with a non-negligible impact on the recognition performance and adversary’s success. Despite the
existence of such vulnerabilities set a harsh limit to the spread of deep learning-based face recogni-
tion systems to real-world applications, a comprehensive analysis of their behavior when threatened in a
cross-resolution setting is missing in the literature.

In this context, we posit our study, where we harness several of the strongest adversarial attacks against
deep learning-based face recognition systems considering the cross-resolution domain. To craft adversar-
ial instances, we exploit attacks based on three different metrics, i.e., Ly, L, and L., and we study the
resilience of the models across resolutions. We then evaluate the performance of the systems against the
face identification protocol, open- and close-set.

In our study, we find that the deep representation attacks represents a much dangerous menace to a face
recognition system than the ones based on the classification output independently from the used metric.
Furthermore, we notice that the input image’s resolution has a non-negligible impact on an adversary’s
success in deceiving a learning model. Finally, by comparing the performance of the threatened networks
under analysis, we show how they can benefit from a cross-resolution training approach in terms of
resilience to adversarial attacks.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Although FR systems obtain very high performance when
trained with datasets comprising images acquired under controlled

Face Recognition [1,2] (FR) represents one of the most aston-
ishing applications of Neural Networks (NNs), especially consider-
ing Deep Convolutional Neural Networks (DCNNs), that ultimately
overcame standard computer vision techniques such as Gabor-
Fisher [3] and local binary patterns [4]. The study of such a prob-
lem began in the early 90s when [5] proposed the Eigenfaces ap-
proach, and it only required two decades for Deep Learning (DL)
approaches to start to dominate the field reaching recognition per-
formance up to 99.80% [1], thus overcoming human ability. DL-
based FR systems do not exploit the output of a classifier directly.
Instead, they leverage the representation power [6] of the learn-
ing models to extract face descriptors, i.e., multidimensional vec-
tors, also called deep features or deep representations, to fulfill the
recognition task.

* Corresponding author.
E-mail address: fabio.massoli@isti.cnr.it (EV. Massoli).

https://doi.org/10.1016/j.patrec.2020.10.008
0167-8655/© 2020 Elsevier B.V. All rights reserved.

conditions, e.g., high-resolution, they suffer a drastic drop in relia-
bility when tested against cross-resolution (CR) scenarios [7] that
naturally arise, for example, in surveillance applications [8-10].
To counteract such a weakness, Ekenel and Sankur [11] and Luo
et al. [12] proposed approaches that were not based on NNs. In-
stead, only recently such a problem has been tackled in the DL
field [13,14].

To make the situation even worse, recently [15,16] showed
that DL models are vulnerable to the so-called adversarial exam-
ples - images to which a specific amount of noise, undetectable
to humans, is added to induce a NN to output a wrong predic-
tion. Unfortunately, the ability of an insightful adversary to jeop-
ardize these learning models, considering both the digital [17-
21] and physical [22,23] domains, represents a significant concern
in security-related applications such as DL-based biometrics sys-
tems [24] and forensics [25]. Thus, limiting their adoption in these
fields.
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In this context, we posit our contribution that we summarize
as follows: i) we threaten two DCNNs by exploiting adversarial at-
tacks based on three different metrics, i.e., L, Ly, and L; ii) we
generate attacks not only towards a classification objective but also
against a similarity one. Indeed, FR systems typically do not ex-
ploit a DCNN classification output. Instead, they leverage the abil-
ity of NNs to generate discriminative deep representations among
which a similarity criterion is evaluated to fulfill the recognition
task; iii) we conduct the attacks in a cross-resolution domain, thus
emulating a real-world scenario for an FR system; iv) we analyze
the success rates of the various attacks across resolutions, studying
if a DL model can benefit from a cross-resolution training proce-
dure in terms of robustness to adversarial attacks; v) we analyze
the robustness of the models through the face identification proto-
col [26] considering both the open- and close-set settings.

The rest of the paper is structured as follows. In Section 2, we
briefly present some related works, while in Section 3, we describe
the attacks algorithms we use. Subsequently, in Section 4, we ex-
plain our experimental procedure and the dataset we use, while in
Section 5, we present the results from the experimental campaign.
Finally, in Section 6, we report our conclusions.

2. Related works

To the best of our knowledge, this is the first work that tack-
les the problem of adversarial attacks against FR systems in a CR
scenario. For such a reason, in what follows, we briefly cite a few
articles related to the topics of the cross-resolution FR and adver-
sarial attacks against an FR system.

2.1. Cross-resolution face recognition

CR scenarios are met whenever images at different resolutions
have to be matched. Such a situation typically happens, for exam-
ple, in biometric and forensics applications. Super-Resolution (SR)
techniques are among the most studied solutions to such a prob-
lem, and Singh et al. [27] proposed to synthesize high-resolution
faces from low-resolution ones by employing a multi-level sparse
representation of the given inputs. Zangeneh et al. [28] formulated
a mapping of the low- and the high-resolution images to a com-
mon space by leveraging a DL architecture made by two distinct
branches, one for each image. Luo et al. [12] exploited the dic-
tionary learning approach based on learning multiple dictionaries,
each being associated with a resolution. The most comprehensive
study and widely tested method to improve an FR system’s per-
formance in a CR scenario was recently proposed by Massoli et al.
[13]. In their work, the authors formulated a training procedure to
fine-tune a state-of-the-art model to the CR domain. They tested
their models on several benchmark datasets by showing their su-
perior performance compared to the results available in the litera-
ture.

2.2. Face recognition adversarial attacks

As we mentioned at the beginning of this section, we are the
first to study adversarial attacks in a cross-resolution domain. Due
to the lack of papers than can be directly compared to our study, in
what follows we only briefly cite a few articles concerning adver-
sarial attacks against FR systems. Sharif et al. [22] demonstrated
the feasibility and effectiveness of physical attacks by imperson-
ating other identities using eyeglass frames with a malicious tex-
ture. Zhong and Deng [29] observed the superior transferability
properties of feature-based attacks compared to label-based ones.
Moreover, they proposed a drop-out method for DCNNs to enhance
further the transferability of the attacks. Song et al. [18] proposed
a three-player GAN architecture that leveraged a face recognition
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network as the third player in the competition between generator
and discriminator. Dong et al. [17] successfully performed black-
box attacks on FR models and demonstrated their effectiveness in
a real-world deployed system.

Face recognition is a sensitive topic since it usually involves
persons’ privacy. Several techniques have been proposed in the
literature to protect people’s identities, such as the Fawkes algo-
rithm [30]. The goal of such a technique is to modify a user image
so that a face model trained on the manipulated images will not
recognize genuine images of the original subject. However, such
an approach is based on a different principle than the adversary-
defender arm race one, thus requiring a completely different anal-
ysis to the one we present in our work. For such a reason, we do
not consider it in our analysis.

3. Adversarial attacks
3.1. Carlini and wagner - CW

Carlini and Wagner [31] formulated one of the strongest cur-
rently available attacks. The CW-L, attack is formalized as:

min c- f(Jtanh(w) + 1)+ || 4 (tanh(w) + 1) —x ||2, where f{ - )
is the objective function, x is the input image, w is the adversarial
example in the tanh space, and c is a positive constant which value
is set by exploiting a binary search procedure.

3.2. Elastic net attack - EAD

The EAD Attack [32], leverages the elastic-net regularization
which is a well known technique in solving high-dimensional fea-
ture selection problems [33]. It is based on the objective proposed
in Carlini and Wagner [31] and it conceives the CW-L, attack as a
special case. EAD is formulated as:

mxin c-fXt)+B | x—Xo |l1 + || Xx—Xg ||2, where f{ - ) is the
objective as in the CW-L, attack, t is the target class, Xq is the in-
put image, t is the target label, x is the adversarial instance, c is a
parameter found by binary search, and S represents the weight of
the L, penalty term.

3.3. Jacobian saliency map attack - JSMA

The JSMA [34] attack exploits an “input-perturbation-to-output”
mapping. Differently from the backpropagation-based attacks,
JSMA leverages the model derivative concerning the classification
output rather than the derivative of the loss function. The attack is
formalized as: arg min || x | s.t. F(X+ dx) = Y*, where F is the

X
function learned by the DNN, X and Y* are the input and output
of the model, respectively, and 8y is the adversarial perturbation
defined upon the evaluation of the model input saliency map.

3.4. Deep representations attacks - DR

Differently from the previously mentioned attacks, the Deep
Representations [35] attack focuses on the manipulation of image
features. It is formulated as an optimization problem which aims at
finding the closest perturbed image, to the original one, whose de-
scriptor is as close as possible to the one of a target image named
the “guide image”. Specifically, the adversarials crafting procedure
is the following: Iy = arg min || ¢, (1) — ¢ (Ig) ||3; subject to || I -

|

I ||o< 8, where ¢( - ), is the descriptor extracted at layer k of
the threatened model, I; and I, are the source and target images,
respectively, I, is the adversarial example, and § is he maximum
allowed perturbation in terms of the L,, norm.
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3.5. Projected gradient descent - PGD

The PGD attack, was proposed by Madry et al. [36]. It applies
the FGSM [37] attack multiple times with small step size. It is for-
malized as:

Clipxe (X" + o - sign(VaJp (X", 1)) } . (1)

where the Clip( - ) function clips the values of the pixels to the
allowed range, and « is the step size. The iteration starts from an
acceptable random perturbation of the input Xy_g.

adv __
XN11 =

4. Experimental approach
4.1. Dataset and models

In our experiments, we use two datasets: VGGFace2 [38] and
SCface [39].

The VGGFace2 [38] dataset contains a training set made by
~ 2.9 M images shared among 8631 identities. To construct the
gallery and the queries, we divide the training set into two splits.
Concerning the gallery, we evaluate a single template for each
identity as the average features vector among all the corresponding
face images. Regarding the queries, we randomly select 100 iden-
tities, and for each of them, we randomly pick ten correctly classi-
fied images, ending up with 1000 queries.

Concerning the learning models, we analyze the performance
of two DCNNs: the face classifier from [38] and the CR-trained one
from [13]. They share the same structure, i.e., a ResNet-50 [40] ar-
chitecture equipped with Squeeze-and-Excitation [41] blocks. For
both models, we adopt the same preprocessing steps for the im-
ages. First, following the same procedure as in Massoli et al. [13],
we synthesize different resolution versions of the input that allow
us to evaluate the performance of the models in a cross-resolution
scenario. Specifically, in our analysis, we consider images at 16, 24,
64, and 256 pixels (shortest side). Next, each image is resized to
have the shortest side of 256 pixels, and then it is cropped to
a square picture of size 224x224 pixels. Finally, we subtract the
channel mean from each pixel.

The SCface [39] dataset comprises ~ 4K images, shared among
130 different subjects, that have been acquired in an uncontrolled
indoor environment. For each person in the dataset, there are five
pictures acquired with five different surveillance cameras at three
different distances: 1.0, 2.6, and 4.2 m. The three different gaps
between the person and the cameras automatically translate into
face images with different resolutions. Thus, we use the images
contained in the dataset as they are for our purposes. We use the
same models and apply the same pre-processing steps as for the
VGGFace2 [38] dataset. The only exception is that, in this case, we
do not need to down-sampled the images since we already have
them available at three different resolutions, each corresponding
to a different position of the subject to the camera.

4.2. Adversarial attacks

Concerning the generation of the adversarial instances, we ex-
ploit the five algorithms we described in Section 3. We use the im-
plementations available in the foolbox! library with the only excep-
tion of the DR one that we build on top of the L-Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) [15], optimization procedure. More pre-
cisely, the L-BFGS algorithm requires a function to optimize. To our
aim, we implement such a function by employing a k-NN algo-
rithm as guidance in the adversarial search. We fit the classifier to
the gallery templates we mentioned at the beginning of this sec-
tion. Then, we start the crafting procedure and stop it as soon as

1 https://foolbox.readthedocs.io/en/stable/

224

Pattern Recognition Letters 140 (2020) 222-229

Fig. 1. Schematic representation of our approach to crafting DR attacks. The col-
ored regions are the k-NN decision boundaries for ten different identity templates
(white triangles). The initial location of the green star represents a correctly clas-
sified features vector. The adversarial features vector’s final position is represented
by the red encircled star. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

the k-NN classifies the malicious image as belonging to the tar-
geted identity. In Fig. 1, we report a schematic view of the proce-
dure we just described.

4.3. Face identification metrics

FR systems typically deal with sensitive scenarios such as bio-
metric and forensics applications. Hence, different error types have
distinct relevance while evaluating system performance, and a sim-
ple accuracy measure is not enough to properly evaluate and com-
pare the performance of FR systems. Instead, as mentioned in
Section 1, we focus our study on the face identification protocol.
Specifically, we consider both the close- and open-set settings.

Concerning the close-set setting, we evaluate the Cumulative
Match Characteristic (CMC), a metric that represents a summa-
rized accuracy evaluated on mated searches only, i.e., considering
queries that correspond to identities already available the gallery.
The CMC value at rank one is usually named “hit rate,” and it is
the most typical summary indicator of an algorithm’s efficacy. Con-
cerning the VGGFace2 [38] dataset, as we mentioned above, we se-
lect 100 identities to construct the queries. Thus, we end up with a
gallery containing 8631 identities that comprise a hundred mated
ones and 8531 un-mated ones acting as “distractors”.

In the open-set setting, differently from the close-set one, we
consider both mated and un-mated queries. To this aim, we re-
move half of the queries identities from the gallery, ending up
with 50 mated and 50 un-mated persons and a gallery contain-
ing 8581 templates. With that set, there are two different types of
errors that are usually evaluated, i.e., the False Positive Identifica-
tion Rate (FPIR) and the False Negative Identification Rate (FNIR)
or “miss rate”. Concerning the former, it represents the number of
un-mated queries that return a positive match at or above a spe-
cific similarity threshold. On the other hand, the FNIR represents
the number of mated searches that return candidates with a simi-
larity score below the threshold or outside the top R ranks.

The FNIR and FPIR, parametrized by the similarity threshold,
can be combined to construct the Detection Error Tradeoff (DET),
which is typically used to report the two types of error trade-off.
We use the DET to evaluate the performance of the learning mod-
els in the experiments.

Finally, concerning the SCface [39] dataset, we evaluate the re-
silience of the models against attacks at the three different stand-
off distances. As we will show next in the paper, the results con-
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Attack success rate against classification for “Base” and “Cross-Resolution” models. The first column reports the specific configuration used for each attack.
The four values reported in the second and third main columns represent the success rate at a resolution of 16, 24, 64, and 256 pixels, respectively. We

emphasize in bold the performance of the strongest attack.

Attack success rate (%)

Attack configuration Base model Cross-resolution model

16 24 64 256 16 24 64 256
JSMA (1000-0.1) 76.1 61.8 25.5 11.5 65.5 62.8 171 6.9
JSMA (1000-0.3) 96.6 92.5 75.7 61.2 96.0 94.7 70.0 50.1
JSMA (1000-0.5) 98.5 95.8 86.4 76.6 97.6 97.0 100. 69.6
CW-L, (10-10) 82.9 72.9 45.9 32.7 86.4 83.3 52.8 374
CW-L, (10-100) 100. 100. 100. 100. 100. 100. 100. 100.
EAD (10-0.1-10) 95.7 98.2 94.5 87.0 96.7 99.6 98.8 98.5
EAD (10-0.1-100) 100. 100. 100. 100. 100. 100. 100. 100.
EAD (10-1.0-10) 83.4 85.1 50.2 27.9 72.6 94.4 86.9 73.8
EAD (10-1.0-100) 98.5 99.8 98.7 91.0 97.5 99.8 100. 99.6

Image Resolution: 16 pxs Image Resolution: 24 pxs

Image Resolution: 64 pxs Image Resolution: 256 pxs
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Fig. 2. DR [35] attack success rate as function of the maximum allowed perturbation

resolution.

firm the conclusions and intuitions we report about the former
dataset.

5. Experimental results

We dedicate this section to report the results of our experimen-
tal campaigns. As we mentioned in Section 1, we aim to study the
behavior of DL-based FR systems when threatened by adversarial
attacks in a CR domain. Concerning the FR, as backbone features
extractors, we consider the well-known DCNN from Cao et al
[38] that set the state-of-the-art on the NIST datasets [42-44| and
the CR model from [13] that set the state-of-the-art in the cross-
resolution domain.

To craft adversarial examples, we harness the algorithms
we described in Section 3. Moreover, concerning the VG-
GFace2 [38] dataset, being interested in the CR scenario, we con-
sider input faces at 16, 24, 64, and 256 pixels (shortest side). Con-
cerning the FR task, we keep the gallery at the original resolution.
Instead, regarding the SCface [39] dataset, we use the images as
they are since they natively represent a cross-resolution domain.

As mentioned in Section 2, to our knowledge, we are the first to
conduct this type of study. Thus, a direct comparison with previ-
ously published works is not possible. Hence, in what follows, we
only report our results. We hope that our study will stimulate fur-
ther researches in this direction. Throughout this section, we refer
to the model from Cao et al. [38] as “Base” model and to the one
from Massoli et al. [13] as “Cross-Resolution” model.

In what follows, we first report the results on the VG-
GFace2 [38] dataset and then on the SCface [39] one.

5.1. Threatening the classification

We report the results from the attacks against the classifica-
tion in Table 1. Concerning the attacks, we use the following con-
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Perturbation (a.u.) Perturbation (a.u.)

& considering 100 and 1000 iteration steps. Each plot represents a different input

figurations. For JSMA, we consider 1000 iterations, a perturbation
per pixel equals to 0.1, 0.3, and 0.5 (percentage over the allowed
pixel range), and a maximum number of times each pixel can be
modified of 10. For CW-L,, we consider 10 binary search steps
and 10 and 100 iterations. Concerning EAD, we use the same pa-
rameters as for the CW-L, attack and a value for the weight of
the L; penalty term equals to 0.1 and 1. Furthermore, since the
DR [35] attack is the least time demanding compared to the oth-
ers, we enlarge the set of hyperparameters for it. Thus, we dedicate
Fig. 2 to report their results.

From Table 1, we notice that there is no clear signature for
which model is more robust against adversarial attacks. On the
other hand, we see that, on average, an adversary’s success rate
decreases as the resolution increases while keeping the attack con-
figuration fixed. Let us now turn our attention to a single attack,
for example, CW-L,. It is interesting to notice the impact of a dif-
ferent choice of hyperparameters. Indeed, even though from the
configuration (10-10), the “Base” model seems to be more resilient
compared to the “Cross-Resolution” one, this is not true. Indeed,
by just increasing the strength of the attack, i.e., (10-100) configu-
ration for which we grow the number of steps, we reach 100% of
attack success rate for both models.

From Fig. 2 we observe that it is undeniable that the deep fea-
tures extracted by the “Cross-Resolution” model are much more
robust than those extracted from the “Base” NN. Thus, confirm-
ing our previous assertion about the benefit of CR training. From
the first plot of Fig. 2, we see that the success rate of the attack
is almost 0% for the “Base” model. Instead, in the second plot, it
looks like that both models have the same resilience. This is not
in contrast with our previous conclusions. Indeed, as it has been
shown in appendix 1 of Massoli et al. [13], the “Base” model is not
able to generate meaningful deep representation at very low reso-
lutions. Thus, it is almost impossible to craft targeted attacks based
on deep features. To sustain even more our assertion, we run a test
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Table 2

Pattern Recognition Letters 140 (2020) 222-229

Attacks hit rate. The first column reports the configuration for each attack. The four values reported in the second and third main columns are the results
at a resolution of 16, 24, 64, and 256 pixels, respectively As a reference, we report in the first row the hit rate for the authentic images. We emphasize in

bold the performance of the strongest attack.

Hit rate (%)

Attack configuration Base model Cross-resolution model

16 24 64 256 16 24 64 256
Auth 79.5 95.3 99.8 99.9 96.7 98.8 99.4 99.7
JSMA (1000-0.1) 12.1 10.7 12.9 12.2 11.9 9.8 9.4 13.0
JSMA (1000-0.3) 14.0 9.3 10.7 10.6 9.8 10.0 7.4 8.9
JSMA (1000-0.5) 13.6 10.6 10.0 10.3 10.0 10.2 3.0 6.8
CW-L, (10-10) 10.9 6.5 6.1 3.7 10.8 9.3 55 5.1
CW-L, (10-100) 7.6 4.1 6.1 23 9.2 9.3 3.6 4.6
EAD (10-0.1-10) 31.8 32.6 27.8 25.1 19.2 16.8 19.4 19.7
EAD (10-0.1-100) 17.5 9.7 6.3 6.2 13.8 11.6 6.8 53
EAD (10-1.0-10) 44.8 38.0 26.7 25.5 20.8 25.7 20.1 21.7
EAD (10-1.0-100) 34.8 303 20.7 16.8 17.3 16.5 17.4 17.2

Image Resolution: 16 pxs Image Resolution: 24 pxs

Image Resolution: 64 pxs Image Resolution: 256 pxs
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Fig. 3. DR [35] hit rate as function of the maximum allowed perturbation § considering 100 and 1000 attack steps. Each plot represents a different input resolution.

with untargeted DR attacks in which we easily reach a success rate
of 100% for the “Base” model.

Finally, we can notice that from our results, there is no clear
evidence in favor of a specific metric since with the proper hyper-
parameters, we reached high success rates with the Ly, L, and L.

5.2. Threatening the face recognition

We now turn our attention to DL-based FR systems. We begin
our analysis by considering the face identification protocol in the
close-set scenario, and we then move the open-set one. We refer
the reader to Section 4 for a detailed description of the metrics we
use to assess the performance of the systems under analysis.

5.2.1. Close-set

As mentioned in Section 4, we use the CMC to evaluate the
performance of the threatened models in the close-set scenario.
Specifically, we summarize our results in Table 2 by reporting the
hit rate, i.e., the CMC value at a rank equals to one, with the ex-
ception of the DR [35] attack to which we dedicate Fig. 3. From
a defensive point of view, the more resilient a model, the lower
the hit rate, while from an attacker perspective, it is the other way
round.

By looking at Table 2 and Fig. 3 we can assert that the DR at-
tack is much more effective in fooling a DL-based FR system than
the classification-based ones with respect to any type of metric.
From the attacker’s point of view, this is a fundamental result. In-
deed, by comparing the results from Tables 1 and 2, we see that
even though the attacks fool the classification, it is not guaran-
teed that they can evade a similarity-based system. Thus, deep
representation attacks might be a better choice to attack an FR
system. Moreover, we see how the “Cross-Resolution”-based sys-
tem exhibits higher robustness than the one based on the “Base”
model. Thus, again, we find that DCNNs benefit from a CR train-
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ing approach [13] in terms of resilience to adversarial attacks. In-
deed, it is undeniable that the “Cross-Resolution”-based system is
much more resilient against adversarial attacks than the “Base”-
based one across all resolutions.

5.2.2. Open-set

To report the results for the face identification protocol in the
open-set setting, we exploit the DET. Two fundamental aspects dif-
ferentiate the DET from the CMC. Indeed, the former applies a
threshold among the similarity of the features, and it comprises
queries of identities that are not present in the gallery. Instead, the
latter does not use any threshold, i.e., it does not discern among
“weak” and “strong” similarity scores, and it requires queries re-
lated to already known identities.

As we mentioned in Section 4, the DET represents the error
trade-off between the FNIR and the FPIR. To summarize the perfor-
mance of the FR systems, we report the FPIR at a reference value
of the FNIR equals to 1.e~2. Compared to the close-set settings, the
adversary’s goal is to lower the curve as much as possible, while
from a defensive point of view, a higher curve represents a more
resilient model. The results are reported in Table 3 with the excep-
tion of DR [35] to which we dedicate Fig. 4.

Analyzing the results reported in Table 3 and Fig. 4 we ob-
tain the same conclusions we report for the close-set setting.
Specifically, by comparing the results from Table 3 to the ones in
Fig. 4 we see that the DR attack is much more effective in fooling
the FR system compared to others and that the “Cross-Resolution”-
based system is much more resilient than the “Base”-based one
against adversarial attacks.

To further confirm our intuition about the dependence of the
adversary success from the resolution of the input images and
that the robustness of a model against adversarial attacks can
benefit from a cross-resolution training procedure, we conduct
experiments on the SCface [39] dataset. Specifically, we evalu-
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Table 3
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FPIR@FNIR=1.e~2. The first column reports the configuration for each attack. The four values reported in the second and third main columns are the results
at a resolution of 16, 24, 64, and 256 pixels, respectively. As a reference, we report in the first row the results for the authentic images. We emphasize in
bold the performance of the strongest attack.

FPIR@FNIR=1.¢~2

Attack configuration Base model Cross-resolution model

16 24 64 256 16 24 64 256
Auth 75.0 40.8 0.8 1.0 38.6 20.2 3.6 32
JSMA (1000-0.1) 99.3 99.1 100. 95.1 99.1 98.4 100. 98.1
JSMA (1000-0.3) 99.0 99.1 97.2 99.7 97.8 98.6 99.0 100.
JSMA (1000-0.5) 98.0 98.1 98.2 97.0 99.4 98.6 99.0 98.7
CW-L, (10-10) 99.5 98.1 99.5 97.4 99.0 98.1 98.9 98.9
CW-L, (10-100) 100. 99.0 99.5 99.4 99.6 98.1 99.6 99.2
EAD (10-0.1-10) 95.3 93.2 98.7 99.5 98.4 98.8 96.0 97.6
EAD (10-0.1-100) 98.0 99.4 99.4 99.0 100. 98.8 98.6 99.2
EAD (10-1.0-10) 95.6 96.3 98.3 95.3 96.3 98.1 96.7 96.7
EAD (10-1.0-100) 98.8 97.9 971 98.6 98.6 98.1 99.0 97.7

Image Resolution: 16 pxs

Image Resolution: 24 pxs

Image Resolution: 64 pxs

Image Resolution: 256 pxs
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Fig. 4. FPIR@FNIR=1.e~2 for the DR [35] attack as function of the maximum allowed perturbation § considering 100 and 1000 attack steps. Each plot represents a different

input resolution.
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Fig. 5. Attack success rate as a function of the maximum allowed perturbation for a different number of iteration steps considering images at the three different standoff

distances.

ate the attack success rate for the “Base” model and the “Cross-
Resolution” one. Instead of synthesizing low-resolution images, in
this case, we consider the images taken at three different dis-
tances from the cameras as a down-sampled version of a subject
face.

We report the results of the experiments in Table 4 and Fig. 5.
In Table 4, the columns d1, d2, and d3 correspond to a distance
between the subject and the camera of 4.2, 2.6, and 1.0 m. Also, in
this case, we notice a strong correlation between the attack success
rate and the input images’ resolution. Specifically, we notice that it
is easier to fool deep learning models considering low-resolution
images than using high-resolution ones. Moreover, we find once
again that models can benefit from cross-resolution training.

Finally, in Fig. 5, we report the PGD attack success rate for a
different number of iteration steps as a function of the maximum
allowed perturbation. We compared the results obtained in the fig-
ure, considering 10, 50, and 100 iteration steps. From the figure, we
can notice that considering less than 50 iterations, the attack does
not converge yet. Instead, above 50 steps, we reach almost 100%
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of success rate in all cases with the “Cross-Resolution” models still
slightly more resilient than the “Base” one.

6. Conclusions

DCNN-based FR systems leverage the representation power of
learning models. Unfortunately, they also share their weaknesses.
Indeed, it has been recently shown that these systems suffer a
drastic drop in their performance when tested in a cross-resolution
domain. The situation becomes even worse when an adversary
comes into play. Indeed, an FR system can be deceived by adversar-
ial examples. These weaknesses pose a severe limit to the spread
of these systems to sensitive real-world applications such as bio-
metric systems and forensics.

In such a context, we proposed our analysis in which we com-
pared the resilience to adversarial attacks of FR systems based on
the deep features extracted by NNs in a CR scenario. We studied
two different DCNN models: a former one, trained only on high-
resolution images, and a latter one, trained on a cross-resolution
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Table 4

Attack success rate against classification for “Base” and “Cross-Resolution” mod-
els. The first column reports the specific configuration used for each attack. The
columns named d1, d2, and d3 correspond to a distance between the subject and
the camera of 4.2, 2.6, and 1.0 m. We emphasize in bold the performance of the
strongest attack.

Attack success rate (%)

Attack configuration Base model Cross-resolution model
d1 d2 d3 di1 d2 d3
JSMA (1000-0.1) 97.2 946 647 333 259 185
JSMA (1000-0.3) 100. 100. 96.0 833 873 76.1
JSMA (1000-0.5) 100. 100. 99.5 944 952  90.1
CW-L, (10-10) 944 988 88.0 806 825 623
CW-L, (10-100) 100. 100. 100. 100. 100. 100.
EAD (10-0.1-10) 100. 100. 99.1 972 976 910
EAD (10-0.1-100) 100. 100. 100. 100. 100. 100.
EAD (10-1.0-10) 889 904 65.1 306 379 216
EAD (10-1.0-100) 100. 100. 974 833 916 80.1

domain. To generate adversarial instances, we harnessed several al-
gorithms based on different metrics and objectives, and we craft
malicious samples considering input images at a resolution of 16,
24, 64, and 256 pixels for the VGGFace2 dataset and the images
at the three different standoff distances concerning the SCface one.
Concerning the measures of the performance of the FR systems, we
adopted the face identification protocol. Specifically, we considered
the close- and open-set settings for which we evaluated the CMC
and DET.

From our analysis, concerning the VGGFace2 dataset, we notice
that, given a specific configuration, the attack success rate is higher
at lower resolutions, for example, at 16 and 24 pixels, than at
higher ones, such as 64 and 256 pixels. Such behavior was some-
how expected since, at a very low-resolution part of the face, in-
formation can be lost, thus simplifying an adversary’s effort.

By looking at the FR systems results, it is evident that a DCNN
benefits from a CR training procedure since it empowers the learn-
ing model to extract more robust deep representations. Moreover,
we observed that DR attacks represent a much greater menace to
an FR system than the ones based on the classification output of
the threatened models for each of the considered metrics, i.e., Li,
L, and L. Such a result was held for the close- as well as for the
open-set settings.

Finally, the results we obtain on the SCface dataset confirm all
the previous intuitions and conclusions reported following the re-
sults obtained on the VGGFace2 dataset.
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