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a b s t r a c t 

Face Recognition is among the best examples of computer vision problems where the supremacy of deep 

learning techniques compared to standard ones is undeniable. Unfortunately, it has been shown that they 

are vulnerable to adversarial examples - input images to which a human imperceptible perturbation is 

added to lead a learning model to output a wrong prediction. 

Moreover, in applications such as biometric systems and forensics, cross-resolution scenarios are easily 

met with a non-negligible impact on the recognition performance and adversary’s success. Despite the 

existence of such vulnerabilities set a harsh limit to the spread of deep learning-based face recogni- 

tion systems to real-world applications, a comprehensive analysis of their behavior when threatened in a 

cross-resolution setting is missing in the literature. 

In this context, we posit our study, where we harness several of the strongest adversarial attacks against 

deep learning-based face recognition systems considering the cross-resolution domain. To craft adversar- 

ial instances, we exploit attacks based on three different metrics, i.e., L 1 , L 2 , and L ∞ 

, and we study the 

resilience of the models across resolutions. We then evaluate the performance of the systems against the 

face identification protocol, open- and close-set. 

In our study, we find that the deep representation attacks represents a much dangerous menace to a face 

recognition system than the ones based on the classification output independently from the used metric. 

Furthermore, we notice that the input image’s resolution has a non-negligible impact on an adversary’s 

success in deceiving a learning model. Finally, by comparing the performance of the threatened networks 

under analysis, we show how they can benefit from a cross-resolution training approach in terms of 

resilience to adversarial attacks. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Face Recognition [1,2] (FR) represents one of the most aston- 

shing applications of Neural Networks (NNs), especially consider- 

ng Deep Convolutional Neural Networks (DCNNs), that ultimately 

vercame standard computer vision techniques such as Gabor- 

isher [3] and local binary patterns [4] . The study of such a prob-

em began in the early 90s when [5] proposed the Eigenfaces ap- 

roach, and it only required two decades for Deep Learning (DL) 

pproaches to start to dominate the field reaching recognition per- 

ormance up to 99.80% [1] , thus overcoming human ability. DL- 

ased FR systems do not exploit the output of a classifier directly. 

nstead, they leverage the representation power [6] of the learn- 

ng models to extract face descriptors, i.e., multidimensional vec- 

ors, also called deep features or deep representations, to fulfill the 

ecognition task. 
∗ Corresponding author. 

E-mail address: fabio.massoli@isti.cnr.it (F.V. Massoli). 
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Although FR systems obtain very high performance when 

rained with datasets comprising images acquired under controlled 

onditions, e.g., high-resolution, they suffer a drastic drop in relia- 

ility when tested against cross-resolution (CR) scenarios [7] that 

aturally arise, for example, in surveillance applications [8–10] . 

o counteract such a weakness, Ekenel and Sankur [11] and Luo 

t al. [12] proposed approaches that were not based on NNs. In- 

tead, only recently such a problem has been tackled in the DL 

eld [13,14] . 

To make the situation even worse, recently [15,16] showed 

hat DL models are vulnerable to the so-called adversarial exam- 

les - images to which a specific amount of noise, undetectable 

o humans, is added to induce a NN to output a wrong predic- 

ion. Unfortunately, the ability of an insightful adversary to jeop- 

rdize these learning models, considering both the digital [17–

1] and physical [22,23] domains, represents a significant concern 

n security-related applications such as DL-based biometrics sys- 

ems [24] and forensics [25] . Thus, limiting their adoption in these 
elds. 

https://doi.org/10.1016/j.patrec.2020.10.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2020.10.008&domain=pdf
mailto:fabio.massoli@isti.cnr.it
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In this context, we posit our contribution that we summarize 

s follows: i) we threaten two DCNNs by exploiting adversarial at- 

acks based on three different metrics, i.e., L 1 , L 2 , and L ∞ 

; ii) we

enerate attacks not only towards a classification objective but also 

gainst a similarity one. Indeed, FR systems typically do not ex- 

loit a DCNN classification output. Instead, they leverage the abil- 

ty of NNs to generate discriminative deep representations among 

hich a similarity criterion is evaluated to fulfill the recognition 

ask; iii) we conduct the attacks in a cross-resolution domain, thus 

mulating a real-world scenario for an FR system; iv) we analyze 

he success rates of the various attacks across resolutions, studying 

f a DL model can benefit from a cross-resolution training proce- 

ure in terms of robustness to adversarial attacks; v) we analyze 

he robustness of the models through the face identification proto- 

ol [26] considering both the open- and close-set settings. 

The rest of the paper is structured as follows. In Section 2 , we

riefly present some related works, while in Section 3 , we describe 

he attacks algorithms we use. Subsequently, in Section 4 , we ex- 

lain our experimental procedure and the dataset we use, while in 

ection 5 , we present the results from the experimental campaign. 

inally, in Section 6 , we report our conclusions. 

. Related works 

To the best of our knowledge, this is the first work that tack- 

es the problem of adversarial attacks against FR systems in a CR 

cenario. For such a reason, in what follows, we briefly cite a few 

rticles related to the topics of the cross-resolution FR and adver- 

arial attacks against an FR system. 

.1. Cross-resolution face recognition 

CR scenarios are met whenever images at different resolutions 

ave to be matched. Such a situation typically happens, for exam- 

le, in biometric and forensics applications. Super-Resolution (SR) 

echniques are among the most studied solutions to such a prob- 

em, and Singh et al. [27] proposed to synthesize high-resolution 

aces from low-resolution ones by employing a multi-level sparse 

epresentation of the given inputs. Zangeneh et al. [28] formulated 

 mapping of the low- and the high-resolution images to a com- 

on space by leveraging a DL architecture made by two distinct 

ranches, one for each image. Luo et al. [12] exploited the dic- 

ionary learning approach based on learning multiple dictionaries, 

ach being associated with a resolution. The most comprehensive 

tudy and widely tested method to improve an FR system’s per- 

ormance in a CR scenario was recently proposed by Massoli et al. 

13] . In their work, the authors formulated a training procedure to 

ne-tune a state-of-the-art model to the CR domain. They tested 

heir models on several benchmark datasets by showing their su- 

erior performance compared to the results available in the litera- 

ure. 

.2. Face recognition adversarial attacks 

As we mentioned at the beginning of this section, we are the 

rst to study adversarial attacks in a cross-resolution domain. Due 

o the lack of papers than can be directly compared to our study, in

hat follows we only briefly cite a few articles concerning adver- 

arial attacks against FR systems. Sharif et al. [22] demonstrated 

he feasibility and effectiveness of physical attacks by imperson- 

ting other identities using eyeglass frames with a malicious tex- 

ure. Zhong and Deng [29] observed the superior transferability 

roperties of feature-based attacks compared to label-based ones. 

oreover, they proposed a drop-out method for DCNNs to enhance 

urther the transferability of the attacks. Song et al. [18] proposed 

 three-player GAN architecture that leveraged a face recognition 
223 
etwork as the third player in the competition between generator 

nd discriminator. Dong et al. [17] successfully performed black- 

ox attacks on FR models and demonstrated their effectiveness in 

 real-world deployed system. 

Face recognition is a sensitive topic since it usually involves 

ersons’ privacy. Several techniques have been proposed in the 

iterature to protect people’s identities, such as the Fawkes algo- 

ithm [30] . The goal of such a technique is to modify a user image

o that a face model trained on the manipulated images will not 

ecognize genuine images of the original subject. However, such 

n approach is based on a different principle than the adversary- 

efender arm race one, thus requiring a completely different anal- 

sis to the one we present in our work. For such a reason, we do

ot consider it in our analysis. 

. Adversarial attacks 

.1. Carlini and wagner - CW 

Carlini and Wagner [31] formulated one of the strongest cur- 

ently available attacks. The CW- L 2 attack is formalized as: 

min c · f ( 1 2 tanh (w ) + 1)+ ‖ 1 
2 ( tanh (w ) + 1) − x ‖ 2 2 , where f ( · )

s the objective function, x is the input image, w is the adversarial 

xample in the tanh space, and c is a positive constant which value 

s set by exploiting a binary search procedure. 

.2. Elastic net attack - EAD 

The EAD Attack [32] , leverages the elastic-net regularization 

hich is a well known technique in solving high-dimensional fea- 

ure selection problems [33] . It is based on the objective proposed 

n Carlini and Wagner [31] and it conceives the CW- L 2 attack as a

pecial case. EAD is formulated as: 

min 

x 
c · f (x , t) + β ‖ x − x 0 ‖ 1 + ‖ x − x 0 ‖ 2 2 

, where f ( · ) is the

bjective as in the CW- L 2 attack, t is the target class, x 0 is the in-

ut image, t is the target label, x is the adversarial instance, c is a

arameter found by binary search, and β represents the weight of 

he L 1 penalty term. 

.3. Jacobian saliency map attack - JSMA 

The JSMA [34] attack exploits an “input-perturbation-to-output”

apping. Differently from the backpropagation-based attacks, 

SMA leverages the model derivative concerning the classification 

utput rather than the derivative of the loss function. The attack is 

ormalized as: arg min 

δx 

‖ δx ‖ s . t . F (X + δx ) = Y 

∗, where F is the 

unction learned by the DNN, X and Y 

∗ are the input and output 

f the model, respectively, and δx is the adversarial perturbation 

efined upon the evaluation of the model input saliency map. 

.4. Deep representations attacks - DR 

Differently from the previously mentioned attacks, the Deep 

epresentations [35] attack focuses on the manipulation of image 

eatures. It is formulated as an optimization problem which aims at 

nding the closest perturbed image, to the original one, whose de- 

criptor is as close as possible to the one of a target image named 

he “guide image”. Specifically, the adversarials crafting procedure 

s the following: I α = arg min 

I 

‖ φk (I ) − φk (I g ) ‖ 2 2 
; subject to ‖ I −

 s ‖ ∞ 

< δ, where φ( · ) k is the descriptor extracted at layer k of

he threatened model, I s and I g are the source and target images, 

espectively, I α is the adversarial example, and δ is he maximum 

llowed perturbation in terms of the L ∞ 

norm. 
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Fig. 1. Schematic representation of our approach to crafting DR attacks. The col- 

ored regions are the k-NN decision boundaries for ten different identity templates 

(white triangles). The initial location of the green star represents a correctly clas- 

sified features vector. The adversarial features vector’s final position is represented 

by the red encircled star. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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.5. Projected gradient descent - PGD 

The PGD attack, was proposed by Madry et al. [36] . It applies 

he FGSM [37] attack multiple times with small step size. It is for- 

alized as: 

 

adv 
N+1 = Clip x ,ε

{
x 

adv 
N + α · sign (∇ x J θ (x 

adv 
N , y )) 

}
, (1) 

here the Clip ( · ) function clips the values of the pixels to the 

llowed range, and α is the step size. The iteration starts from an 

cceptable random perturbation of the input x N=0 . 

. Experimental approach 

.1. Dataset and models 

In our experiments, we use two datasets: VGGFace2 [38] and 

Cface [39] . 

The VGGFace2 [38] dataset contains a training set made by 

2.9 M images shared among 8631 identities. To construct the 

allery and the queries, we divide the training set into two splits. 

oncerning the gallery, we evaluate a single template for each 

dentity as the average features vector among all the corresponding 

ace images. Regarding the queries, we randomly select 100 iden- 

ities, and for each of them, we randomly pick ten correctly classi- 

ed images, ending up with 10 0 0 queries. 

Concerning the learning models, we analyze the performance 

f two DCNNs: the face classifier from [38] and the CR-trained one 

rom [13] . They share the same structure, i.e., a ResNet-50 [40] ar- 

hitecture equipped with Squeeze-and-Excitation [41] blocks. For 

oth models, we adopt the same preprocessing steps for the im- 

ges. First, following the same procedure as in Massoli et al. [13] , 

e synthesize different resolution versions of the input that allow 

s to evaluate the performance of the models in a cross-resolution 

cenario. Specifically, in our analysis, we consider images at 16, 24, 

4, and 256 pixels (shortest side). Next, each image is resized to 

ave the shortest side of 256 pixels, and then it is cropped to 

 square picture of size 224 x 224 pixels. Finally, we subtract the 

hannel mean from each pixel. 

The SCface [39] dataset comprises ~ 4K images, shared among 

30 different subjects, that have been acquired in an uncontrolled 

ndoor environment. For each person in the dataset, there are five 

ictures acquired with five different surveillance cameras at three 

ifferent distances: 1.0, 2.6, and 4.2 m. The three different gaps 

etween the person and the cameras automatically translate into 

ace images with different resolutions. Thus, we use the images 

ontained in the dataset as they are for our purposes. We use the 

ame models and apply the same pre-processing steps as for the 

GGFace2 [38] dataset. The only exception is that, in this case, we 

o not need to down-sampled the images since we already have 

hem available at three different resolutions, each corresponding 

o a different position of the subject to the camera. 

.2. Adversarial attacks 

Concerning the generation of the adversarial instances, we ex- 

loit the five algorithms we described in Section 3 . We use the im-

lementations available in the foolbox 1 library with the only excep- 

ion of the DR one that we build on top of the L-Broyden-Fletcher- 

oldfarb-Shanno (L-BFGS) [15] , optimization procedure. More pre- 

isely, the L-BFGS algorithm requires a function to optimize. To our 

im, we implement such a function by employing a k-NN algo- 

ithm as guidance in the adversarial search. We fit the classifier to 

he gallery templates we mentioned at the beginning of this sec- 

ion. Then, we start the crafting procedure and stop it as soon as 
1 https://foolbox.readthedocs.io/en/stable/ 

s

o

224 
he k-NN classifies the malicious image as belonging to the tar- 

eted identity. In Fig. 1 , we report a schematic view of the proce-

ure we just described. 

.3. Face identification metrics 

FR systems typically deal with sensitive scenarios such as bio- 

etric and forensics applications. Hence, different error types have 

istinct relevance while evaluating system performance, and a sim- 

le accuracy measure is not enough to properly evaluate and com- 

are the performance of FR systems. Instead, as mentioned in 

ection 1 , we focus our study on the face identification protocol. 

pecifically, we consider both the close- and open-set settings. 

Concerning the close-set setting, we evaluate the Cumulative 

atch Characteristic (CMC), a metric that represents a summa- 

ized accuracy evaluated on mated searches only, i.e., considering 

ueries that correspond to identities already available the gallery. 

he CMC value at rank one is usually named “hit rate,” and it is 

he most typical summary indicator of an algorithm’s efficacy. Con- 

erning the VGGFace2 [38] dataset, as we mentioned above, we se- 

ect 100 identities to construct the queries. Thus, we end up with a 

allery containing 8631 identities that comprise a hundred mated 

nes and 8531 un-mated ones acting as “distractors”. 

In the open-set setting, differently from the close-set one, we 

onsider both mated and un-mated queries. To this aim, we re- 

ove half of the queries identities from the gallery, ending up 

ith 50 mated and 50 un-mated persons and a gallery contain- 

ng 8581 templates. With that set, there are two different types of 

rrors that are usually evaluated, i.e., the False Positive Identifica- 

ion Rate (FPIR) and the False Negative Identification Rate (FNIR) 

r “miss rate”. Concerning the former, it represents the number of 

n-mated queries that return a positive match at or above a spe- 

ific similarity threshold. On the other hand, the FNIR represents 

he number of mated searches that return candidates with a simi- 

arity score below the threshold or outside the top R ranks. 

The FNIR and FPIR, parametrized by the similarity threshold, 

an be combined to construct the Detection Error Tradeoff (DET), 

hich is typically used to report the two types of error trade-off. 

e use the DET to evaluate the performance of the learning mod- 

ls in the experiments. 

Finally, concerning the SCface [39] dataset, we evaluate the re- 

ilience of the models against attacks at the three different stand- 

ff distances. As we will show next in the paper, the results con- 

https://foolbox.readthedocs.io/en/stable/
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Table 1 

Attack success rate against classification for “Base” and “Cross-Resolution” models. The first column reports the specific configuration used for each attack. 

The four values reported in the second and third main columns represent the success rate at a resolution of 16, 24, 64, and 256 pixels, respectively. We 

emphasize in bold the performance of the strongest attack. 

Attack success rate (%) 

Attack configuration Base model Cross-resolution model 

16 24 64 256 16 24 64 256 

JSMA (1000-0.1) 76.1 61.8 25.5 11.5 65.5 62.8 17.1 6.9 

JSMA (1000-0.3) 96.6 92.5 75.7 61.2 96.0 94.7 70.0 50.1 

JSMA (1000-0.5) 98.5 95.8 86.4 76.6 97.6 97.0 100. 69.6 

CW- L 2 (10-10) 82.9 72.9 45.9 32.7 86.4 83.3 52.8 37.4 

CW- L 2 (10–100) 100. 100. 100. 100. 100. 100. 100. 100. 

EAD (10-0.1-10) 95.7 98.2 94.5 87.0 96.7 99.6 98.8 98.5 

EAD (10-0.1-100) 100. 100. 100. 100. 100. 100. 100. 100. 

EAD (10-1.0-10) 83.4 85.1 50.2 27.9 72.6 94.4 86.9 73.8 

EAD (10-1.0-100) 98.5 99.8 98.7 91.0 97.5 99.8 100. 99.6 

Fig. 2. DR [35] attack success rate as function of the maximum allowed perturbation δ considering 100 and 10 0 0 iteration steps. Each plot represents a different input 

resolution. 
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rm the conclusions and intuitions we report about the former 

ataset. 

. Experimental results 

We dedicate this section to report the results of our experimen- 

al campaigns. As we mentioned in Section 1 , we aim to study the

ehavior of DL-based FR systems when threatened by adversarial 

ttacks in a CR domain. Concerning the FR, as backbone features 

xtractors, we consider the well-known DCNN from Cao et al. 

38] that set the state-of-the-art on the NIST datasets [42–44] and 

he CR model from [13] that set the state-of-the-art in the cross- 

esolution domain. 

To craft adversarial examples, we harness the algorithms 

e described in Section 3 . Moreover, concerning the VG- 

Face2 [38] dataset, being interested in the CR scenario, we con- 

ider input faces at 16, 24, 64, and 256 pixels (shortest side). Con- 

erning the FR task, we keep the gallery at the original resolution. 

nstead, regarding the SCface [39] dataset, we use the images as 

hey are since they natively represent a cross-resolution domain. 

As mentioned in Section 2 , to our knowledge, we are the first to

onduct this type of study. Thus, a direct comparison with previ- 

usly published works is not possible. Hence, in what follows, we 

nly report our results. We hope that our study will stimulate fur- 

her researches in this direction. Throughout this section, we refer 

o the model from Cao et al. [38] as “Base” model and to the one

rom Massoli et al. [13] as “Cross-Resolution” model. 

In what follows, we first report the results on the VG- 

Face2 [38] dataset and then on the SCface [39] one. 

.1. Threatening the classification 

We report the results from the attacks against the classifica- 

ion in Table 1 . Concerning the attacks, we use the following con- 
225 
gurations. For JSMA, we consider 10 0 0 iterations, a perturbation 

er pixel equals to 0.1, 0.3, and 0.5 (percentage over the allowed 

ixel range), and a maximum number of times each pixel can be 

odified of 10. For CW- L 2 , we consider 10 binary search steps 

nd 10 and 100 iterations. Concerning EAD, we use the same pa- 

ameters as for the CW- L 2 attack and a value for the weight of 

he L 1 penalty term equals to 0.1 and 1. Furthermore, since the 

R [35] attack is the least time demanding compared to the oth- 

rs, we enlarge the set of hyperparameters for it. Thus, we dedicate 

ig. 2 to report their results. 

From Table 1 , we notice that there is no clear signature for 

hich model is more robust against adversarial attacks. On the 

ther hand, we see that, on average, an adversary’s success rate 

ecreases as the resolution increases while keeping the attack con- 

guration fixed. Let us now turn our attention to a single attack, 

or example, CW- L 2 . It is interesting to notice the impact of a dif-

erent choice of hyperparameters. Indeed, even though from the 

onfiguration (10-10), the “Base” model seems to be more resilient 

ompared to the “Cross-Resolution” one, this is not true. Indeed, 

y just increasing the strength of the attack, i.e., (10–100) configu- 

ation for which we grow the number of steps, we reach 100% of 

ttack success rate for both models. 

From Fig. 2 we observe that it is undeniable that the deep fea- 

ures extracted by the “Cross-Resolution” model are much more 

obust than those extracted from the “Base” NN. Thus, confirm- 

ng our previous assertion about the benefit of CR training. From 

he first plot of Fig. 2 , we see that the success rate of the attack

s almost 0% for the “Base” model. Instead, in the second plot, it 

ooks like that both models have the same resilience. This is not 

n contrast with our previous conclusions. Indeed, as it has been 

hown in appendix 1 of Massoli et al. [13] , the “Base” model is not 

ble to generate meaningful deep representation at very low reso- 

utions. Thus, it is almost impossible to craft targeted attacks based 

n deep features. To sustain even more our assertion, we run a test 
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Table 2 

Attacks hit rate. The first column reports the configuration for each attack. The four values reported in the second and third main columns are the results 

at a resolution of 16, 24, 64, and 256 pixels, respectively As a reference, we report in the first row the hit rate for the authentic images. We emphasize in 

bold the performance of the strongest attack. 

Hit rate (%) 

Attack configuration Base model Cross-resolution model 

16 24 64 256 16 24 64 256 

Auth 79.5 95.3 99.8 99.9 96.7 98.8 99.4 99.7 

JSMA (1000-0.1) 12.1 10.7 12.9 12.2 11.9 9.8 9.4 13.0 

JSMA (1000-0.3) 14.0 9.3 10.7 10.6 9.8 10.0 7.4 8.9 

JSMA (1000-0.5) 13.6 10.6 10.0 10.3 10.0 10.2 3.0 6.8 

CW- L 2 (10-10) 10.9 6.5 6.1 3.7 10.8 9.3 5.5 5.1 

CW- L 2 (10–100) 7.6 4.1 6.1 2.3 9.2 9.3 3.6 4.6 

EAD (10-0.1-10) 31.8 32.6 27.8 25.1 19.2 16.8 19.4 19.7 

EAD (10-0.1-100) 17.5 9.7 6.3 6.2 13.8 11.6 6.8 5.3 

EAD (10-1.0-10) 44.8 38.0 26.7 25.5 20.8 25.7 20.1 21.7 

EAD (10-1.0-100) 34.8 30.3 20.7 16.8 17.3 16.5 17.4 17.2 

Fig. 3. DR [35] hit rate as function of the maximum allowed perturbation δ considering 100 and 10 0 0 attack steps. Each plot represents a different input resolution. 
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ith untargeted DR attacks in which we easily reach a success rate 

f 100% for the “Base” model. 

Finally, we can notice that from our results, there is no clear 

vidence in favor of a specific metric since with the proper hyper- 

arameters, we reached high success rates with the L 1 , L 2 , and L ∞ 

.

.2. Threatening the face recognition 

We now turn our attention to DL-based FR systems. We begin 

ur analysis by considering the face identification protocol in the 

lose-set scenario, and we then move the open-set one. We refer 

he reader to Section 4 for a detailed description of the metrics we 

se to assess the performance of the systems under analysis. 

.2.1. Close-set 

As mentioned in Section 4 , we use the CMC to evaluate the 

erformance of the threatened models in the close-set scenario. 

pecifically, we summarize our results in Table 2 by reporting the 

it rate, i.e., the CMC value at a rank equals to one, with the ex-

eption of the DR [35] attack to which we dedicate Fig. 3 . From

 defensive point of view, the more resilient a model, the lower 

he hit rate, while from an attacker perspective, it is the other way 

ound. 

By looking at Table 2 and Fig. 3 we can assert that the DR at-

ack is much more effective in fooling a DL-based FR system than 

he classification-based ones with respect to any type of metric. 

rom the attacker’s point of view, this is a fundamental result. In- 

eed, by comparing the results from Tables 1 and 2 , we see that

ven though the attacks fool the classification, it is not guaran- 

eed that they can evade a similarity-based system. Thus, deep 

epresentation attacks might be a better choice to attack an FR 

ystem. Moreover, we see how the “Cross-Resolution”-based sys- 

em exhibits higher robustness than the one based on the “Base”

odel. Thus, again, we find that DCNNs benefit from a CR train- 
226 
ng approach [13] in terms of resilience to adversarial attacks. In- 

eed, it is undeniable that the “Cross-Resolution”-based system is 

uch more resilient against adversarial attacks than the “Base”- 

ased one across all resolutions. 

.2.2. Open-set 

To report the results for the face identification protocol in the 

pen-set setting, we exploit the DET. Two fundamental aspects dif- 

erentiate the DET from the CMC. Indeed, the former applies a 

hreshold among the similarity of the features, and it comprises 

ueries of identities that are not present in the gallery. Instead, the 

atter does not use any threshold, i.e., it does not discern among 

weak” and “strong” similarity scores, and it requires queries re- 

ated to already known identities. 

As we mentioned in Section 4 , the DET represents the error 

rade-off between the FNIR and the FPIR. To summarize the perfor- 

ance of the FR systems, we report the FPIR at a reference value 

f the FNIR equals to 1 .e −2 . Compared to the close-set settings, the 

dversary’s goal is to lower the curve as much as possible, while 

rom a defensive point of view, a higher curve represents a more 

esilient model. The results are reported in Table 3 with the excep- 

ion of DR [35] to which we dedicate Fig. 4 . 

Analyzing the results reported in Table 3 and Fig. 4 we ob- 

ain the same conclusions we report for the close-set setting. 

pecifically, by comparing the results from Table 3 to the ones in 

ig. 4 we see that the DR attack is much more effective in fooling 

he FR system compared to others and that the “Cross-Resolution”- 

ased system is much more resilient than the “Base”-based one 

gainst adversarial attacks. 

To further confirm our intuition about the dependence of the 

dversary success from the resolution of the input images and 

hat the robustness of a model against adversarial attacks can 

enefit from a cross-resolution training procedure, we conduct 

xperiments on the SCface [39] dataset. Specifically, we evalu- 
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Table 3 

FPIR@FNIR =1 .e −2 . The first column reports the configuration for each attack. The four values reported in the second and third main columns are the results 

at a resolution of 16, 24, 64, and 256 pixels, respectively. As a reference, we report in the first row the results for the authentic images. We emphasize in 

bold the performance of the strongest attack. 

FPIR@FNIR =1 .e −2 

Attack configuration Base model Cross-resolution model 

16 24 64 256 16 24 64 256 

Auth 75.0 40.8 0.8 1.0 38.6 20.2 3.6 3.2 

JSMA (1000-0.1) 99.3 99.1 100. 95.1 99.1 98.4 100. 98.1 

JSMA (1000-0.3) 99.0 99.1 97.2 99.7 97.8 98.6 99.0 100. 

JSMA (1000-0.5) 98.0 98.1 98.2 97.0 99.4 98.6 99.0 98.7 

CW- L 2 (10-10) 99.5 98.1 99.5 97.4 99.0 98.1 98.9 98.9 

CW- L 2 (10–100) 100. 99.0 99.5 99.4 99.6 98.1 99.6 99.2 

EAD (10-0.1-10) 95.3 93.2 98.7 99.5 98.4 98.8 96.0 97.6 

EAD (10-0.1-100) 98.0 99.4 99.4 99.0 100. 98.8 98.6 99.2 

EAD (10-1.0-10) 95.6 96.3 98.3 95.3 96.3 98.1 96.7 96.7 

EAD (10-1.0-100) 98.8 97.9 97.1 98.6 98.6 98.1 99.0 97.7 

Fig. 4. FPIR@FNIR =1 .e −2 for the DR [35] attack as function of the maximum allowed perturbation δ considering 100 and 10 0 0 attack steps. Each plot represents a different 

input resolution. 

Fig. 5. Attack success rate as a function of the maximum allowed perturbation for a different number of iteration steps considering images at the three different standoff

distances. 
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te the attack success rate for the “Base” model and the “Cross- 

esolution” one. Instead of synthesizing low-resolution images, in 

his case, we consider the images taken at three different dis- 

ances from the cameras as a down-sampled version of a subject 

ace. 

We report the results of the experiments in Table 4 and Fig. 5 .

n Table 4 , the columns d1, d2, and d3 correspond to a distance

etween the subject and the camera of 4.2, 2.6, and 1.0 m. Also, in

his case, we notice a strong correlation between the attack success 

ate and the input images’ resolution. Specifically, we notice that it 

s easier to fool deep learning models considering low-resolution 

mages than using high-resolution ones. Moreover, we find once 

gain that models can benefit from cross-resolution training. 

Finally, in Fig. 5 , we report the PGD attack success rate for a

ifferent number of iteration steps as a function of the maximum 

llowed perturbation. We compared the results obtained in the fig- 

re, considering 10, 50, and 100 iteration steps. From the figure, we 

an notice that considering less than 50 iterations, the attack does 

ot converge yet. Instead, above 50 steps, we reach almost 100% 
227 
f success rate in all cases with the “Cross-Resolution” models still 

lightly more resilient than the “Base” one. 

. Conclusions 

DCNN-based FR systems leverage the representation power of 

earning models. Unfortunately, they also share their weaknesses. 

ndeed, it has been recently shown that these systems suffer a 

rastic drop in their performance when tested in a cross-resolution 

omain. The situation becomes even worse when an adversary 

omes into play. Indeed, an FR system can be deceived by adversar- 

al examples. These weaknesses pose a severe limit to the spread 

f these systems to sensitive real-world applications such as bio- 

etric systems and forensics. 

In such a context, we proposed our analysis in which we com- 

ared the resilience to adversarial attacks of FR systems based on 

he deep features extracted by NNs in a CR scenario. We studied 

wo different DCNN models: a former one, trained only on high- 

esolution images, and a latter one, trained on a cross-resolution 
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Table 4 

Attack success rate against classification for “Base” and “Cross-Resolution” mod- 

els. The first column reports the specific configuration used for each attack. The 

columns named d1, d2, and d3 correspond to a distance between the subject and 

the camera of 4.2, 2.6, and 1.0 m. We emphasize in bold the performance of the 

strongest attack. 

Attack success rate (%) 

Attack configuration Base model Cross-resolution model 

d1 d2 d3 d1 d2 d3 

JSMA (1000-0.1) 97.2 94.6 64.7 33.3 25.9 18.5 

JSMA (1000-0.3) 100. 100. 96.0 83.3 87.3 76.1 

JSMA (1000-0.5) 100. 100. 99.5 94.4 95.2 90.1 

CW- L 2 (10-10) 94.4 98.8 88.0 80.6 82.5 62.3 

CW- L 2 (10–100) 100. 100. 100. 100. 100. 100. 

EAD (10-0.1-10) 100. 100. 99.1 97.2 97.6 91.0 

EAD (10-0.1-100) 100. 100. 100. 100. 100. 100. 

EAD (10-1.0-10) 88.9 90.4 65.1 30.6 37.9 21.6 

EAD (10-1.0-100) 100. 100. 97.4 83.3 91.6 80.1 

d

g

m

2

a

C

a

t

a

t

a

h

h

f

b

i

w

a

t

L  

o

t

s

D

c

i

A

w

w

F

a

R

 

 

 

 

 

 

 

 

 

 

[

 

[  

[

[

[

[  

[

[

[

[  

[  

[  

[  

[

[  

[

[  
omain. To generate adversarial instances, we harnessed several al- 

orithms based on different metrics and objectives, and we craft 

alicious samples considering input images at a resolution of 16, 

4, 64, and 256 pixels for the VGGFace2 dataset and the images 

t the three different standoff distances concerning the SCface one. 

oncerning the measures of the performance of the FR systems, we 

dopted the face identification protocol. Specifically, we considered 

he close- and open-set settings for which we evaluated the CMC 

nd DET. 

From our analysis, concerning the VGGFace2 dataset, we notice 

hat, given a specific configuration, the attack success rate is higher 

t lower resolutions, for example, at 16 and 24 pixels, than at 

igher ones, such as 64 and 256 pixels. Such behavior was some- 

ow expected since, at a very low-resolution part of the face, in- 

ormation can be lost, thus simplifying an adversary’s effort. 

By looking at the FR systems results, it is evident that a DCNN 

enefits from a CR training procedure since it empowers the learn- 

ng model to extract more robust deep representations. Moreover, 

e observed that DR attacks represent a much greater menace to 

n FR system than the ones based on the classification output of 

he threatened models for each of the considered metrics, i.e., L 1 , 

 2 and L ∞ 

. Such a result was held for the close- as well as for the

pen-set settings. 

Finally, the results we obtain on the SCface dataset confirm all 

he previous intuitions and conclusions reported following the re- 

ults obtained on the VGGFace2 dataset. 
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