VaMoS 2010

A deontic logical framework for modelling product families

Patrizia Asirelli, Maurice H. ter Beek, Stefania Gnesi
Istituto di Scienza e Tecnologie dell’ Informazione

ISTI-CNR, Pisa, Italy
Email: {asirelliterbeek,gnesi}@isti.cnr.it

Abstract—We discuss the application of deontic logics to
the modelling of variabilities in product family descriptions.
Deontic logics make it possible to express concepts like
permission and obligation, and hence promise a direct mod-
elling of constraints over the products of a family. Indeed,
we first show how feature models can be straightforwardly
characterised by means of a deontic logic. We then study the
deontic modelling of the behavioural variability in product
families by defining a deontic extension of a behavioural
logic. This allows both constraints over the products of a
family and constraints over their behaviour to be expressed
in a single framework: a novelty in the field. We discuss
how model-checking tools could support formal verification
in this framework, and we indicate some future research into
that direction.

I. INTRODUCTION

Modelling variability in product families has been the
subject of extensive study in the literature on Software
Product Lines, especially that concerning Feature mod-
elling [3], [8], [15]. Variability modelling addresses how
to define which features or components of a system are
optional, alternative, or mandatory; formal methods are
then developed to show that a product belongs to a family,
or to derive instead a product from a family, by means of
a proper selection of the features or components.

Modal Transition Systems (MTSs) have been proposed
as a formal model for product families [12], [18], allowing
one to embed in a single model the behaviour of a family
of products that share the basic structure of states and
transitions, transitions which can moreover be seen as
mandatory or possible for the products of the family.
In [10], we have pushed the MTS concept to a more
general form, allowing more precise modelling of the
different kinds of variability that can typically be found in
the definition of a product family.

Recently, deontic logics [1], [22] have become popular
in computer science for formalising descriptional and be-
havioural aspects of systems. This is mainly because they
provide a natural way to formalise concepts like violation,
obligation, permission, and prohibition. Intuitively, they
permit one to distinguish between correct (normative)
states and actions on the one hand and non-compliant
states and actions on the other hand. This makes deontic
logics a natural candidate for expressing the conformance

Funded by the Italian project D-ASAP (MIUR-PRIN 2007) and by
the RSTL project XXL of the Italian National Research Council (CNR).

37

Alessandro Fantechi
DSI, University of Florence, Italy
ISTI-CNR, Pisa, Italy
Email: fantechi@dsi.unifi.it

of members of a family of products with respect to
variability rules.

Such a conformance of products to a family concerns
not only properties related to features, that in some sense
can be considered static. Behavioural variability of the
family has to be considered as well, i.e. how the products
of a family differ in their ability to respond to events in
time. These dynamic properties must also be verified for
products to be member of such families. This is an aspect
that the techniques focussing on feature models do not
typically address.

Recently, a Propositional Deontic Logic (PDL) capable
of expressing the permitted behaviour of a system has been
proposed [5], [6]. This PDL combines the expression of
permission and obligation with concepts from temporal
logics.

In [2], we have laid the basis for the study of the appli-
cation of deontic logics to the modelling of behavioural
variability. We did this by showing the capability of a logic
derived from PDL to finitely characterise the complete
behaviour of a family of products. We have also shown
in [2] that, given an MTS M representing a family, we are
able to produce a deontic logic formula that is satisfied by
all and only those products that can be derived from M.
This preliminary result has convinced us that this kind of
deontic logics are a good candidate to express in a unique
framework both behavioural variability aspects, by means
of standard branching-time logical operators, and static
constraints over the products of a family, which usually
require a separate expression in a first-order logic (as can
be seen in [3], [11], [19]), using deontic operators.

In the first part of this paper, we present a straight-
forward characterization of feature models by means of
deontic logics. We then proceed with this direction of
research by defining a novel deontic extension of a be-
havioural logic that allows both static constraints over the
products of a family and constraints over their behaviour
to be expressed in a single framework. This logic is given a
semantic interpretation over MTSs for which a verification
framework based on model-checking techniques could be
implemented extending existing model checking tools.

A. Related Work

MTSs have been introduced in [12], [17], [18] to for-
mally model and verify the behaviour of product families.
We have extended MTSs in [10] to allow different notions

VaMoS 2010

of behavioural variability to be modelled. An algebraic
approach to behavioural modelling and verification of
software product lines has been developed in [13], [14].
In [2] we showed how to finitely characterise MTSs by
means of deontic logic formulae. To the best of our
knowledge, the current paper presents a first attempt
towards a modelling and verification framework capable
of addressing both static and behavioural conformance of
products of a family.

B. Outline

In Sect. II we present a simple running example that we
will use throughout the paper. After a brief description
of feature models in Sect. III, we discuss the use of
deontic logic to characterise feature models and to verify
static requirements of product families in Sect. IV. We
then introduce the behavioural modelling of families by
means of MTSs in Sect. V. In Sect. VI we introduce
a deontic extension of an existing branching-time logic,
which we apply to the running example in Sect. VII to
show its expressivity and to discuss the verification of
behavioural requirements of product families in Sect. VIIIL.
We conclude the paper in Sect. IX with some ideas for
future work.

II. RUNNING EXAMPLE: COFFEE MACHINE FAMILY

To illustrate the contribution of this paper we use a
simple running example, namely a family of (simplified)
coffee machines, for which we consider the following
requirements:

1) A coffee machine is activated by a coin. The only
accepted coins are the one euro coin (1€), exclu-
sively for the European products and the one dollar
coin (1$), exclusively for the US products;

After inserting a coin, the user has to choose whether
or not (s)he wants sugar, by pressing one of two
buttons, after which (s)he may select a beverage;
The choice of beverages (coffee, tea, cappuccino)
varies between the products. However, delivering
coffee is a must for every product of the family,
while cappuccino is only offered by European prod-
ucts;

After delivering the appropriate beverage, optionally,
a ringtone is rung. However, a ringtone must be rung
whenever a cappuccino is delivered;

The machine returns to its idle state when the cup
is taken by the user.

2)

3)

4)

5)

This list contains both static requirements, which identify
the features that constitute the different products (see
requirements 1, 3 and, partially, 4) and behavioural re-
quirements, which describe the admitted sequences of
operations (requirements 2, 5 and, partially, 4).

In the sequel, we will first distill the feature model
of the above family and provide a formal representation
in terms of deontic logic formulae. We will then show
how the behavioural requirements of this family can be
described using an MTS. Finally, we will show how to
combine the two approaches by defining a deontic logical

38

framework to check the satisfiability of both static and
behavioural requirements over products that should belong
to the family.

III. FEATURE DIAGRAMS AND FEATURE MODELS

Feature diagrams were introduced in [15] as a graphical
and/or hierarchy of features; the features are represented
as the nodes of a tree, with the product family being the
root. Features come in several flavours; in this paper we
consider the following features:

optional features may be present in a product only
if their parent is present;

are present in a product if and
only if their parent is present;
are a set of features among which
one and only one is present in a

product if their parent is present.

mandatory features

alternative features

When additional constraints are added to a feature dia-
gram, this results in a feature model. Also constraints come
in several flavours; in this paper we consider the following
constraints:

is a unidirectional relation between two fea-
tures indicating that the presence of one
feature requires the presence of the other;
is a bidirectional relation between two fea-
tures indicating that the presence of either
feature is incompatible with the presence of
the other.

requires

excludes

An example of a feature model for the Coffee Machine of
Sect. Il is given in Fig. 1; the requires constraint obligates
feature Ringtone to be present whenever Cappuccino is,
while the excludes constraint prohibits features 1$ and
Cappuccino to both be present in any product of this
family of Coffee Machines. It is easy to see that this
feature model satisfies the static requirements (1, 3 and,
part of, 4) of our running example.

IV. DEONTIC LOGIC APPLIED TO FEATURE MODELS

Deontic logics are an active field of research for many
years now. Many different deontic logic systems have been
developed with a lot of success in the community [1], [22].

A. Deontic Logic: A First Glimpse

A deontic logic consists of the standard operators of
propositional logic (i.e. negation (—), conjunction (A),
disjunction (V) and implication (=>)) augmented with
deontic operators. In this paper, we consider two of the
most classic deontic operators, namely it is obligatory that
(O) and it is permitted that (P), which enjoy the duality
property

P(a) = ~0(~a),

i.e. something is permitted iff its negation is not obligatory.

VaMoS 2010

| /O\ - o

optional mandatory alternative excludes requires

Coffee Machine

Coin

Beverage

Ringtone

4
h
,
;
/
,

Coffee

Cappuccino

Figure 1.

B. A Deontic Characterization of Feature Models

The way deontic logics formalise concepts such as
violation, obligation, permission and prohibition is very
useful for system specification, where these concepts arise
naturally. In particular, deontic logics seem to be very
useful to formalise product families specifications, since
they allow one to capture the notions of optional and
mandatory features.

The deontic characterization of a feature model builds
a set of deontic formulae which, taken as a conjunction,
precisely characterises a product family. We assume that
a name of a feature A is used as the atomic proposition
indicating that A is present.

The deontic characterization is constructed as follows:

o If A is a feature, and A; and A, are two subfeatures

(possibly marked alternative, optional or manda-
tory), then add the formula

A = CI)(Al,AQ),
where (A1, As) is defined as:
®(A1, A2) = (O(A1)VO(A2)) A=(P(A1)ANP(Az))

if A; and A, are marked alternative,
and is otherwise defined as:

(A1, A2) = ¢(A1) A §(Az),
in which A;, for i € {1,2}, is defined as:
o) ={ o)

Moreover, since the presence of the root feature is
taken for granted, the premise of the implication
related to that feature can be removed.!

e If A requires B, then add the formula

A = O(B)
e If A excludes B, then add the formula
(A = -P(B))A (B = —P(A))

if A; is optional and
if A; is mandatory.

Before applying this construction to our running example,
we make two remarks. First, note that the alternative

By doing so, we tacitly do not deal with trivially inconsistent graphs
in which the root is involved in an excludes relation with a feature.

39

Feature model of the Coffee Machine family.

feature can also be defined in terms of the excludes
feature: Marking subfeatures A; and A, alternative is
the same as stating that A; and A, exclude each other.

The second remark concerns the following less common
feature: multiple optional features are a set of features of
which at least m and at most n > m, with m,n > 0, are
present in a product if their parent is present. The deontic
characterization of this feature is as follows, assuming that
feature A has s subfeatures Aq,..., As:

A= (\/ (A om)a \ -P4y)),

K i€k J¢K

with K = {§ C 2{l-} i < |S| <n}.

If we apply the construction described above to our
running example, then the conjunction of the following
deontic formulae precisely characterises the feature model
of Fig. 1. We refer to this conjunction as the characteristic
formula.

O(Coin) A O(Beverage) A P(Ringtone)

Coin = (O(13) vV O(1€)) A =(P(18) A P(1€))
Beverage —> O(Coffee) A P(Tea) A P(Cappuccino)

Cappuccino —> O(Ringtone)
(1$ = —P(Cappuccino)) A (Cappuccino = —P(18$))

C. Verifying Static Requirements of Product Families

The deontic characterization of feature models de-
scribed in this section is a way to provide a semantics
to feature models. The deontic formulae expressing the
features and the constraints between them can then be
used to verify whether or not a certain product belongs
to a specific family.

Given the above characterization of the coffee machine,
let us suppose that we have defined two coffee machines
with the following list of features:

CM1
CM2

{Coin, 1€, Beverage, Coffee}
{Coin, 1€, Beverage, Coffee, Cappuccino}

VaMoS 2010

It is easy to see that coffee machine CM1 belongs to the
product family since it satisfies the characteristic formula
of the feature model, whereas CM2 does not: it falsifies
the constraint that a Cappuccino requires a Ringtone.
This can be formally verified by interpreting these lists
as a conjunction of axioms (each comma stands for a
A) that when added to the characteristic formula makes
it either true or false, according to whether or not the
product belongs to the family. For instance, CM2 does not
belong to the product family because the addition (through
conjunction) of

Coin A 1€ A Beverage A Coffee A Cappuccino

to the characteristic formula of the feature model makes
the subformula Cappuccino = O(Ringtone) false, as a
result of which the whole formula is false.

In general, the problem of finding a product that satisfies
the deontic characterization of a feature model is reduced
to that of finding a satisfying assignment to a set of
boolean variables. Efficient SAT solvers, like Chaff [21],
can therefore be used to address this kind of problems.

V. BEHAVIOURAL MODELS FOR PRODUCT FAMILIES

The behavioural requirements given in Sect. I for
our coffee machine family can be formally expressed by
a Modal Transition System (MTS). Several variants of
MTSs have been proposed in [10], [12], [18] with the aim
of embedding in a single model the behaviour of a family
of products that share the basic structure of states and
transitions. This basic structure can be defined as a doubly-
labelled transition system [9], which is an extension of an
ordinary Labelled Transition System (LTS) obtained by
labelling states with atomic propositions and transitions
with actions.
Definition 1: A doubly-labelled transition system
(L2TS) is a sixtuple (S, s, Act, —,AP, L), in which
e S is a set of states;
e Sp € S is the initial state;
e Act is a finite set of observable actions;
e —C S x Act x S is the transition relation; instead of
(s,a,s") € — we will often write s > s';

e AP is a set of atomic propositions;

o L:S — 24" ig a labelling function that associates
a subset of AP to each state.

An MTS can now be defined as an L2TS in which tran-
sitions are either required or possible, to reflect mandatory
or optional transitions for the products of the family.

Definition 2: A modal transition system (MTS) is a
septuple (S, sg,Act, —0, —¢,AP, L) such that (S, sg, Act,
—0 U —¢,AP, L) is an L2TS. A MTS has two distinct
transition relations: The must relation — expresses re-
quired transitions, while the may relation — expresses
possible transitions. Note that, by definition, the may
relation includes the must transition.

An example MTS is shown in Fig. 2; the solid arcs are
must transitions, while the dashed arcs are may transitions.
Its states are {0,1,...,12}, with initial state 0, while
its set of actions contains 1€, 1$, sugar, no_sugar, etc.

40

\
\ cappuccino
\

.
cappuccino;

{pour_coffee}

pour_sugar
pour_sugar

pour_coffee| pour_tea pour_coffee
10
{pour_milk}
‘\g}{?tfaken pour_milk
i R S,
®2

{cup_taken}

ring_a_tone {cup_taken ring_a_tone}

Figure 2. MTS modelling a product family.

Each state is labelled with the set of actions that label
its outgoing (required and possible) transitions. Finally,
must transitions 2 ﬂg 4 and 3 ﬂg 9 imply that
delivering coffee is a must for every product of the family
represented by this MTS. In fact, this MTS models the
behavioural requirements given in Sect. II for our family
of coffee machines.

Note that the MTS in Fig. 2 also models the static re-
quirements concerning optional and mandatory features,
through the use of may and must transitions. However,
this MTS is not able to model three particular constraints
listed among the requirements:

o actions 1€ and 1$ are exclusive (alternative fea-

tures);

e a cappuccino is only offered by European products

(excludes relation between features);
« aringtone is rung whenever a cappuccino is delivered
(requires relation between features).
We have seen that deontic logics can express also these
characteristics, as represented by the Feature Diagram of
Fig. 1. In order to define a unique framework in which to
reason about behavioural as well as static requirements, in
the following section we work on the integration of deontic
operators within a temporal logic able to deal with MTSs.

VI. TOWARDS A DEONTIC LOGICAL FRAMEWORK FOR
PrRODUCT FAMILIES

In order to define a unique logical framework in which
to express both evolution in time and the variability of
a product family, we define the temporal logic DHML
based on the “Hennessy-Milner logic with Until” defined
in [9], [16], which has been augmented with the Deontic
possibility and obligation operators (in a style reminiscent
of the logic PDL proposed in [5], [6]) and path operators
from CTL [7]. DHML is a simpler variant of the logic
proposed in [2].

VaMoS 2010

A. DHML Logic: Syntax

DHML is a logic of state formulae (denoted by ¢),
in which a path quantifier prefixes an arbitrary path
formula (denoted by m). We assume a set of atomic
actions Act = {a, §,...} and a set of atomic propositions
AP = {p,q,...}. From these two sets more complicated
formulae can be built in the usual way, using the propo-
sitional and deontic operators described in Sect. IV or
actions as well as the Hennessy-Milner modal, CTL path,
and Until operators we describe next, together with their
intuitive meaning:

e [a] ¢: for all next states reachable with a, ¢ holds;

o E m: there exists a path on which 7 holds;

o Am: on each of the possible paths 7 holds;

e ¢ U ¢': in the current or a future state ¢’ holds, while

¢ holds until that state (but not necessarily in that

state).
Definition 3: The syntax of DHML is:
¢ u= tt|p|-p|dNg |[a]¢]| En|Ar |
P(a) | O(a)
T ou= U

As usual, ff abbreviates —tt, ¢ V ¢’ abbreviates —(—¢p A
—¢"), ¢ => ¢ abbreviates ~¢ V ¢', and («)¢ abbreviates
—[a]—¢: there exists a next state reachable with a in
which ¢ holds. Furthermore, F'¢ abbreviates (## U ¢):
there exists a future state in which ¢ holds; and G ¢
abbreviates = F (—¢): in any future state ¢ holds. Finally,
EF ¢ abbreviates E (1t U ¢): there exists a path on which
¢ holds in a future state; and AG ¢ abbreviates —E F—¢:
¢ holds in every state on every path.

An example of a well-formed formula in DHML is thus

[a(P(B) A (p = O(M))),

which states that after the execution of the action «, the
system is in a state where the action 3 is permitted (in
the sense of the may transition) and if the proposition p
holds then the action « is obligatory (in the sense of the
must transition).

B. DHML Logic: Semantics

The formal semantics of DHML is given below by
means of an interpretation over the MTSs defined in
Sect. V. To this purpose, we use a relation P C S x Act to
denote which actions are permitted in which states, with
the understanding that P(s,a) iff @ € L(s). We assume
that Act C AP, i.e. all actions are atomic propositions.

Definition 4 (Semantics): The satisfaction relation |= of
DHML over an MTS £ = (S, sg,Act, —g, —¢,AP U
Act, L) is defined as follows:

e s =1t always holds;

e sk=p iff pe L(s);

s = —¢ iff not s = ¢;
sEoNG iff sE¢and s ¢
s =)¢ iff s ¢ s, for some s’ € S, implies

s' = ¢;

41

pour_coffee}

{pour\sugar}
pour_sugar

pour_sugar
pour_coffee

{pour_milk}

pour_milk pour_coffee

ring_a_tone

{cup_taken} {ring_a_tone}

Figure 3. MTS of a European Coffee Machine.

e s = Erm iff there exists a path o starting in state s
such that o = ;

e s = Am iff o |= m for all paths o starting in state s;

e s P(a) iff P(s,«) holds;

e s =0(a) iff P(s,a) holds and 35’ : s 5 s';

o= [p U ¢'] iff there exists a state s;, for some

j > 0, on the path o such that for all states sj, with

j <k, si = ¢ while for all states s;, with 0 < ¢ < 7,

S; ': ¢

For the MTS in Fig. 2 we thus have, e.g., 0 = 1€ and
0 = [1€](O(sugar)) since 1 = (O(sugar)), which itself
follows from the fact that sugar € L(1) and 1 o0 2.

Note that notions of weak and strong permission are
introduced in [5], [6] (and used to define a notion of obli-
gation). The semantics of DHML can be extended in the
following way to include a notion P,, of weak permission:
s = Py(a) iff P(s,) holds and 3s’ : 5 254 5.

Finally, we note that DHML differs from the classical
modal p-calculus [16], since the modal box operator of
DHML is defined in terms of may transitions while the
modal p-calculus makes no distinction between must and
may transitions in its semantic domain. For the same
reason, also the weak permission operator cannot be
expressed in the modal p-calculus.

VII. USING DHML TO EXPRESS BEHAVIOURAL AND
STATIC REQUIREMENTS OF PRODUCT FAMILIES

We can now apply the DHML logic introduced in the
previous section to our running example. We do this
to illustrate the ability of DHML to express both static
constraints over the products of a family and constraints
over their behaviour.

DHML is able to complement the behavioural descrip-
tion of an MTS by expressing constraints over possible
products of a family, that is, the static requirements that
could not be expressed in the MTS:

VaMoS 2010

o actions 1€ and 1$ are exclusive (alternative fea-
tures):

(BEF <1$> true) = (AG ~P(1€))) A
(EF <1€> true) = (AG~P(18)))

e a cappuccino is only offered by European products
(excludes relation between features):

((EF <cappuccino> true) = (AG—P(1%))) A
((EF <1$> true) = (AG —P(cappuccino)))

« aringtone is rung whenever a cappuccino is delivered
(requires relation between features):

(EF <Cappuccino> true) => (AF O(ring_a_tone))

The above expressions have been obtained by merging
the static requirements represented by the pure deontic
formulae given in Sect.IV for these requirements, with
the behavioural relations among actions expressible by
the temporal part of the logic. It is worthwhile making
two remarks. First, note that we have used the same
characterization of the alternative feature as the one given
for the excludes feature.

Second, since requires is a static relation between
features it does not imply any ordering among the related
features, i.e. a coffee machine that rings a ringtone before
producing a cappuccino cannot be excluded as a product
of the family of coffee machines by verification of the
above formula. Indeed, the correct ordering of actions is
guaranteed by the MTS description of the family.

DHML is also able to express behavioural requirements
over possible products of a family as temporal logic
properties, such as:

1) It is possible to get a coffee with 1€:

[1€] EF <coffee> true

2) It is always possible to ask for sugar:
AF <sugar> true

3) It is not possible to get a beverage without inserting
a coin:

AG (—(coffee V tea \V cappuccino) U
(<1€> true V <1$> true))

It is important to note, however, that the logical concept
of possibility does not distinguish between the concepts
possibility for a user of the coffee machine to ask for
sugar and possibility for a product of the family to include,
among the other actions offered to the user, the action of
asking a cappuccino. To distinguish these two concepts
of possibility, we need to resort to the deontic operators
of DHML, using its capability to combine the expression
of the concepts of permission and obligation with that of
behavioural requirements.

42

VIII. USING DHML TO VERIFY BEHAVIOURAL AND
STATIC REQUIREMENTS OF PRODUCT FAMILIES

Another classic application of temporal logic is to
verify that a model of a system satisfies properties given
by logic formulae. Model checking is the most known
automatic technique for verifying a system’s correctness
properties [7]. Such verification is exhaustive, i.e. all
possible input combinations and states are taken into
account, and a counterexample is usually generated in case
a certain property does not hold. Correctness properties
reflect typical (un)desired behaviour of the system under
scrutiny. Formally, the problem of model checking can be
stated as follows: given a desired property, expressed as a
temporal logic formula ¢, and a structure M with initial
state 0, decide whether M, 0 = ¢, where = is the usual
satisfaction relation. If M is finite, model checking thus
reduces to a graph search.

We could use model checking to analyse the confor-
mance of members of a family of products with respect
to variability rules. To do so, we consider that a product
is formally represented by a MTS in which only must
(required) transitions appear. For instance, let us consider
the product represented by the coffee machine defined by
the MTS presented in Fig. 3. Such a MTS may have
been generated starting from an independent high-level
specification language such as, e.g., UML, and we may
want to check that it belongs to the family, by checking the
properties that we have defined to characterise the coffee
machine family. It is easy to check that all the properties
previously defined are satisfied by this MTS.

Moreover, if we take a few examples of properties
expressed in DHML that are a mix of behavioural and
deontic characteristics, then we are interested in checking
their validity over the MTS presented in Fig. 3. If they
turn out to be valid, then we can conclude that this
product satisfies all the static (features) and behavioural
requirements that the products derived from the family
of coffee machines should satisfy according to the list of
requirements given in Sect. II.

A first and simple example is the formula

EF O(coffee),

which must be read as it is possible that eventually the
product is obligated to deliver a coffee, i.e. there exists a
sequence of actions that leads to a state in which there is
a must transition labelled coffee. Verifying this formula on
this model of a product shows it is valid, because in state 2,
e.g., there is a must transition labelled coffee (2 coffee O4)
and coffee € L(2).

Note that the presence of a may transition labelled
cappuccino has no influence on the verification of this
formula: To be valid in a state s, the obligation O(coffee)
requires s to be labelled with coffee and the presence of
an outgoing must transition from s labelled with coffee.

It is immediate that this formula implies the validity of

EF P(coffee).

VaMoS 2010

Finally, since all paths at a certain point pass either state
coffee

2 or 3 and coffee € L(3) and 3 —— 7, even the formula
AF O(coffee)

is valid: always eventually a coffee must be delivered.

In general, to perform verifications of this kind, we
need a model checker able to check DHML formulae
over models described as MTSs, with possible constraints
expressed in DHML itself.

We are currently pursuing two different approaches to
DHML model checking:

e We can exploit the relations between MTSs and
L2TSs in order to reuse the UMC model-checking
engine [20]. UMC is an on-the-fly model checker
that was originally designed for the efficient veri-
fication of UCTL logic [4], an action- and state-
based branching-time temporal logic, over L2TSs.
The comparison of the expressiveness of UCTL and
DHML still has to be studied, which means that
enhancements to the model-checking engine to cover
DHML deontic operators could be needed as well.

« Several model checkers employ SAT-solvers to imple-
ment the so-called bounded model checking approach,
in order to efficiently address large state spaces.
Using the same SAT-based engine for solving both
the deontic issues related to the constraints on a
family (as seen before) and the behavioural issues
(employing bounded model-checking techniques) is
hence a way of pursuing the scalability of verification
of DHML properties to real-world cases, in which
state spaces tend to increase beyond the capability of
explicit model checkers.

Merging the two approaches with the aim of increased
scalability and usability would then be a further step in the
direction of the industrial application of the verification of
behavioural requirements of product families.

IX. CONCLUSIONS AND FUTURE WORK

In [2] we have shown how a deontic logic can express
the variability of a product family by showing the capa-
bility of a deontic logic formula to finitely characterise a
finite state MTS, a formal method proposed to capture the
behavioural variability of a product family. In this paper,
we have pursued this line of research. We have first shown
how feature models can be straightforwardly characterised
by means of a deontic logic. We have then defined DHML,
a novel deontic extension of a Hennessy-Milner and CTL-
like behavioural logic for product families that allows
both static constraints over the products of a family and
constraints over their behaviour to be expressed in a single
framework. The semantic domain of this logic has been
chosen such that a verification framework based on model-
checking techniques is available.

The added value of the DHML logic we have introduced
in this paper can thus be summarised as allowing the
possibility of reasoning, in a unique framework, also on
behavioural aspects of products of a family.

43

There are several aspects of our line of research that
require a deeper understanding:

o how to express dependencies of variation points;

« the identification of classes of properties that, proved
on family definitions, are preserved by all the prod-
ucts of the family;

« how quantitative properties can be evaluated, such as
the number of possible different products of a given
family;

e from a more pragmatic point of view, the study on
scalability to real problems, and how the approach
adapts to incremental family construction.

More importantly, it remains to study to what degree the
complexity of the proposed deontic logic and verification
framework can be hidden from the end user, or can be
made more user friendly, in order to support developers
in practice, since formal models such as MTSs are not
directly usable as modelling framework. Nowadays, UML
diagrams are often used as modelling paradigm and it
could be very interesting to be able to apply to them the
same formal reasoning we have presented here for MTSs
and the deontic logic. Indeed, recently model-checking
techniques for UML activity and state chart diagrams
have been developed [4], exploiting the branching-time
temporal logic UCTL. An extension of this framework by
including deontic operators could be applied to verify the
conformance of static and dynamic constraints of product
derivations. This would allow to go into the direction
of producing the family description itself already in a
UML-like fashion, hence towards a better usability and
acceptance within the industrial software product lines
community.

REFERENCES

[1] L. Aqvist, Deontic Logic. In D. Gabbay and F. Guenthner
(Eds.): Handbook of Philosophical Logic (2nd Edition),
Volume 8. Kluwer Academic, 2002, 147-264.

[2

—

P. Asirelli, M.H. ter Beek, A. Fantechi, and S. Gnesi,
Deontic Logics for Modeling Behavioural Variability. In
D. Benavides, A. Metzger, and U. Eisenecker (Eds.): Pro-
ceedings of the Third International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS’09), ICB
Research Report 29, Universitit Duisburg-Essen, 2009, 71—
76.

[3] D.S. Batory, Feature Models, Grammars, and Propositional
Formulas. In J.H. Obbink and K. Pohl (Eds.): Proceed-
ings Software Product Lines Conference (SPLC’05), LNCS
3714, 2005, 7-20.

[4] M.H. ter Beek, A. Fantechi, S. Gnesi and F. Mazzanti, An
action/state-based model-checking approach for the analy-
sis of communication protocols for Service-Oriented Appli-
cations. In S. Leue and P. Merino (Eds.): Proceedings For-
mal Methods for Industrial Critical Systems (FMICS’07),
LNCS 4916, Springer, 2008, 133-148.

[5] PE. Castro and T.S.E. Maibaum, A Complete and Compact
Propositional Deontic Logic. In C.B. Jones, Zh. Liu and
J. Woodcock (Eds.): International Colloquium Theoretical
Aspects of Computing (ICTAC’07), LNCS 4711, Springer,
2007, 109-123.

[6

—_

(7]

(8]

[9

—

(10]

(11]

(12]

(13]

VaMoS 2010

PF. Castro and T.S.E. Maibaum, A Tableaux System for
Deontic Action Logic. In R. van der Meyden and L. van
der Torre (Eds.): Proceedings Deontic Logic in Computer
Science (DEON’08), LNCS 5076, Springer, 2008, 34-48.

E.M Clarke, E.A. Emerson, and A.P. Sistla, Automatic Ver-
ification of Finite State Concurrent Systems using Temporal
Logic Specifications. ACM Transactions of Programming
Languages and Systems 8, 2 (1986), 244-263.

K. Czarnecki and U.W. Eisenecker. Generative Program-
ming: Methods, Tools, and Applications, Addison-Wesley,
2000.

R. De Nicola and FW. Vaandrager, Three Logics for
Branching Bisimulation. Journal of the ACM 42, 2 (1995),
458-487.

A. Fantechi and S. Gnesi, Formal Modeling for Product
Families Engineering. In Proceedings Software Product
Lines Conference (SPLC’08), IEEE, 2008, 193-202.

A. Fantechi, S. Gnesi, G. Lami and E. Nesti, A Method-
ology for the Derivation and Verification of Use Cases
for Product Lines. In R.L. Nord (Ed.): Proceedings Soft-
ware Product Lines Conference (SPLC’04), LNCS 3154,
Springer, 2004, 255-265.

D. Fischbein, S. Uchitel and V.A. Braberman, A Foundation
for Behavioural Conformance in Software Product Line
Architectures. In R.M. Hierons and H. Muccini (Eds.):
Proceedings Role of Software Architecture for Testing and
Analysis (ROSATEA’06), ACM, 2006, 39-48.

A. Gruler, M. Leucker and K.D. Scheidemann, Modeling
and Model Checking Software Product Lines. In G. Barthe
and E.S. de Boer (Eds.): Proceedings Formal Methods for
Open Object-Based Distributed Systems (FMOODS’08),
LNCS 5051, Springer, 2008, 113-131.

44

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

A. Gruler, M. Leucker and K.D. Scheidemann, Calcu-
lating and Modeling Common Parts of Software Product
Lines. In: Proceedings Software Product Lines Conference
(SPLC’08), IEEE, 2008, 203-212.

K. Kang, S. Choen, J. Hess, W. Novak and S. Peterson,
Feature Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report SEI-90-TR-21, Carnegie Mellon
University, Nov. 1990.

K.G. Larsen, Proof Systems for Satisfiability in Hennessy-
Milner Logic with Recursion, Theoretical Computer Sci-
ence 72, 2-3, (1990), 265-288

K.G. Larsen and B. Thomsen, Partial Specifications and
Compositional Verification, Theoretical Computer Science
88, 1, (1991), 15-32

K.G. Larsen, U. Nyman and A. Wasowski, Modal I/O
Automata for Interface and Product Line Theories. In R.
De Nicola (Ed.): Proceedings European Symposium on
Programming Languages and Systems (ESOP’07), LNCS
4421, Springer, 2007, 64-79.

M. Mannion and J. Camara, Theorem Proving for Product
Line Model Verification. In F. van der Linden (Ed.): Pro-
ceedings Software Product-Family Engineering (PFE’03),
LNCS 3014, Springer, 2004, 211-224.

F. Mazzanti, UMC model checker v3.6, April 2009. URL:
http://fmt.isti.cnr.it/umc

M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang and
S. Malik, Chaff: Engineering an Efficient SAT Solver.
In: Proceedings Design Automation Conference (DAC’01),
ACM, 2001, 530-535.

J.-J.Ch. Meyer and R.J. Wieringa (Eds.), Deontic Logic in
Computer Science: Normative System Specification, Wiley,
1994.

