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Helicases are in the spotlight of DNA metabolism and are

critical for DNA repair in all domains of life. At their biochemical

core, they bind and hydrolyze ATP, converting this energy to

translocate unidirectionally, with different strand polarities and

substrate binding specificities, along one strand of a nucleic

acid. In doing so, DNA and RNA helicases separate duplex

strands or remove nucleoprotein complexes, affecting DNA

repair and the architecture of replication forks. In this review,

we focus on recent advances on the roles and regulations of

DNA helicases in homologous recombination repair, a critical

pathway for mending damaged chromosomes and for ensuring

genome integrity.
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Introduction
Homologous recombination (HR) is critical for normal

development and for stable propagation of the newly

replicated genome. Defects in this process give rise to

debilitating disorders, including predisposition to can-

cers, premature aging, reduced fertility and other con-

genital and developmental defects [1,2]. Functionally,

HR is required to repair double strand breaks (DSBs),

which arise due to replication errors or as a result of

exogenous and endogenous DNA damage. In addition,

HR factors stabilize stalled replication forks and guide

filling of gaps arising during replication to the newly

synthesized chromatid to facilitate replication completion

[3]. The presence of daughter-strand gaps, rather than

stalled or collapsed forks or DSBs, has recently emerged

as the underlying feature of HR-defective cancers and of

their chemotherapeutic sensitivity [4]. HR is most of the
www.sciencedirect.com 
time error-free in outcome as the newly synthesized

chromatid or the homologous chromosome is used as

template for DNA repair [3]. However, in certain cases,

HR can cause genome rearrangement and instability, for

instance when induced at DNA repeat elements [5].

Importantly, formation, maturation and processing of

HR intermediates, induced by both breaks and stalled

replication forks, is intricately mediated or reversed by

DNA helicases, which thus play critical roles in genome

stability [6,7].

HR repair can be divided in several pathways, and the

underlying mechanisms include gene conversion, when

both sides of the break are homologous to the donor and

participate in repair, and break-induced replication, when

only one end of the break can find a homologous template

[5]. The latter pathway of break-induced replication,

recently discussed in a dedicated review [8], relates to

situations arising at eroded telomeres or when replication

forks collapse at nicked DNA. Another critical context for

HR repair is the one of gap-filling by template switching,

in which replication-associated DNA gaps ensured by

repriming downstream the lesion [9,10] are being

engaged by postreplicative repair coordinated by PCNA

polyubiquitylation and HR factors. In HR-mediated gap-

filling, the information from the newly synthesized sister

chromatid is used to bypass the DNA damage postrepli-

catively [3,11��]. In addition, HR factors play roles in

stabilizing and restarting stalled replication forks through

fork remodeling [12].

Several steps are common to HR repair pathways and

include: (1) resection of DSB ends or extension of the

gaps before gap-filling; (2) assembly of the Rad51 helical

filament known as the presynaptic complex; (3) homology

search and strand invasion with the formation of a D-loop

(Figure 1). In gene conversion, the D-loop is extended via

DNA synthesis after which it can be disassembled by

DNA helicases in a process known as synthesis-depen-

dent strand annealing (SDSA) leading to noncrossover

recombinants (Figure 2). Alternative to SDSA, D-loop

extension can be combined with second end capture,

leading to the formation of a double Holliday junction

(dHJ) (Figure 2) or a pseudo-dHJ intermediate if the

context is gap-filling. Subsequently, dHJs are either dis-

solved by a helicase-topoisomerase complex (Sgs1-Top3-

Rmi1, known as STR in budding yeast, and BLM-

TOPIIIa-RMI1-RMI2 in vertebrates) to noncrossovers

or resolved by structure-specific endonucleases, with the

potential of forming crossovers [13] (Figure 2). Impor-

tantly, most steps involved in HR repair rely on the action

of DNA helicases (Figures 1 and 2).
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Representation of critical steps in homologous recombination repair and regulatory DNA helicases. The model shows formation of the

recombinogenic Rad51 filament following resection of double strand breaks, and includes also DNA helicases Chl1 and Pif1 implicated in the

resection of stalled forks and daughter-strand gaps. The homology search or strand invasion step is facilitated by Rad54 and Rdh54 translocases

and can be reversed by several DNA helicases, some of which can also disrupt Rad51 filaments.
Basic functions of DNA helicase and how they affect

various or specific HR steps have been recently described

in a review [14]. Here, we focus on recent insights on how

DNA helicases modulate HR, how their activity is influ-

enced by posttranslational modifications and interaction

with other proteins, and how in certain cases the helicase

activity modulation is context or cell cycle specific.

Although we occasionally refer to recently gained insights

from other model systems, we largely focus on recent

work in budding yeast related to helicase-mediated repair

of DSBs and filling of daughter-strand gaps arising during

replication as a consequence of repriming.

Helicases facilitating DNA end resection
A common step in different HR pathways is the one of end

resection,which generatesextended30 singlestrandedDNA

tails (Figure 1). Briefly, the resection process is initiated by

the MRX complex (Mre11-Rad50-Xrs2 in budding yeast
Current Opinion in Genetics & Development 2021, 71:27–33 
and MRE11-RAD50-NBS1 in mammalian cells) and the

Sae2/CtIP nuclease, which together create an entry point for

the Exo1 exonuclease, the Sgs1/BLM helicase and the Dna2

nuclease that mediate long resection [15]. Several recent

findings showed that the activity of Sgs1 in end resection

converges with the one of Dna2 nuclease, requires RPA, is

facilitated by Top3 and Rmi1 interacting partners [16,17],

and is restrained by Rad52 [18�]. Moreover, several other

DNA helicases were recently shown to facilitate DNA

resection. Specifically, the budding yeast Chl1 helicase acts

at stalled replication forks jointly with Sgs1, in a process that

leads to large ssDNA gaps necessary for cohesin recruitment

[19�]. Upon genotoxic stress, cohesin recruitment to stalled

forks facilitates fork restart [20] and mediates HR-mediated

filling of daughter-strand gaps [9,21].

Longer gaps facilitate daughter-strand gap filling via HR

[22,23] but the role of long resection in HR-mediated gap-
www.sciencedirect.com
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Representation of homologous recombination repair following strand invasion and D-loop formation. D-loop extension can be followed by

synthesis dependent strand annealing or second end capture with the formation of double Holliday Junctions (dHJs). Negative and positive

regulators of the STR activity in D-loop disruption and dissolution of dHJs are depicted.
filling remains to be elucidated as, so far, out of the factors

implicated in DSB resection, only Exo1 was shown to

positively influence replication-associated recombination

[11��,23,24]. Exo1 was proposed to function complemen-

tarily with the Pif1 helicase at the different sides of the

daughter strand gap, Exo1 at the 50 side [24] and Pif1 at

the 30 end [23]. Paradoxically at the first sight, loss of Sgs1,

which is critical for long range resection of DSBs, does not

greatly affect the length of DNA gaps arising during HR-

mediated gap-filling [22] or at stalled and converging

forks [25��]. Rather, similarly with Top3 inactivation,

Sgs1 loss causes the accumulation of DNA junctions with

features of double Holliday Junctions [22] and, at stalled

replication forks at replication termination regions, also of

reversed forks [25��]. These results imply that the pri-

mary role of Sgs1 and the whole STR complex in the

context of replication-associated recombination is the one

of processing joint molecules. The less prominent role of
www.sciencedirect.com 
Sgs1 in extending daughter-strand gaps may be due to the

presence of Rad52, accumulating in postreplicative chro-

matin regions upon genotoxic stress [11��] and inhibiting

Sgs1-mediated resection [18�]. For daughter-strand gap

extension, Sgs1 loss may be compensated by other DNA

helicases, such as Pif1 [23], potentially also synergizing

with the Dna2 helicase/nuclease to achieve optimal resec-

tion and lagging strand DNA synthesis [26] (Figure 1).

Chl1 family of helicases is also important for end resec-

tion, as supported by its role at stalled replication forks

[19�], and by findings in mammalian cells, whereby its

orthologs, FANCJ and DDX11 helicases facilitate DSB

resection and RAD51 recruitment [27,28��] (Figure 1).

FANCJ promotes recruitment of CtIP [27], whereas

DDX11 mediates unwinding of secondary structures,

such as G quadruplex [29�,30�] to facilitate loading of

RPA, RAD51 and allow efficient HR repair [28��]. Along

DDX11, other DNA helicases, including FANCJ, BLM
Current Opinion in Genetics & Development 2021, 71:27–33
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and RTEL1 [31] mediate unwinding of G quadruplex

structures during DNA repair or at specific genomic

locations, such as telomeres.

RPA, RNA-DNA hybrids and Rad51 filament
nucleation on resected ends
Following DNA end resection, RPA is generally thought

to coat the exposed ssDNA until the Rad51 filament is

assembled and HR can proceed [32]. Besides forming a

barrier to the formation of the Rad51 nucleoprotein fila-

ment, RPA opens secondary structures in ssDNA [33], an

activity which in certain cases is supported by specific

DNA helicases, such as WRN in case of hairpins caused

by TA-dinucleotide repeats [34,35] and DDX11 and

possibly other helicases in case of G quadruplex struc-

tures [28��] (Figure 1). RPA binding to ssDNA limits

spurious interactions with other DNA filaments [36],

activates the checkpoint response, and facilitates resec-

tion by affecting the processivity and affinity of Sgs1 for

DNA [16,17]. Moreover, in cases of hyper-resection, a

Mec1-dependent branch of the checkpoint phosphory-

lates Sgs1 to suppress HR [37��] as discussed in more

detail in the following section.

In spite of these various roles of RPA summarized above,

recent work proposed that the protection of resected 30-
overhangs requires the transient formation of RNA-DNA

hybrids by RNA polymerase III, which is recruited to

DSBs by the MRN complex and is essential for HR repair

in mammalian cells [38]. Controversially, RNA-DNA

hybrids were also shown to inhibit resection and reduce

HR repair fidelity [39,40,41��]. RNase H2A deficiency,

causing accumulation of long RNA:DNA hybrids at DNA

ends, impairs overall resection, and extended RNA:DNA

hybrids inhibit both strand separation by BLM and resec-

tion by EXO1 [41��]. In the same vein, Sen1 helicase and

its ortholog Senataxin were shown to support HR and

DNA end-resection by facilitating resolution of DNA-

RNA hybrids [39,40]. Recent work revealed that RNA-

DNA hybrids and RNA:DNA triplexes represent a prom-

inent mode of RNA-mediated chromatin interactions that

can affect the torsional stress on chromosomes with

impact on HR [42]. Thus, more studies will be needed

to elucidate how the levels and distribution of RNA-DNA

hybrids affect HR at resected ends or in other biological

contexts.

The dynamic Rad51 nucleoprotein filaments
and D-loop structures
The Rad51 nucleofilament assembled on ssDNA is a

dynamic structure subjected to competing activities that

promote its stabilization or disassembly. Rad51 paralogues

promote the stability of the Rad51 filament and can restrain

its disassembly mediated by certain DNA helicases [2].

The budding yeast Srs2 helicase has been amply charac-

terized in this regard, but several other RecQ helicases,

including mammalian RECQL5 and budding yeast Sgs1
Current Opinion in Genetics & Development 2021, 71:27–33 
[43] possess Rad51 removal activity. Matching these bio-

chemical activities with the observed phenotypes of the

corresponding mutants, it emerges that this quality control

step optimizes the efficiency of HR and restricts Rad51

function to appropriate DNA substrates. This latter func-

tion is enforced and often coupled, as in the case of Srs2 and

Sgs1 [44�], with a second activity, the one of disrupting D-

loops formed by the invasion of the Rad51 filament into a

duplex DNA (Figure 1). The invasion leads to the transient

formation of a three-stranded intermediate that precedes

the formation of heteroduplex DNA composed of the

invading strand and the complementary strand of the

invaded molecule [5,14]. Several DNA helicases are now

known to promote D-loop disassembly. Recent studies that

used a proximity ligation assay to detect early chromosome

associations during DSB repair found evidence that this

signal was increased in sgs1, mph1 and srs2 mutants [44�].
The D-loop disruption activities could be grouped into two

main pathways, one defined by Srs2, the other by Mph1 and

the STR complex, without major overlap between them

[44�]. Similar with the situation in budding yeast, mamma-

lian RTEL1, FANCM, BLM and FANCJ can also disrupt

D-loop structures (reviewed in [5]). The main scopes of the

D-loop disruption activity are to prevent recombination to

ectopic substrates, counteract dHJ formation that can lead

to crossover (see Figure 2), and limit the extent of gene

conversion that can be mutagenic [5,45].

This important quality control step is likely to undergo

strict regulation. Recent work highlighted an intricate link

between the extent of resection and D-loop disruption

activities. The DNA damage checkpoint mediator Rad9,

ortholog of 53BP1 and limiting DSB resection and the

length of ssDNA filament needed for recombination,

was shown to promote annealing between the invading

filament and the donor template, thus preventing D-loop

disruption by STR and the Mph1 helicase [46�] (Figure 2).

In this manner, Rad9 favors long tract gene conversion

often associated with second-end capture and crossover

outcome. This final effect observed in rad9 mutants may

have another component, mediated by the activation of a

Mec1 checkpoint kinase cascade in rad9 cells [37��]. In the

context of hyper-resection, Mec1 signaling phosphorylates

the Sgs1 helicase, promoting an interaction between STR

and the DNA repair scaffold Dpb11 to discourage HR

repair [37��]. Although Sgs1 is able to disrupt Rad51-

ssDNA filaments [43], the newly uncovered Mec1-signal-

ing cascade facilitates STR stabilization at DNA lesions,

which is then capable of rejecting recombination inter-

mediates by disrupting D-loops [37��].

D-loop unwinding versus dHJ dissolution
While D-loop disassembly promotes noncrossover and

prevents dHJ formation, it can redirect events to different

recombination pathways as this early intermediate can

undergo additional rounds of invasion and disassembly.

On the other hand, when dHJ formation is entailed by
www.sciencedirect.com
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dissolution by the STR complex, this process not only

leads exclusively to noncrossover but also terminates the

recombination process (Figure 2). The Sgs1/BLM heli-

case is unique in its ability to function with Top3 to

facilitate dHJ dissolution, a process that is relevant not

only for DSB repair [47,48] but also for the removal of

recombination intermediates arising during DNA damage

tolerance and at converging forks during replication ter-

mination [22,25��]. Both D-loop disruption and dHJ dis-

solution activities reported for Sgs1 crucially rely on Top3

[49,50]. Very recently, several other regulators of Sgs1 and

STR emerged, in addition to the one mediated by Mec1-

mediated phosphorylation of Sgs1 discussed above [37��]
(Figure 2). One is related to phosphorylation of Sgs1 by S-

CDK and Cdc5 kinases [51�]. This phosphorylation

enhances the in vitro helicase activity of Sgs1, which

may cause increased processing of joint molecules. Inter-

estingly, subsequent Cdc5 hyperphosphorylation of Sgs1

may reduce its activity, while Cdc5 activates the Mus81-

Mms4 nuclease to resolve persistent intermediates before

chromosome segregation [51�] (Figure 2). The activity

window of Mus81-Mms4 is then additionally enforced via

its turnover in mitosis, a process relying on the protea-

somal degradation of SUMO-chains-modified and ubiqui-

tin-modified Mms4 in mitosis, to prevent the unsched-

uled action of the Mus81-Mms4 endonuclease action

during chromosome replication [52].

SUMOylation and the structural maintenance of chromo-

some complex, Smc5/6, are also important regulators of

the STR complex in HR repair and processing of endog-

enous DNA damage [25��,53] (Figure 2). Smc5/6

enhances STR joint molecule processing activity via

SUMOylation events mediated by the SUMO ligase

activity of its Mms21/Nse2 component [54,55]. In normal

conditions of replication, Smc5/6 facilitates the recruit-

ment of Top3 and STR to genomic regions prone to

accumulate torsional stress and recombination structures,

which subsequently they jointly process [25��]. In addi-

tion, Smc5/6 coordinates other DNA crossed-strand pro-

cessing enzymes to facilitate removal of joint molecules

[25��], one of which is likely the Mus81-Mms4 endonu-

clease (Figure 2). Thus, Smc5/6 and Cdc5 regulators may

potentially couple DNA recombination intermediate pro-

cessing with local genome compaction for chromosome

segregation.

Concluding remarks and open questions
The HR repair regulation by DNA helicases is an intri-

cate process with effects on genome alterations and

integrity, frequency of crossovers and chromosome struc-

ture. Some of the DNA helicases discussed here are

regulated via posttranslational modifications events that

affect their processivity or activity, binding affinity to

genomic regions, DNA substrates and interacting part-

ners. Future work will be needed to reveal whether

noncrossover and crossover pathways of HR repair are
www.sciencedirect.com 
sequentially activated in mitotically dividing cells and the

principles that orchestrate such concerted mechanisms.

The process of recombination repair is in crosstalk with

the DNA damage checkpoint, which affects the temporal

window of activation of cell cycle kinases, the function-

ality of DNA crossed-strand processing enzymes and

possibly chromosome structure. As we have only begun

to gain information on the latter processes, an important

topic for the future will be to reveal how these regulations

are interconnected to ensure the stable propagation of the

newly replicated genome.
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