GallLEO: asmulation tool for LEO satdllite
constell ations

Laurent Franck®, Francesco Potorti?

'ENST/TéSA, Tououse (FR), email : Laurent.Franck@enst.fr
2CNUCE-CNR, Pisa(IT), email : F.Potorti@cnucecnr.it

Abstract: We present Galileo, a simulator for the transmission of both connection-oriented and
connectionless traffic over a constellation of LEO/MEO (Low/Medium Earth Orbit) satellites. Its
scope is limited to the satellites and the stations accessing them, without any modelling of the
terrestrial network, but inside this scope the goal is to study the performance of satellite-based
communication networks from as many as possible points of view. Typical applications include
simulation of access techniques, routing policies, fault management. The simulator is written in
Java, and it makes use of dynamic loading to easily integrate user-written modules. A draft
manual is available, and a preliminary version of the program will be published by the end of
2000.

I ntroduction: the newborn and its family

The motivation kehind Galil eo's conception emerged duing an exchange of ideas among some
members of the European COST 253 Action’, a forum where reseachers from al around Europe
periodicdly med to address isaues related to LEO constellations of communication satellites. The
point made was that nore of the commercialy or fredy available simulation tools was reasonably
usable @ a generic simulation tod for LEOs. This sminal discussion later led to the initial design o
the Galileo architedure, which was the outcome of a wllaboration between two institutes where
reseachers had already had experiencesin developing spedal purpaose simulators.

The basic idea ad most of the mncepts regarding the conredion setup and the diannel accessfrom a
ground station were developed at CNUCE, an institute of CNR in Pisa (IT), as a consequence of the
inadequacy of the locdly developed Fracas [2] simulator for the study of LEO networks. The routing
concepts and the detail s of the achitedure that form the glue of the adual implementation d Galil eo
come from the experience of the LeoSim [4] simulator, developed originally at the Brussels University
(BE), and currently at ENST in Toulouse (FR), and the initial spedfications of SimToc [3], designed
at CNUCE. Interestingly, while having very different scopes and ohjedives, al of these simulators
took an oljed oriented approadh to implementation, principally as a mean to ease extensibility.
Galileo aims to be a genera purpose, customisable todl, fredy available for the whoe satellite
community.

Fraca (FRAmMed Channel Access Simulator) is esentially a command line driven emulator whaose
time advancesin fixed length steps, usually of the same length of a frame of the protocol under study.
While very fast and very well suited to the study of access protocols for GEO systems, it cannad be
adapted to LEO systems. Its heritage consists of the wncepts behind statistics colledion and
manipulation.

LeoSim, the most important of Galil eo's ancestors, is an event-driven, continuows time simulator
accessed througha graphicd interface It has been developed at ENST (FR) in order to study link state
routing algorithms for LEO satellite constellations. LeoSim provides gatistics on the number of cdl
requests, the cdl block probability, and the @mst introduced by maintaining the link state database;

" Thiswork was partially suppated by the CNR (Italian National Reseach Courcil) under the 5%
Multi media Programme.

1 COST stands for COoperationin thefield of Scientific and Technicd reseach, see
<URL:http://www.eeng.brad.acuk/Reseach/cost253> for information onCOST 253

shortest path routing, handover management and elaborate routing signalling are implemented. Its
design approach and its core simulation engine have been transported into Galil eo.

From SimToc, the other ancestor from CNUCE, Galil eo took the global architedure, the ideaof the
up-down link between the grourd station and a satdllit e of the anstell ation, and the way a connedion
is st up and modified. SimToc has never gore past the design stage.

Consim [1] is a simulator developed at CSELT (IT) for evaluating the performances of constell ations
of communication satellit es aff ected by diff erent types of fail ures. Consim will be integrated by results
into Galil eo. By " integration by results " we mean that the two simulators are kept separate, and the
results of Consim are used by Galileo. In pradice, the list of failure events is provided during the
simulation initialisation phase and then used to feed Galil eo's smulator engine in order to trigger the
right fault managers at the gopropriate time.

Architecture

Figure 1 highlights the threelayer architedure of Galil eo.

Custowm modules
Core modules
engine

[Ground Space [
segment segment
schedUMr

Slmulatmn
SOlrce
i agenca

Graphical Graphical
irltr:]:lracti\re |r|:tr:]:lra.ctwe
constellation F]
tualder ,' analysls

Cnrrﬁglrratmn RE!I.I‘“!
Ej? CONSIM Eﬂ‘

Figurel: Galileo architecture.

The first layer (Smulation engine) defines bath the structure of components, which are the blocks
from which Galil eo is built, and the way they behave and interad. The comporents dynamics is the
job d the scheduler that runs the mmporents and defines a message passing structure for inter-
comporent communicdion. Thus the first layer constitutes a generic infrastructure for a discrete-
event, message-passng simulator.

The second layer (Core modules) implements the network model of Galil eo, by defining the scope of
Galil eo passhiliti es through the definition o a set of classs. These dases (cdled templates?) also
spedfy the rules for using the network model and creding custom comporents. This layer is not
customisable per se, and in fad is the core of Galileo's functionalities. Experimenters needing to
implement their own set of purposefully made modues soud be well aajuainted with the network
model.

The third layer (Custom modules) is the set of modues which are dynamicdly loaded from alibrary,
including bah standard and custom components. Standard comporents are comporents sipped with
Galil eo. Custom components are developed (posshbly based on standard comporents) by the user of
Galileo in order to tailor the simulator to its needs. This layer is where ad-hoc built modues are
integrated in Galil eo. Examples include modues defining the behaviour of acual routing algorithms,
channdl al ocaion methods, traffic generators, cdl admisson control palicies, etcetera.

2 They are unrelated to C++ templ ates.

To summarise the relation between the second and third layer, layer two defines what are the genera
charaderistics of, say, a channel all ocaion method (in terms of what are the provided services) while
layer threedefines adual channel all ocaion methodks.

Components as building blocks

Gadlil eo is extremely moduar, because it aims at providing a simulation framework where one plugsin
alocdly developed, e.g., routing algorithm, and evaluates the resulting behaviour. The basic modueis
cdled a comporent, which is a dass of Java objeds that provide the aility to be dugicaed, and
methodks to initialise and start themselves after creaion. Initialisation may be based onthe presence of
other comporents in the system, and may make use of a dedicated sedion in the initialisation file,
whose sedions can be structured and rested to arbitrary depths. Sarting a comporent is dore after
initialisation. This usually makes ense only for entities (modues with a speda processng
cgpability), which are described below. Galil eo comes with a small colledion d standard comporents,
which are meant to be used as-is or replaced with custom ones. Hopefully, Galil eo's library of standard
comporents will grow with time.

Standard and custom comporents are built upon templates, which are Java abstrad classes used to
provide aa API for the development of comporents. Providing an APl has some shortcomings with
resped to providing an extension languege, however, using an APl is a far easier and more flexible
approad, and certainly more dficient in terms of resources usage.

After initiaisation, the comporent can either live as a passve dement, whose methods are cdled by
the system or from other comporents, or behave & an independent pieceof code. This latter speda
kind d comporent is cdled an entity. Entities run concurrently with the rest of the system and aher
entities, by using the communication and scheduling fadliti es provided by the ssimulation engine. The
Galil eo network model described later istherefore a oll edion of inter-operating componrents.

The simulation engine

The smulation engine ames from LeoSim, and includes the scheduler and the agenda. Any modue
inside Galileo can generate an event by cdling the scheduleAction method d the scheduler,
which credes a pending event. The arguments of this method are the delay after which the event
shoud be triggered, arepea court, and the adion triggered by the event. The scheduler organises the
pending events in a structure cdled an agenda, which is conceptually a queue where the events are
kept sorted acaording to the time when they shoud be triggered. The exad implementation d the
agenda is customisable, to allow experimentation, essy upgrading, and platform-spedfic
optimisations. Currently, a smple-minded delta list is implemented, together with a more
sophisticated calendar queue implementation.

The adion triggered by an event is defined by a selector and alist of arguments to it. A seledor is an
entry point in a modue, that is, a method which possbly accets arguments. When an event is
triggered, the asociated seledor is cdled, and therelative list of argumentsis passed to it. This Smple
message passing mechanism alows asynchronows communicaion bketween comporents. More
predsely, any pieceof code inside Galil eo can generate an event, and thus snd a message, but only
entiti es can have seledors, and thus be awakened by the scheduler and receve a message.

Since it is anticipated that Galil eo will go distributed in the future, the scheduler is customisable, to
allow experimentation and locd customisations of distributed scheduling criteria. Currently, a simple
serial scheduler is avail able, which is the normally used ore, and a parall el scheduler is implemented,
which is useful for multi processor madines.

The network model

The seaondlayer of the architedure depicted in Figure 1 defines the basic cgabiliti es of the simulator
as far as the moddling o the ommunicdion retwork is concerned. The relevant modues are the
Source, Ground and Space segments. Eadh is a @lledion d comporents and templates. Custom and
standard comporents are instantiation d templates, and accupy the third layer of the architedure.

Galileo will initially ship with a small set of standard components, and a manual describing the AP
for building custom ones.

Assumptions and definitions

Many components in Galileo are meant to describe real objects in the satellite network. We describe
the main concepts used when describing the network, and when there is a direct correspondence
between a concept and a component, we will indicate the name of the component in mono-spaced face
between brackets, likein[Satellite].

traffic generators
Figure 2: Names of some objectsused in the ssmulator.

We define a cell as the area of the earth illuminated by a satellite spot beam. A footprint is the whole
coverage area of asatellite [Satellite], i.e. it isthe sum of the areas covered by its spot beams. An
overlap area is the area in which a ground station [Station] (i.e. a single subscriber or a
concentrator) can receive a signal with an acceptable power level from more than one adjacent spot
beams. A UDL (Up-Down link) [udl] is the aggregation of all spot beams pertaining to the same
footprint; it has a fixed capacity, and is unidirectional. A beam [Beam] is the communication medium
between a satellite and a spot on the ground. A beam has a variable capacity which cannot exceed the
capacity of the UDL the beam belongs to. A node [Node] of the network is any station or any satellite.
Satellites have multi-beam antennas for up-link reception and down-link transmission, and are
connected to each neighbouring satellite by means of an IS (inter-satellite link) [Is1] which a
unidirectional link.

A connection [Connection] is a virtua communication path between a source and a destination,
which are normaly different stations. A connection can be created, modified by changing its
characteristics [Resources], and torn down. It is assumed to be full-duplex, composed by a forward
and areturn channel [UniConnection], where the forward channel isintended to be from source to
destination, and the return channel from destination to source.

The procedure supporting the transition from one connection state to another is implemented by a call
signalling protocol [CallSignaling].

Call signalling

A call generator [CallGenerator] defines when a connection starts, between which endpoints,
and how and when it is modified and torn down. It can be associated with a packet generator, which
produces the packet traffic running over a connection, for simulating connection-oriented traffic. It is
envisaged that Galileo will be able to support also traffic generators that create connectionless traffic.
In the following we will mainly consider connections and connection-oriented traffic.

When a connection is created, the station selects the first and last hop satellites from the constellation
[SstationUdlRouting]. @ The dation then peforms call admission control
[StationQoSManager] to determine whether there are enough resources [StationResources]
to support the connection. Then the connection request is passed to the first satellite which computes
the route [Is1Routing] between the first and last satellites. If there is such aroute, al satellites on

the path perform call admission control [SatelliteQoSManager], [SatelliteResources].
The same procedure takes place in the destination station. If it turns out that the connection can be
routed through that path, resources are actualy alocated ([StationQoSManager],
[satelliteQoSManager]).

In order to simulate connections coming from a call concentrator (aggregated phone calls), the number
of channels of the connection is not fixed after a connection has been set up, but can change during the
lifetime of the connection. For example, a concentrator may set up a single connection for al the
phone calls it handles, and may simulate both new phone calls and old closed phone calls by varying
the number of channels used by the single connection as set up at start time. In other words, a number
of n phone cals from station i to station j is simulated by the generation, in station i, of a unique
connection that requests n channels. The modification of a connection requirements is performed in a
similar way to the connection setup procedure.

A handover (or hand-off) occurs when either a UDL connecting a satellite to a ground station is cut
off, or when a beam change occurs (inside the same UDL), or when an ISL is cut off. All connections
passing through the affected link must be appropriately processed (rerouted or torn down)
[ConnectionChangeMonitor].

At the current time, the limitations of the call connections are: only point-to-point connections are
considered; a connection cannot be split on more than one path (however, forward and return channels
are not necessarily on the same path); no rerouting of connections happens as a consequence of
growing or shrinking a connection (aggregate connections case); and no partial rerouting of
connectionsis possible inside the constellation.

Routing

Routing policies are one of the main aspects that will be studied using Galileo. As mentioned in the
last Subsection, routing is split into UDL routing and ISL routing. Up-Link (UL) routing is the process
by which the source ground station selects the source satellite used to forward the packets of the
connection, while Down-Link (DL) routing is the process by which the destination ground station
selects the destination satellite from which the packets of the connection will arrive. Given a source
satellite and a destination satellite, as provided by UDL routing, ISL routing computes the (or at least
one) optimal path between these two satellites. ISL routing includes a signalling scheme
[satelliteLinkStateManager] to distribute and gather routing information
[RoutingInformation] to/from the other satellites.

Some per for mance aspects

Asit is often the case with broadband network simulations, the time needed to simulate a short period
of time may be in the order of days; hence, the concern about performance enhancement. We will go
briefly through considerations about simulating the network packet flows, distributing the simulation,
programming optimisations and the selection of an appropriate devel opment tool.

Simulating the actual packet flow in a network simulator provides valuable insight on the network
behaviour. Because of the potential huge number of traffic sources, and because of the bandwidth
ranges involved (up to hundreds of Mbit/s) it often results in excessive simulation times. Two
solutions are avail able to overcome this problem.

The first solution consists in using analytical models to model approximatively the packet behaviour.
The second solution is to implement distributed or parallel simulation in order to multiplicate the
available processing power. Galileo plans to support both solutions. Implementing distributed
simulation raises two issues. The first one is how to partition the processing space into parallel
processing entities. The second one is implementation related and concerns the communication means
that are used among processing entities. In order to choose a suitable partition, each possible solution
must be evaluated taking into account the amount of data that has to be exchanged between the various
distributed entities, the balance of the computation load on the different entities, the time dependencies
between the entities and the available resources.

Once a distribution scheme has been established, the communication means must be chosen. A survey
of the different solutions available as well as of their performance has still to be performed.

In a sequential or distributed simulation environment, performance improvements can be atieved at
the implementation a system level. Enhancements are dther related to the algorithms and data
structures or to the development tods. All algorithms and deta structures which are likely to be used
often duing the simulation must be caefully chosen. As far as data structures are concerned, Java
provides a library of core dasses auch as linked list, dictionaries or hash tables. When Java 1.1 was
released, isaues had been raised regarding excesgve dlocations, inefficient synchronisation a poa
implementation in the wre dasses. Fortunately, these isaues are aldressed as time goes on. Additional
concens are dso raised by the nature of Java memory management which uses a garbage wlledor.
Garbage alledion makes it convenient to write code lessvulnerable to memory related bugs, however
this feaure requires to favour objed reuse in order to minimise the number of allocaions as well as
the number of objeds eligible for garbage wlledion.

Compiling a Java program produces an intermediate language cdled byte-code which in turn is
interpreted by a Java Virtua Madine (JVM). The byte-code interpretation phase is a drawbadk from a
performance standpdnt. The first solutionis to trandate diredly a Java sourcein native macine cde.
An intermediate solutionisto use aJvM with a Just-in-Time (JIT) compil er that trand ates byte-code
to native mde upon classloading. Some measurements made with LeoSim showed that the increase in
exeaution speal approaches 90%.

Galileo project management

Gdlileo is a medium-sized projed with several remotely locaed teans participating. An effedive
mean to exchange information is mandatory. Galil eo's projed life cycle is following a spira approacd
based ona cre simulator incrementally enhanced. The analysis and design rely heavily on UML
diagrams and internal guidelines. All deliverables are available in HTML from a Web server.
Similarly, the source @deis dored in aWeb CV S repasitory. Currently, the primary development and
analysis platform is Linux.

Project status

Galileo was initiated in September 1998 Six Short Term Scientific Misgons were organised and
funded under the Cost253 Action budgt. Two additional missons were funded by the CNUCE-CNR.
Gadlileo progresses mostly during these missons snce the people involved (approximatively 2.5
persons from CNUCE-CNR (IT), ENST (FR) and Public University of Navarra (ES)) have their
regular adivities to carry on. Currently, an initial version of Gdlileo is available with simple but
operational comporents. The dfort is now put on groviding Galil eo with redistic comporents as well
as stting upatestbed.

Conclusions

Considering the questions gill open in the field of LEO constell ations, there is an urgent need for a
simulation tod that would provide means to study these questions. Galil eo is meant to be thistoal and
will, as afirst step, be dmed at the study d constell ation accesstedhniques, routing algorithms, and
fault management.

References

[1] M. Annoni, S. Bizzari and F. Faggi. Performance evaluation d satellit e constell ations : the CONSIM (tm)
simulator concept and architecture. In Springer-Verlag, editor, Third European Workshop onmobil &/personal
Satcoms (EMPS98), Veneza (IT), Sept 1998.

[2] N. Celandroni, E. Ferro and F. Potorti. A smulation tool to validate and compare satellite TDMA aacess
schemes. Telecommunications Systems, 12(1) :21-37,1999.

[3] E. Ferro. Propaosal for asimulator architecture. Cost253 Temporary Document 10, CNUCE-CNR (I1T), 1998.
[4] L. Franck. LeoSim : arouting simulator for LEOs. Cost253 Temporary Document 15, Brussels University
(BE), 1998.

