
GaliLEO: a simulation tool for LEO satell ite
constellations*

Laurent Franck1, Francesco Potor tì2

1 ENST/TéSA, Toulouse (FR), email : Laurent.Franck@enst.fr
2 CNUCE-CNR, Pisa (IT), email : F.Potorti@cnuce.cnr.it

Abstract: We present Galileo, a simulator for the transmission of both connection-oriented and
connectionless traffic over a constellation of LEO/MEO (Low/Medium Earth Orbit) satellites. Its
scope is limited to the satellites and the stations accessing them, without any modelling of the
terrestrial network, but inside this scope the goal is to study the performance of satellite-based
communication networks from as many as possible points of view. Typical applications include
simulation of access techniques, routing policies, fault management. The simulator is written in
Java, and it makes use of dynamic loading to easily integrate user-written modules. A draft
manual is available, and a preliminary version of the program will be published by the end of
2000.

Introduction: the newborn and its family

The motivation behind Galil eo's conception emerged during an exchange of ideas among some
members of the European COST 253 Action1, a forum where researchers from all around Europe
periodically meet to address issues related to LEO constellations of communication satellit es. The
point made was that none of the commercially or freely available simulation tools was reasonably
usable as a generic simulation tool for LEOs. This seminal discussion later led to the initial design of
the Galil eo architecture, which was the outcome of a collaboration between two institutes where
researchers had already had experiences in developing special purpose simulators.
The basic idea and most of the concepts regarding the connection setup and the channel access from a
ground station were developed at CNUCE, an institute of CNR in Pisa (IT), as a consequence of the
inadequacy of the locally developed Fracas [2] simulator for the study of LEO networks. The routing
concepts and the details of the architecture that form the glue of the actual implementation of Galil eo
come from the experience of the LeoSim [4] simulator, developed originally at the Brussels University
(BE), and currently at ENST in Toulouse (FR), and the initial specifications of SimToc [3], designed
at CNUCE. Interestingly, while having very different scopes and objectives, all of these simulators
took an object oriented approach to implementation, principally as a mean to ease extensibili ty.
Galil eo aims to be a general purpose, customisable tool, freely available for the whole satellit e
community.
Fracas (FRAmed Channel Access Simulator) is essentially a command line driven emulator whose
time advances in fixed length steps, usually of the same length of a frame of the protocol under study.
While very fast and very well suited to the study of access protocols for GEO systems, it cannot be
adapted to LEO systems. Its heritage consists of the concepts behind statistics collection and
manipulation.
LeoSim, the most important of Galil eo's ancestors, is an event-driven, continuous time simulator
accessed through a graphical interface. It has been developed at ENST (FR) in order to study link state
routing algorithms for LEO satellit e constellations. LeoSim provides statistics on the number of call
requests, the call block probabili ty, and the cost introduced by maintaining the link state database;

* This work was partially supported by the CNR (Italian National Research Council) under the 5%
Multimedia Programme.
1 COST stands for COoperation in the field of Scientific and Technical research, see
<URL:http://www.eeng.brad.ac.uk/Research/cost253/> for information on COST 253.

shortest path routing, handover management and elaborate routing signalli ng are implemented. Its
design approach and its core simulation engine have been transported into Galil eo.
From SimToc, the other ancestor from CNUCE, Galil eo took the global architecture, the idea of the
up-down link between the ground station and a satellit e of the constellation, and the way a connection
is set up and modified. SimToc has never gone past the design stage.
Consim [1] is a simulator developed at CSELT (IT) for evaluating the performances of constellations
of communication satellit es affected by different types of failures. Consim will be integrated by results
into Galil eo. By " integration by results " we mean that the two simulators are kept separate, and the
results of Consim are used by Galileo. In practice, the list of failure events is provided during the
simulation initialisation phase and then used to feed Galil eo's simulator engine in order to trigger the
right fault managers at the appropriate time.

Architecture

Figure 1 highlights the three-layer architecture of Galil eo.

Figure 1 : Galileo architecture.

The first layer (Simulation engine) defines both the structure of components, which are the blocks
from which Galil eo is built , and the way they behave and interact. The components' dynamics is the
job of the scheduler that runs the components and defines a message passing structure for inter-
component communication. Thus the first layer constitutes a generic infrastructure for a discrete-
event, message-passing simulator.
The second layer (Core modules) implements the network model of Galil eo, by defining the scope of
Galil eo possibiliti es through the definition of a set of classes. These classes (called templates2) also
specify the rules for using the network model and creating custom components. This layer is not
customisable per se, and in fact is the core of Galil eo's functionaliti es. Experimenters needing to
implement their own set of purposefully made modules should be well acquainted with the network
model.
The third layer (Custom modules) is the set of modules which are dynamically loaded from a library,
including both standard and custom components. Standard components are components shipped with
Galil eo. Custom components are developed (possibly based on standard components) by the user of
Galil eo in order to tailor the simulator to its needs. This layer is where ad-hoc buil t modules are
integrated in Galil eo. Examples include modules defining the behaviour of actual routing algorithms,
channel allocation methods, traff ic generators, call admission control policies, etcetera.

2 They are unrelated to C++ templates.

To summarise the relation between the second and third layer, layer two defines what are the general
characteristics of, say, a channel allocation method (in terms of what are the provided services) while
layer three defines actual channel allocation methods.

Components as building blocks

Galil eo is extremely modular, because it aims at providing a simulation framework where one plugs in
a locally developed, e.g., routing algorithm, and evaluates the resulting behaviour. The basic module is
called a component, which is a class of Java objects that provide the abili ty to be duplicated, and
methods to initialise and start themselves after creation. Initialisation may be based on the presence of
other components in the system, and may make use of a dedicated section in the initialisation file,
whose sections can be structured and nested to arbitrary depths. Starting a component is done after
initialisation. This usually makes sense only for entities (modules with a special processing
capabili ty), which are described below. Galil eo comes with a small collection of standard components,
which are meant to be used as-is or replaced with custom ones. Hopefully, Galil eo's library of standard
components will grow with time.
Standard and custom components are built upon templates, which are Java abstract classes used to
provide an API for the development of components. Providing an API has some shortcomings with
respect to providing an extension language, however, using an API is a far easier and more flexible
approach, and certainly more eff icient in terms of resources usage.
After initialisation, the component can either live as a passive element, whose methods are called by
the system or from other components, or behave as an independent piece of code. This latter special
kind of component is called an entity. Entities run concurrently with the rest of the system and other
entities, by using the communication and scheduling faciliti es provided by the simulation engine. The
Galil eo network model described later is therefore a collection of inter-operating components.

The simulation engine

The simulation engine comes from LeoSim, and includes the scheduler and the agenda. Any module
inside Galil eo can generate an event by calli ng the VFKHGXOH$FWLRQ method of the scheduler,
which creates a pending event. The arguments of this method are the delay after which the event
should be triggered, a repeat count, and the action triggered by the event. The scheduler organises the
pending events in a structure called an agenda, which is conceptually a queue where the events are
kept sorted according to the time when they should be triggered. The exact implementation of the
agenda is customisable, to allow experimentation, easy upgrading, and platform-specific
optimisations. Currently, a simple-minded delta list is implemented, together with a more
sophisticated calendar queue implementation.
The action triggered by an event is defined by a selector and a list of arguments to it. A selector is an
entry point in a module, that is, a method which possibly accepts arguments. When an event is
triggered, the associated selector is called, and the relative list of arguments is passed to it. This simple
message passing mechanism allows asynchronous communication between components. More
precisely, any piece of code inside Galil eo can generate an event, and thus send a message, but only
entities can have selectors, and thus be awakened by the scheduler and receive a message.
Since it is anticipated that Galil eo will go distributed in the future, the scheduler is customisable, to
allow experimentation and local customisations of distributed scheduling criteria. Currently, a simple
serial scheduler is available, which is the normally used one, and a parallel scheduler is implemented,
which is useful for multiprocessor machines.

The network model

The second layer of the architecture depicted in Figure 1 defines the basic capabiliti es of the simulator
as far as the modelli ng of the communication network is concerned. The relevant modules are the
Source, Ground and Space segments. Each is a collection of components and templates. Custom and
standard components are instantiation of templates, and occupy the third layer of the architecture.

Galileo will initially ship with a small set of standard components, and a manual describing the API
for building custom ones.

Assumptions and definitions

Many components in Galileo are meant to describe real objects in the satellite network. We describe
the main concepts used when describing the network, and when there is a direct correspondence
between a concept and a component, we will indicate the name of the component in mono-spaced face
between brackets, like in [6DWHOOLWH].

Figure 2 : Names of some objects used in the simulator.

We define a cell as the area of the earth illuminated by a satellite spot beam. A footprint is the whole
coverage area of a satellite [6DWHOOLWH], i.e. it is the sum of the areas covered by its spot beams. An
overlap area is the area in which a ground station [6WDWLRQ] (i.e. a single subscriber or a
concentrator) can receive a signal with an acceptable power level from more than one adjacent spot
beams. A UDL (Up-Down link) [8GO] is the aggregation of all spot beams pertaining to the same
footprint; it has a fixed capacity, and is unidirectional. A beam [%HDP] is the communication medium
between a satellite and a spot on the ground. A beam has a variable capacity which cannot exceed the
capacity of the UDL the beam belongs to. A node [1RGH] of the network is any station or any satellite.
Satellites have multi-beam antennas for up-link reception and down-link transmission, and are
connected to each neighbouring satellite by means of an ISL (inter-satellite link) [,VO] which a
unidirectional link.
A connection [&RQQHFWLRQ] is a virtual communication path between a source and a destination,
which are normally different stations. A connection can be created, modified by changing its
characteristics [5HVRXUFHV], and torn down. It is assumed to be full-duplex, composed by a forward
and a return channel [8QL&RQQHFWLRQ], where the forward channel is intended to be from source to
destination, and the return channel from destination to source.
The procedure supporting the transition from one connection state to another is implemented by a call
signalling protocol [&DOO6LJQDOLQJ].

Call signalling

A call generator [&DOO*HQHUDWRU] defines when a connection starts, between which endpoints,
and how and when it is modified and torn down. It can be associated with a packet generator, which
produces the packet traffic running over a connection, for simulating connection-oriented traffic. It is
envisaged that Galileo will be able to support also traffic generators that create connectionless traffic.
In the following we will mainly consider connections and connection-oriented traffic.
When a connection is created, the station selects the first and last hop satellites from the constellation
[6WDWLRQ8GO5RXWLQJ]. The station then performs call admission control
[6WDWLRQ4R60DQDJHU] to determine whether there are enough resources [6WDWLRQ5HVRXUFHV]
to support the connection. Then the connection request is passed to the first satellite which computes
the route [,VO5RXWLQJ] between the first and last satellites. If there is such a route, all satellites on

the path perform call admission control [6DWHOOLWH4R60DQDJHU], [6DWHOOLWH5HVRXUFHV].
The same procedure takes place in the destination station. If it turns out that the connection can be
routed through that path, resources are actually allocated ([6WDWLRQ4R60DQDJHU],
[6DWHOOLWH4R60DQDJHU]).
In order to simulate connections coming from a call concentrator (aggregated phone calls), the number
of channels of the connection is not fixed after a connection has been set up, but can change during the
lifetime of the connection. For example, a concentrator may set up a single connection for all the
phone calls it handles, and may simulate both new phone calls and old closed phone calls by varying
the number of channels used by the single connection as set up at start time. In other words, a number
of n phone calls from station i to station j is simulated by the generation, in station i, of a unique
connection that requests n channels. The modification of a connection requirements is performed in a
similar way to the connection setup procedure.
A handover (or hand-off) occurs when either a UDL connecting a satellite to a ground station is cut
off, or when a beam change occurs (inside the same UDL), or when an ISL is cut off. All connections
passing through the affected link must be appropriately processed (rerouted or torn down)
[&RQQHFWLRQ&KDQJH0RQLWRU].
At the current time, the limitations of the call connections are: only point-to-point connections are
considered; a connection cannot be split on more than one path (however, forward and return channels
are not necessarily on the same path); no rerouting of connections happens as a consequence of
growing or shrinking a connection (aggregate connections case); and no partial rerouting of
connections is possible inside the constellation.

Routing

Routing policies are one of the main aspects that will be studied using Galileo. As mentioned in the
last Subsection, routing is split into UDL routing and ISL routing. Up-Link (UL) routing is the process
by which the source ground station selects the source satellite used to forward the packets of the
connection, while Down-Link (DL) routing is the process by which the destination ground station
selects the destination satellite from which the packets of the connection will arrive. Given a source
satellite and a destination satellite, as provided by UDL routing, ISL routing computes the (or at least
one) optimal path between these two satellites. ISL routing includes a signalling scheme
[6DWHOOLWH/LQN6WDWH0DQDJHU] to distribute and gather routing information
[5RXWLQJ,QIRUPDWLRQ] to/from the other satellites.

Some performance aspects

As it is often the case with broadband network simulations, the time needed to simulate a short period
of time may be in the order of days; hence, the concern about performance enhancement. We will go
briefly through considerations about simulating the network packet flows, distributing the simulation,
programming optimisations and the selection of an appropriate development tool.
Simulating the actual packet flow in a network simulator provides valuable insight on the network
behaviour. Because of the potential huge number of traffic sources, and because of the bandwidth
ranges involved (up to hundreds of Mbit/s) it often results in excessive simulation times. Two
solutions are available to overcome this problem.
The first solution consists in using analytical models to model approximatively the packet behaviour.
The second solution is to implement distributed or parallel simulation in order to multiplicate the
available processing power. Galileo plans to support both solutions. Implementing distributed
simulation raises two issues. The first one is how to partition the processing space into parallel
processing entities. The second one is implementation related and concerns the communication means
that are used among processing entities. In order to choose a suitable partition, each possible solution
must be evaluated taking into account the amount of data that has to be exchanged between the various
distributed entities, the balance of the computation load on the different entities, the time dependencies
between the entities and the available resources.
Once a distribution scheme has been established, the communication means must be chosen. A survey
of the different solutions available as well as of their performance has still to be performed.

In a sequential or distributed simulation environment, performance improvements can be achieved at
the implementation or system level. Enhancements are either related to the algorithms and data
structures or to the development tools. All algorithms and data structures which are likely to be used
often during the simulation must be carefully chosen. As far as data structures are concerned, Java
provides a library of core classes such as linked list, dictionaries or hash tables. When Java 1.1 was
released, issues had been raised regarding excessive allocations, ineff icient synchronisation or poor
implementation in the core classes. Fortunately, these issues are addressed as time goes on. Additional
concerns are also raised by the nature of Java memory management which uses a garbage collector.
Garbage collection makes it convenient to write code less vulnerable to memory related bugs, however
this feature requires to favour object reuse in order to minimise the number of allocations as well as
the number of objects eligible for garbage collection.
Compili ng a Java program produces an intermediate language called byte-code which in turn is
interpreted by a Java Virtual Machine (JVM). The byte-code interpretation phase is a drawback from a
performance standpoint. The first solution is to translate directly a Java source in native machine code.
An intermediate solution is to use a JVM with a Just-in-Time (JIT) compiler that translates byte-code
to native code upon class loading. Some measurements made with LeoSim showed that the increase in
execution speed approaches 90%.

Galileo project management

Galil eo is a medium-sized project with several remotely located teams participating. An effective
mean to exchange information is mandatory. Galil eo's project li fe cycle is following a spiral approach
based on a core simulator incrementally enhanced. The analysis and design rely heavily on UML
diagrams and internal guidelines. All deliverables are available in HTML from a Web server.
Similarly, the source code is stored in a Web CVS repository. Currently, the primary development and
analysis platform is Linux.

Project status

Galil eo was initiated in September 1998. Six Short Term Scientific Missions were organised and
funded under the Cost253 Action budget. Two additional missions were funded by the CNUCE-CNR.
Galil eo progresses mostly during these missions since the people involved (approximatively 2.5
persons from CNUCE-CNR (IT), ENST (FR) and Public University of Navarra (ES)) have their
regular activities to carry on. Currently, an initial version of Galil eo is available with simple but
operational components. The effort is now put on providing Galil eo with realistic components as well
as setting up a testbed.

Conclusions

Considering the questions still open in the field of LEO constellations, there is an urgent need for a
simulation tool that would provide means to study these questions. Galil eo is meant to be this tool and
will , as a first step, be aimed at the study of constellation access techniques, routing algorithms, and
fault management.

References

[1] M. Annoni, S. Bizzarri and F. Faggi. Performance evaluation of satellit e constellations : the CONSIM(tm)
simulator concept and architecture. In Springer-Verlag, editor, Third European Workshop on mobile/personal
Satcoms (EMPS'98), Venezia (IT), Sept 1998.
[2] N. Celandroni, E. Ferro and F. Potortì. A simulation tool to validate and compare satellit e TDMA access
schemes. Telecommunications Systems, 12(1) :21-37,1999.
[3] E. Ferro. Proposal for a simulator architecture. Cost253 Temporary Document 10, CNUCE-CNR (IT), 1998.
[4] L. Franck. LeoSim : a routing simulator for LEOs. Cost253 Temporary Document 15, Brussels University
(BE), 1998.

