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A B S T R A C T

The paper presents an Internet-of-Things based agricultural decision support system for crop growth. A dynamic
Bayesian network (DBN) relates indicative parameters of crop development to environmental control parameters
via unobserved (hidden) Markov states. The expectation-maximization algorithm is used to track the states and
to learn the parameters of the DBN. The steady state information is then used to derive a predictor for the
measurement data a few days ahead. The proposed DBN avoids time-consuming training cultivation cycles, as
only data of the current cultivation cycle are available to the algorithm.
Three cultivation cycles of lettuce have been used to test the performance of the proposed DBN. The en-

vironmental parameters were temperature, solar irradiance and vapor-pressure deficit. The measurement data
include evapotranspiration at granularity equal one day, and leaf-area index and dry weight, at granularity equal
one week. It turned out that accurate measurement data prediction a few days ahead is possible even if the
number of data samples is low.

1. Introduction

1.1. Motivation

The Internet of Things (IoT) technologies (Gomez et al., 2019) are
gaining broad acceptance and application in many fields: from health-
care to enterprise 4.0 to Smart Cities. Even in agriculture these tech-
nologies can find numerous applications, both in open field cultivation
and in greenhouses, and they are becoming central in the development
of precision agriculture, a paradigm that is now increasingly con-
solidated. The reason of this success lies in the combination of sensing,
actuation and communication capabilities of IoT devices, that make
them a flexible and adaptable tool to collect data on key crop para-
meters (as those concerning the environment, the soil and the plant life
and growth) and to implement the governing policies on the various
plants feeding and assisting the cultures. This approach results parti-
cularly effective in greenhouses, where the conditions of the environ-
ment, of the root zone and the canopy can be monitored and controlled
with high precision. In a typical setting of a technological greenhouse, a
number of IoT devices embedding sensors monitor environmental
parameters (e.g., air temperature and humidity and solar irradiance),
soil/substrate parameters (e.g., moisture, pH, electrical conductivity,

ionic concentration) and parameters related to plant physiology and
growth e.g., leaf-area index (LAI), accumulated dry weight (DW) and
evapo-transpiration (ET). In turn, the fusion of these data through cloud
technologies allows the implementation of agricultural decision support
systems that forecast growth of cultivation, the development of dis-
eases, performance, etc. The use of such predictive models in real time
allows a timely and effective action on crops and the optimization of the
resources used, with obvious benefits of sustainability, cost-effective-
ness and productivity. In the scientific literature, some of the main
models that have been developed aim to make more efficient use of
water resources, optimizing irrigation procedures and water manage-
ment (Incrocci et al., 2019; Massa et al., 2011) while other approaches
focus on using optical tools to monitor crop growth and optimize pro-
duction (Senthilnath et al., 2016; Padilla et al., 2017).

1.2. Contribution

Our work follows this trend of interdisciplinary research among
agriculture, computer science and artificial intelligence. We propose a
novel statistical model that relates the indicative parameters of crop
development LAI, DW, and ET to the environmental parameters tem-
perature, solar irradiance and VPD at a daily basis. The data processed
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by the model and the results produced then have the form of a time
series of numerically quantifiable measurements. The proposed model
is based on a dynamic Bayesian network approach, in which variables
influence each other following discrete evolution steps. The model has
been developed with the aim to achieve high quality tracking and
predictions in an IoT controlled greenhouse (Burchi et al., 2018) using a
limited amount of data, since some of the data key to the development
of the model (like the leaf density) can only be obtained by manual
inspection of the crops and hence, are not available in a large quantity.
Consequently, our model can be taught based on a few cycles of culti-
vation and can also make predictions based on the measurement of
input data for a few days ahead, with great advantages from the point of
view of flexibility and usability in real-world contexts. In this work, we
will demonstrate using lettuce that the measurement data can be pre-
dicted with high accuracy a few days ahead even if only a few samples
of sensor data are available to the algorithm.
The paper is organized as follows. Background and related work are

outlined in Section 2. Section 3 presents the system model, followed by
a concise description of the Expectation-Maximization Algorithm that is
used to track the plant growth parameters, and to predict their evolu-
tion. The measurement set-up and the description of the measurement
data are outlined in Section 4. The experimental results are described
and discussed in Section 5, followed by conclusions and future work in
Section 6.

2. Background and related work

Leaf area index (LAI) is defined as the total green leaf area per unit
horizontal ground surface (dimensionless) and is related to the amount
of light that can be intercepted by plants to perform photosynthesis.
Hence, LAI is an important parameter to predict plant growth and
biomass accumulation through the process of carbon dioxide photo-
assimilation. Yet, LAI is the most important driving variable for crop
transpiration since leaves are the main site for gaseous exchanges be-
tween plant and atmosphere. LAI values for various crops differ widely.
There are two common approaches to determine LAI and DW: directly
(i) by taking a statistically significant sample of foliage from a plant
canopy. This method is accurate but often tedious and time-consuming
if a teal crop-representative sample would be collected, and (ii) by
optical sensors. This method is much faster but provides a lower bound
on LAI only, as it does not account for leaves that lie on each other. We
will build our growth model on the latter method as an indirect mea-
surement of LAI and DW.
Evapotranspiration (ET) is a combined process of evaporation of

water from soil or substrate and leaf transpiration of water through the
plant tissues to maintain the required crop growth rate and physiolo-
gical activities. Therefore, ET is closely related to the growth state of
the horticultural crop and a primary process affecting irrigation re-
quirements of the crops, to maintain the required crop growth rate. A
standard approach to compute the ET [kg m−2 d−1] is to apply the
Penman-Monteith method (Allen et al., 1998), combining energy bal-
ance with the mass transfer method. In greenhouse horticulture, the
average ET can be approximated by a linear combination of the in-
coming radiation I [MJ m−2 d−1], the LAI [m2 m−2], latent heat of
water vaporization [MJ kg−2] and the VPD [kPa] (Stanghellini, 1987;
Baille et al., 1994),

= +a I bET LAIVPD. (1)

The intercepted global radiation I is function of the global radiation
(GR) [MJ m−2 d−1], the light extinction coefficient of the canopy (k)
and LAI as follows:

=I exp kGR(1 ( LAI)) (2)

The coefficients a [dimensionless] and b [kg m−2 day−1 kPa−1], de-
pending on the particular crop, are obtained by multiple linear

regression analysis. Our growth model will be built upon ET measure-
ments on daily basis, but the state-of-the art model in (1) will act as
benchmark.
Another major variable, defining the state of the crop is its dry

weight (DW). For leaf vegetables, the DW is the weight of the dried
shoot that would mostly correspond to produce yield. To determine
shoot DW, most of the literature focuses on destructive measurement.
Another approach is to model the evolution of DW. Van Henten shows
in Van Henten (1994) that the structural DW follows the first order
dynamic model

=d
dt

rDW DW (3)

with the constant r . Van Henten’s model in (3) will act as bench-
mark for our growth model that is built on weekly measurements.
The adoption of IoT technologies in agriculture can be observed in

the contexts of precision agriculture including protected cultivation
(Khanna and Kaur, 2019; Shi et al., 2019; Zamora-Izquierdo et al.,
2019; Muangprathub et al., 2019) but also, more generally, in the agro-
industrial and environmental fields (Talavera et al., 2017). IoT tech-
nologies enable real-time monitoring and control of resources and
crops, making it possible to optimize the usage of water, nutrients and
energy, and, at the same time, to maximize produce yield and quality.
Water management, for example, is a problem for which IoT technol-
ogies demonstrated to be particularly well-suited (Incrocci et al., 2019;
Goap et al., 2018; Du et al., 2017). The use of sensors allows dynamical
irrigation policies to be enforced, which minimize the use of water
resources while maintaining ideal growth conditions for the crops. A
similar argument applies to temperature control in the context of
greenhouses (Wang and Zhang, 2018). As regards the monitoring of
plant growth and the maximization of the yield, the application of
computer vision and automated digital image analysis technologies has
been proposed (Easlon and Bloom, 2014; Senthilnath et al., 2016).
These technologies make it possible to automatically measure leaf areas
and the size/quality of fruits in order to monitor the growth of plants
and the production trend.
Obviously, data obtained from an IoT architecture requires to be

processed, to be able to take decisions based on it. Processing involves
extracting information from data (e.g. computing growth indicators
such as LAI and the evotranspiration rate), but also making predictions
on how environmental and soil parameters and growth indicators will
evolve in the near future (Seginer (2002)). Predictions, if sufficiently
accurate, allow the farmer to monitor the crop growth better than in
real-time, and to quantitatively evaluate (through simulations) the ef-
fects of the alternative control actions.
Most of the current predictive models used in agriculture are of

physiological-mechanical nature (Gary et al., 1998), such as CropSyst
and EU-Rotate_N (Cilek and Berberoglu, 2019). Sensor data is used to
calibrate and validate these models. However, they are not able to learn
over time. Modern information and communication technology ap-
proaches make it possible to generate machines that autonomously
learn from data over time (Liakos et al., 2018; Balducci et al., 2018;
Rehman et al., 2019). In particular, Bayesian methods turned out to be
successful in the prediction of aspects of crop growth such as fruit yield
(Chapman et al., 2018) and disease development (Carlson, 1970; Bi and
Chen, 2010). The strength of Bayesian methods is on their ability of
making rather accurate prediction even without a huge amount of
available data.

3. A linear dynamic model for crop growth

3.1. Linear dynamic model

We develop a linear dynamic model that relates the crop in-
dependent environmental data to crop related measurement data. We
consider a cultivation of T days with some granularity . The study in
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Carmassi et al. (2007) indicates that the evolution of crop related
parameters can be related to environmental data by a dynamic linear
model in form of a time series, accommodating the following three
kinds of data:

• The control data is organized as K-dimensional column vector
u u t T{ : , [1, ]}t t

K . This data, independent of the crop, is as-
sumed to be deterministic and noiseless.
• The measurement data is organized as column vector

y y t T{ : , [1, ]}t t . This data, depending on the particular crop,
is stochastic and noisy.
• The evolution of the hidden states z z t T{ : , [1, ]}t t

K relates
the control data to the measurement data.

When the system follows a first-order Markov process, the state dis-
tribution …z z zp ( , , , )T1 2 , abbreviated as zp ( )T1: , has the compact form

=
=

z z z zp p p( ) ( ) ( | ).T
t

T

t t1: 1
2

1
(4)

The transition model depends only on the actual state and the previous
state. By the Markov property in (4), the joint state-measurement dis-
tribution has the form

=
=

z y z y z z z y zp p p p p( , ) ( ) ( | ) ( | ) ( | ).T T
t

T

t t t t1: 1: 1 1 1
2

1
(5)

The dynamic Bayesian network (DBN), reflecting the particular fac-
torization of the conditional distributions in (5), is shown in Fig. 1. Each
edge corresponds to a conditional dependency, each node corresponds
to one of the three kinds of variables. The arrows indicate the de-
pendencies among the variables. Suppose the DBN describes a linear
dynamic model, where variables are all continuous and all of the de-
pendencies are linear Gaussian. Denoting the state matrix ×A K K ,
the input matrix ×B K K , and the output matrix ×C K1 , the input-
output relation of the model is given by

= + ++z Az Bu n n 0 i i d; ( , ) . . .nt t t t t1 (6)

= +y Cz w w 0 i i d; ( , ) . . .wt t t t (7)

= +z µ n n 0 i i d; ( , ) . . .1 1 1 1 1 (8)

The parameter vector = A B C µ{ , , , , , , }n w 1 1 as well as the
state sequence …z z{ , , }T1 are unknown and hence, require estimation.

3.2. Tracking of measurement data

The EM algorithm is used to iteratively approach the maximum
likelihood estimate = ypargmax ( | )T1: by postulating the non-ob-
servable missing data z T1: . Starting from iteration =i 0, the E-step of
the algorithm infers the expected log-likelihood z yp ( , | )T T1: 1: given the

observation y T1: and a guess of the parameter estimate i[ ] by the M-
step:

= z yQ p y( | ) {ln ( , | )| , }.i
T T T

i[ ]
1: 1: 1:

[ ] (9)

The M-step learns from the updated expectations in the E-step, to im-
prove quality of the parameter estimate:

=+ Qarg max ( | ).i i[ 1] [ ]
(10)

The sequence of log-likelihood values =yp{ ln ( | )}T
i

i1:
[ ]

0is non-de-
creasing and converges to a stationary point of ypln ( | )T1: (Dempster
et al., 1977; Wu, 1983).
Subsequently we apply above EM algorithm to track the measure-

ment data over a period of T days. The derivation of our tracker, out-
lined in Appendix A, is an obvious extension of that by Ghahramani and
Hinton (1996) to linear dynamic models with deterministic control data
u. After convergence, our tracker at any t outputs the expected state
sequence

z z y{ | , }t t T
[ ]

1:
[ ] (11)

along with error variance

V z yCov{ | , },t t T
[ ]

1:
[ ] (12)

Inserting (11) and (12) into (7), the tracked measurement values reads

=y C zt t
[ ] [ ] [ ] (13)

along with error variance

= C V C( ) .y t t
T

,
[ ] [ ] [ ] [ ] (14)

3.3. Prediction of measurement data

The EM algorithm applied to (6)–(8) alternates between prediction
and correction by learning from subsequent observation. When the
feedback loop is broken, the algorithm may still perform free predic-
tions without response. Following this approach, we design the fol-
lowing q-step ahead predictor. Starting off the state evolution in (6), we
take the expectation w.r.t. to the latest observation and the steady state
parameter vector, corresponding to the last estimate by the EM algo-
rithm. Ergo,

= ++z A z B u .T T T1
[ ] [ ] [ ] [ ] (15)

This state estimate has error variance

= ++V A V A( ) .T T
T

n1
[ ] [ ] [ ] (16)

Substituting (15) for (7), we have the one-step ahead measurement
predictor

=y C z .T T
[ ] [ ] [ ] (17)

By induction hypothesis, it follows for >q 0 time steps ahead that

= ++ +y C A z B u( ),T q T q T
[ ] [ ] [ ]

1
[ ] [ ] (18)

with error variance

= ++ +C A V A C( ( ) )( ) .y T q T q
T

n
T

,
[ ] [ ] [ ]

1
[ ] [ ] [ ] (19)

Note that the error variance +V T 1 in (16) depends on the (stochastic)
state but is independent of the (deterministic) control data.

3.4. Initialization of the algorithm

The EM algorithm is sensitive to initialization (Hu et al., 2004).
Different initial points [0] result in different stationary points of the log-
likelihood function. To drive the EM algorithm towards a global max-
imum of the log-likelihood function, we exploit the structure of avail-
able measurement data as follows:

Fig. 1. 2-time-slice Bayesian network describing the evolution of the para-
meters related to the crop.
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• Since noise is uncorrelated, we may initialize the covariance ma-
trices as

= = = I , 1;n w
[0][0]

1
[0] (20)

• The control matrix B[0] and measurement matrix C[0] are initialized
as = =B C I0( , )[0] [0] ;
• Given C[0], the measurement data y T1: and the initial state sequence

z T1:
[0] are related by

=z C C C y( ) ( ( ) )T
T T

T1:
[0] [0] [0] [0] 1

1: (21)

according to (7).
• Given B z, T

[0]
1:
[0] and y T1: , the maximum likelihood estimate of A with

Tikhonov regularization has the form

= +A z z B u z z z( ( ) ( ) )( ( ) ) .T T
T

T T
T

T T
T[0]

2:
[0]

1: 1
[0] [0]

1: 1 1: 1
[0]

1: 1
[0]

1: 1
[0] 1

(22)

The Tikhonov regularization = I , 1 enables numerical
stability of calculating the matrix inverse.
• Finally, =µ z1

[0]
1
[0].

Note that different choices of B[0] and C[0] may navigate the EM algo-
rithm to different stationary points in the likelihood function.

4. Experimental setting

To illustrate the prediction capability of the EM algorithm, we
consider lettuce in a greenhouse at CREA (Research Centre for
Vegetable and Ornamental Crops, Council for Agricultural Research and
Economics), Pescia, Tuscany, Italy (lat. °43 54 N, long. °10 42 E). Plants
were transplanted in a soil-less system, consisting in a closed-loop
bench (cultivation unit) with drip irrigation and rockwool slabs as
substrate, and administered to develop under optimal preserved from
abiotic and biotic stresses growing conditions. Plants were watered up
to eight times per day. Irrigation started, on average, when 10–20% (v
v-1) of the available water was depleted in the growing medium in
order to keep moisture quite constant in the root zone. When triggered,
irrigation duration was programmed in order to replenish all the nu-
trient solution present in the slabs with that present in the drainage
thank. The nutrient solution absorbed by plants was continuously re-
plenished in the drainage thank by electronic electrovalves when 1/5 of
the nutrient solution was absorbed. New fresh nutrient solution was
prepared by a fertigation unit with the following composition in mmol
L-1: N-NO3 14.0, N-NH4 1.8, P-PO4 1.8, K 8.8, Ca 4.0, Mg 1.0, S-SO4 2.2,
Cl 0.7, Na 0.8 and microelements according to standard Hoagland’s
solution. The first growing cycle lasted 35 days ranging from 24
October to 28 November 2018. The second growing cycle lasted 52 days
ranging from 21 January to 13 March 2019, and the third growing cycle
took 37 days in the period from 4 June - 10 July 2019. The environ-
mental sensors in the greenhouse (Decagon Device Inc., Pullman, WA
99163 USA) measured the environmental control parameters air tem-
perature, air humidity converted into VPD, and global radiation. Their
descriptive statistics are reported in Table 1. In contrast, destructive
analyses were carried out to measure LAI ( = 1 week), and DW ( =
1 week). For the destructive analyses, 15 plants per replicate were
collected from three different cultivation units. Finally, ET ( = 1 day)
was monitored by electronic water meters in three cultivation units
different from those used for plant destructive analyses. All data were
collected in triplicate. LAI and DW data have been seven times over-
sampled, to be aligned with the environmental data rate. The maximum
number of iterations by the EM algorithm has been set to 100.

For the sake of comparison, the standard ET model in (1) with
= =a b0.77, 0.077 [kg m−2 day−1 kPa−1] and = 2.45 MJ kg−2], acts
as benchmark. For the estimation of the intercepted global radiation I
we used a k coefficient of 0.66 as suggested by Tei et al. (1996) while
LAI was empirically estimated as reported in Carmassi et al. (2013). The
model was then calibrated by multiple regression using all the data set.
The DW model in (3) has the solution = +t t dDW( ) exp( ). The con-
stants and d have been obtained by exponential regression from the
second data set. Following this approach, we obtain = 0.106 [g m−2
day−1] and =d 1.76 [g m−2].

5. Experimental results and discussion

With above environmental data, the EM algorithm has been used to
track the posterior distribution of the measurement data vector until a
particular growing day T, say =T {15, 22, 29, 36}. At growing day T, the
algorithm makes a measurement prediction q days ahead according to
(18). Fig. 2 shows the LAI as a function of growing days. The blue curve

Table 1
Descriptive statistics of the environmental control parameters during the cul-
tivation cycles Cycle 1 (24 Oct. - 28 Nov. 2018), Cycle 2 (21 Jan. - 13 Mar.
2019) and Cycle 3 (4 June - 10 July 2019).

Temperature Global Radiation VPD
[°C] [MJ m−2 d−1] [kPA]

Cycle 1 Mean 16.12 3.64 0.54
Maximum 21.42 7.18 0.88
Minimum 9.66 0.33 0.13
Cumulation N/A 130.18 N/A

Cycle 2 Mean 14.34 5.78 0.78
Maximum 17.47 9.73 1.25
Minimum 5.42 0.54 0.12
Cumulation N/A 294.9 N/A

Cycle 3 Mean 25.18 17.27 1.15
Maximum 32.90 19.60 2.81
Minimum 21.54 12.16 0.72
Cumulation N/A 621.66 N/A

Fig. 2. Tracking and prediction of the LAI for the lettuce at the growth days
=T {15, 22, 29, 36} during three cultivation cycles under different environ-
mental conditions: Cycle 1 (late fall), Cycle 2 (late winter), Cycle 3 (early
summer).

A. Kocian, et al. Computers and Electronics in Agriculture 169 (2020) 105167

4



shows the measured LAI yt , in (7). Clearly, all measurement values
beyond T are unknown to the DBN, and are only added to the plot for
comparison purposes. The conditional mean value +yT q

[ ] in (18) of our
predictor is shown in black. The width of the filled region around the
mean value corresponds to twice the error standard deviation +y T q,

[ ] in
(19). It can be seen that the predicted values accurately correspond to
the measured values up to a prediction length of =q 5 days ahead when
the number of data samples is more than four i.e., four weeks. To
achieve the same prediction quality for less data samples, the prediction
length is about =q 3 days ahead. Plants were grown under optimal
conditions to avoid any biotic or abiotic stress that could influence the
estimated variables. Among other abiotic stress, salinity may influence
water and nutrient uptake and plant development. The nominal value
for electrical conductivity (EC) of the adopted nutrient solutions was
2.20 dS m−1 with a very low concentration of Na and Cl that could
possibly accumulate in closed-loop culture (Massa et al., 2011). In the
recirculated water, EC averaged 2.32 dS m−1 with a coefficient of
variability of 7.9% in the different experiments. Lettuce is traditionally
considered a species sensitive to salinity in the root zone. However,
nutrient and water are much more easily available to plant in hydro-
ponic systems compared with soil cultivation. In many experiments
with lettuce grown hydroponically, no variation in dry matter accu-
mulation and plant growth was observed with EC values between 2.0
and 3.0 dS m−1 while plant biomass decreased at 1.0 dS m−1 (Sago and
Shigemura, 2018; da Silva Cuba Cavalho et al., 2018). Yet, a significant
decrease in plant water uptake was observed only above EC values of
4.0 dS m−1 (Soares et al., 2015).
Fig. 3 reports the cumulative ET for our lettuce. First, we want to

point out that the analytical model of Baille in Baille et al. (1994)
slightly overestimates the measurement data. This is true for all cycles.
For our predictor, it can be seen that with increasing data samples,
longer prediction lengths lead to a more accurate forecast. The pre-
diction error averaged over all three cultivation cycles is reported in
Fig. 4. When the numbers of cultivation days is equal =T 15, a pre-
diction length of =q 1 and =q 5 results in a prediction error of about
6% and 23%, respectively. This error tends to zero as T becomes large.

Clearly, a higher number of cultivation cycles results in a lower error
variance and hence, leads to smoother curves. Looking at the same
problem from a different point-of-view, Fig. 5 reports the measured
data vs. the predicted data for Cycle 1 (small ET) and Cycle 3 (large ET)
with the prediction length as parameter. For the DBN, the algorithm
adapts to environmental conditions, and provides ET forecasts within a
narrow band around the 1:1 line in an ad-hoc fashion. The Baille model
in (1) relies on constant regression coefficients and hence, accurately
estimates the measured values during one cycle, namely Cycle 3, but
overestimates them during another such as Cycle 1. Generally speaking,
the coefficient of determination R2 of the regression is high for both
methods (Cycle 1: =R 0.9972 (Baille), =R 12 (DBN, =q 1), =R 0.9982

(DBN, =q 5); Cycle 3: =R 0.9992 (Baille), =R 12 (DBN, =q 1),
=R 0.9822 (DBN, =q 5)).
Finally, Fig. 6 reports the measurement and prediction of dry weight

for our lettuce, measured at weekly granularity. It can be seen that the
predicted measurement data is closely related to the true, even if the
number of data samples are just a few. When the number of data
samples is more than three and four (weeks), a prediction length of,
respectively, =q 3 and =q 5 can be achieved. The behavior is similar
to that of predicting LAI in Fig. 2. In all cases no historical data from
other cycles has been used for prediction. Clearly, the analytical model
by Van Henten in (3) is only accurate for the cycle that has been used
for calibration.

6. Conclusions

Within the trend of a progressive adoption of IoT and artificial in-
telligence technologies in agriculture, we considered the specific pro-
blem of developing growth models for crop growth in technological
greenhouses embedding IoT sensors. The model is based on Bayesian
networks and estimates some important parameters of crop develop-
ment (like LAI, DW and ET). It has been tested in an experimental
campaign consisting of three cycles of cultivation of lettuce. The ex-
perimental results show that the model predicts the ET parameters one
day ahead with an error below 6% after 15 cultivation days, and that
the values of LAI and DW predicted five days ahead correspond to the
measured values.

Fig. 3. Tracking and prediction of the cumulative evapo-transpiration for the
lettuce at the growth days =T {15, 22, 29, 36} during three cultivation cycles
under different environmental conditions: Cycle 1 (late fall), Cycle 2 (late
winter), Cycle 3 (early summer).

Fig. 4. ET prediction error averaged over all three cultivation cycles with
prediction length q as parameter.
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The analytical models follow a deterministic approach, are simple
but depend on a number of environmental and crop specific para-
meters. Hence, these models are only valid for a specific crop in a
confined environment. Our dynamic Bayesian network, in contrast,

follows a stochastic approach and hence is valid for a large number of
crops with similar statistical properties. The crop related parameters are
then learned on-the-fly using IoT based sensor data which are some-
times huge.
Future work includes the experimentation of this model with other

crops, and, in perspective, the introduction of additional sensors to
monitor other aspects of the plants and soil and their inclusion in the
model.
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Fig. 5. Measured vs. predicted ET for the lettuce with prediction length q as parameter.

Fig. 6. Tracking and prediction of the dry weight for the lettuce at the growth
days =T {15, 22, 29, 36} during three cultivation cycles under different en-
vironmental conditions: Cycle 1 (late fall), Cycle 2 (late winter), Cycle 3 (early
summer).

A. Kocian, et al. Computers and Electronics in Agriculture 169 (2020) 105167

6



Appendix A. Inference and learning algorithm

In this appendix, we derive the EM algorithm for the linear dynamic model in (6)–(8).
By the Markov property in (5), the log-likelihood function of for the complete data is given by
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Let i[ ] be our parameter estimate at the i-th iteration. Substituting above expression for (9), the E-step of the EM algorithm infers the conditional
expectations
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with the short-cut
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The computation of (A.2) can be done efficiently by the forward-backward algorithm (Rabiner, 1989; Minka, 1999). Extending the approach in
Ghahramani and Hinton (1996) to linear dynamic models with control data, the forward recursion of the forward-backward algorithm yields
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with the Kalman gain matrix K
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The backward recursion reads (A.4)–(A.6) to compute the desired state estimate
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where
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Note that I is the K-dimensional identity matrix. The boundary conditions are
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The M-step of the EM algorithm in (9) for the linear dynamic model learns the parameter vector by computing the partial derivative of the
expected log-likelihood function in (9), setting the result equal zero and solving with respect to the respective parameter. Following this approach, it
follows after straight forward algebraic manipulations
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This is the derivation of the EM algorithm used to track the states and to learn the parameters of our DBN in Section 3.2.
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