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Abstract. We outline DLMedia, an ontology mediated multimedia information
retrieval system, which combines logic-based retrieval with multimedia feature-
based similarity retrieval. An ontology layer may be used to define (in terms of
a DLR-Lite like description logic) the relevant abstract concepts and relations
of the application domain, while a content-based multimedia retrieval system is
used for feature-based retrieval.

1 Introduction

Multimedia Information Retrieval (MIR) concerns the retrieval of those multimedia
objects of a collection that are relevant to a user information need.

In this work we deal with Logic-based Multimedia Information Retrieval (LMIR)
and follow the principles described in [9] (see [9] for an overview on LMIR litera-
ture. A recent work is also e.g. [6]). Let us first roughly present (parts of) the LMIR
model of [9]. In doing this, we rely on Figure 1. The model has two layers addressing
the multidimensional aspect of multimedia objects o ∈ O (e.g. objects o1 and o2 in
Figure 1): that is, their form and their semantics (or meaning). The form of a multi-
media object is a collective name for all its media dependent, typically automatically
extracted features, like text index term weights (object of type text), colour distribution,
shape, texture, spatial relationships (object of type image), mosaiced video-frame se-
quences and time relationships (object of type video). On the other hand, the semantics
(or meaning) of a multimedia object is a collective name for those features that pertain
to the slice of the real world being represented, which exists independently of the ex-
istence of a object referring to it. Unlike form, the semantics of a multimedia object
is thus media independent (typically, constructed manually perhaps with the assistance
of some automatic tool). Therefore, we have two layers, the object form layer and the
object semantics layer. The former represents media dependent features of the objects,
while the latter describes the semantic properties of the slice of world the objects are
about. The semantic entities (e.g., Snoopy, Woodstock), which objects can be about are
called semantic index terms (t ∈ T). The mapping of objects o ∈ O to semantic entities
t ∈ T (e.g., “object o1 is about Snoopy”) is called semantic annotation. According to
the fuzzy information retrieval model (e.g. [2], semantic annotation can be formalized
as a membership function F : O × T → [0, 1] describing the correlation between mul-
timedia objects and semantic index terms. The value F (o, t) indicates to which degree



Fig. 1. LMIR model layers and objects

the multimedia object o deals with the semantic index term t. Depending on the con-
text, the function F may be computed automatically (e.g., for text we may have [4], for
images we may have an automated image annotation (classification) tool, as e.g. [5]).
Corresponding to the two dimensions of a document just introduced, there are three cat-
egories of retrieval: one for each dimension (form-based retrieval and semantics-based
retrieval) and one concerning the combination of both of them. The retrieval of infor-
mation based on form addresses, of course, the syntactical properties of documents. For
instance, form-based retrieval methods automatically create the document representa-
tions to be used in retrieval by extracting low-level features from documents, such as the
number of occurrences of words in text, or color distributions in images. To the contrary,
semantics-based retrieval methods rely on a symbolic representation of the meaning of
documents, that is descriptions formulated in some suitable formal language. Typically,
meaning representations are constructed manually, perhaps with the assistance of some
automatic tool.

A data model for MIR not only needs both dimensions to be taken into account, but
also requires that each of them be tackled by means of the tools most appropriate to
it, and that these two sets of tools be integrated in a principled way. Our data model is
based on logic in the sense that retrieval can be defined in terms of logical entailment.
More precisely, for computational reasons the particular logic we adopt is based on a
DLR-Lite [3] like Description Logic (DL) [1]. The DL will be used in order to both
define the relevant abstract concepts and relations of the application domain, as well as
to describe the information need of a user. Our DL is enriched with build-in predicates
allowing to address all three categories of retrieval (form-based, semantic-based and
their combination). To support query answering, the DLMedia system has a DLR-Lite
like reasoning component and a (feature-based) multimedia retrieval component. In the
latter case, we rely on our multimedia retrieval system MILOS 1.

2 Reasoning about form and semantics in DLMedia

In order to support reasoning about form and content, DLMedia provides a logical query
and representation language, which closely resembles a fuzzy variant DLR-Lite [3] with
fuzzy concrete domains [10].

The concrete predicates that we allow are not only relational predicates such as
(x ≤ 1500) (e.g. x is less or equal than 1500), but also similarity predicates such

1 http://milos.isti.cnr.it/



as (x simTxt ′logic, image, retrieval′), which given a piece of text x returns the
system’s degree (in [0, 1]) of being x about the keywords ’logic, image, retrieval’.

We recall that in general, a fuzzy concrete domain (or simply fuzzy domain) is a pair
〈∆D, ΦD〉, where ∆D is an interpretation domain and ΦD is the set of fuzzy domain pred-
icates d with a predefined arity n and an interpretation dD:∆n

D → [0, 1]. Specifically,
DLMedia uses DLR-Lite(D) like axioms to describe the relevant abstract concepts of the
application domain. An axiom is of the form (m ≥ 1) Rl1 u . . .uRlm v Rr where Rl
is a so-called left-hand relation and Rr is a right-hand relation with following syntax
(l ≥ 1):

Rr −→ A | ∃[i1, . . . , ik]R
Rl −→ A | ∃[i1, . . . , ik]R | ∃[i1, . . . , ik]R.(Cond1 u . . . u Condl)
Cond −→ ([i] ≤ v) | ([i] < v) | ([i] ≥ v) | ([i] > v) | ([i] = v) | ([i] 6= v) |

([i] simTxt ′k1, . . . , k
′
n) | ([i] simImg URN)

where A is an atomic concept, R is an n-ary relation with 1 ≤ i1, i2, . . . , ik ≤
n, 1 ≤ i ≤ n and v is a value of the concrete interpretation domain of the ap-
propriate type. Informally, ∃[i1, . . . , ik]R is the projection of the relation R on the
columns i1, . . . , ik (the order of the indexes matters). Hence, ∃[i1, . . . , ik]R has arity
k. ∃[i1, . . . , ik]R.(Cond1 u . . .uCondl) further restricts the projection ∃[i1, . . . , ik]R
according to the conditions specified in Condi. For instance, ([i] ≤ v) specifies that the
values of the i-th column have to be less or equal than the value v, ([i] simTxt ′k1 . . . k

′
n)

evaluates the degree of being the text of the i-th column similar to the list of keywords
k1 . . . kn, while ([i] simImg URN) returns the system’s degree of being the image
identified by the i-th column similar to the object o identified by the URN (Uniform Re-
source Name 2). We further assume that allRli andRr inRl1u. . .uRlm v Rr have the
same arity. For instance assume we have a relation Person(name, age, father name,
mother name, gender) then the following are axioms:

∃[1, 2]Person v ∃[1, 2]hasAge
// constrains relation hasAge(name, age)

∃[3, 1]Person v ∃[1, 2]hasChild
// constrains relation hasChild(father name, child name)

∃[4, 1]Person v ∃[1, 2]hasChild
// constrains relation hasChild(mother name, child name)

∃[3, 1]Person.(([2] ≥ 18) u ([5] =′ female′) v ∃[1, 2]hasAdultDaughter
// constrains relation hasAdultDaughter(father name, child name)

Note that in the last axiom, we require that the age is greater or equal than 18 and the
gender is female. On the other hand examples axioms involving similarity predicates
are,

∃[1]ImageDescr.([2] simImg urn1) v Child (1)

∃[1]T itle.([2] simTxt ′lion′) v Lion (2)

where urn1 is ’urn:milos:album:asantoro:image jpeg:24d9f14a6516c95f640b47b89897b952’
and identifies the image in Figure 2. The former axiom (axiom 1) assumes that we have
an ImageDescr relation, whose first column is the application specific image identifier
and the second column contains the image URN. Then, this axiom (informally) states

2 http://en.wikipedia.org/wiki/Uniform_Resource_Name



Fig. 2. The image related to urn1.

that an image similar to the image depicted in Figure 2 is about a Child (to a system
computed degree in [0, 1]). Similarly, in axiom (2) we assume that an image is annotated
with a metadata format, e.g. MPEG-7, the attribute Title is seen as a binary relation,
whose first column is the identifier of the metadata record, and the second column con-
tains the title (piece of text) of the annotated image. Then, this axiom (informally) states
that an image whose metadata record contains an attribute Title which is about ’lion’
is about a Lion.

From a semantics point of view, given a fuzzy concrete domain 〈∆D, ΦD〉, an in-
terpretation I = 〈∆, ·I〉 consists of a fixed infinite domain ∆, containing ∆D, and an
interpretation function ·I that maps every atom A to a function AI :∆ → [0, 1] and
maps an n-ary predicate R to a function RI :∆n → [0, 1] and constants to elements of
∆ such that aI 6= bI if a 6= b (unique name assumption). We assume to have one object
for each constant, denoting exactly that object. In other words, we have standard names,
and we do not distinguish between the alphabet of constants and the objects in ∆. Fur-
thermore, we assume that the relations have a typed signature and the interpretations
have to agree on the relation’s type. For instance, the second argument of the Title
relation (see axiom 2) is of type String and any interpretation function requires that
the second argument of TitleI is of type String. To the easy of presentation, we omit
the formalization of this aspect and leave it at the intuitive level. In the following, we
use c to denote an n-tuple of constants, and c[i1, ..., ik] to denote the i1, . . . , ik-th com-
ponents of c. For instance, (a, b, c, d)[3, 1, 4] is (c, a, d). Let t be a so-called T-norm,
which is a function used to combine the truth of “conjunctive” expressions. 3 Then, ·I
has to satisfy, for all c ∈ ∆k and n-ary relation R:

(∃[i1, . . . , ik]R)I(c) = supc′∈∆n, c′[i1,...,ik]=cR
I(c′)

(∃[i1, . . . , ik]R.(Cond1 u . . . u Condl))I(c) =
supc′∈∆n, c′[i1,...,ik]=c t(R

I(c′), Cond1
I(c′), . . . , Condl

I(c′))

with ([i] ≤ v)I(c′) = 1 if c′[i] ≤ v, and ([i] ≤ v)I(c′) = 0 otherwise (and similarly
for the other comparison operators), while

([i] simTxt ′k1, . . . , k
′
n)
I
(c′) = simTxtD(c′[i],′ k1, . . . , k

′
n) ∈ [0, 1]

([i] simImg URN)I(c′) = simImgD(c′[i], URN) ∈ [0, 1] .

It is pretty clear that many other concrete predicates can be added as well.
Then, I |= Rl1 u . . . u Rlm v Rr iff for all c∈∆n, t(Rl1I(c), . . . , RllI(c)) ≤

RrI(c), where we assume that the arity of Rr and all Rli is n.

3 t has to be symmetric, associative, monotone in its arguments and t(x, 1) = x. Examples of
t-norms are: min(x, y), x · y, max(x+ y − 1, 0).



Concerning queries, a query consists of a conjunctive query of the form q(x) ←
R1(z1) ∧ . . . ∧ Rl(zl), where q is an n-ary predicate, every Ri is an ni-ary predi-
cate, x is a vector of variables, and every zi is a vector of constants, or variables. We
call q(x) its head and R1(z1) ∧ . . . ,∧Rl(zl) its body. Ri(zi) may also be a concrete
unary predicate of the form (z ≤ v), (z < v), (z ≥ v), (z > v), (z = v), (z 6=
v), (z simTxt ′k1, . . . , k

′
n), (z simImg URN), where z is a variable, v is a value of the

appropriate concrete domain, ki is a keyword and URN is an URN. Example queries
are:

q(x)←Child(x)
// find objects about a child (strictly speaking, find instances of Child)

q(x)←CreatorName(x, y), (y =′ paolo′), T itle(x, z), (z simTxt ′tour′)
// find images made by Paolo whose title is about ’tour’

q(x)← ImageDescr(x, y), (y simImg urn2)
// find images similar to a given image identified by urn2

From a semantics point of view, an interpretation I is a model of a rule r of form
q(x)←φ(x,y), where φ(x,y) is R1(z1) ∧ . . . ∧ Rl(zl), denoted I |= r, iff for all
c∈∆n:

qI(c) ≥ sup
c′∈∆×···×∆

φI(c, c′) ,

where φI(c, c′) is obtained from φ(c, c′) by replacing every Ri by RIi , and the T-norm
t is used to combine all the truth degrees RIi (c′′) in φI(c, c′).

Finally, in DL-Media, from a conceptual point of view, we assume that the so-called
set of facts is modeled as a finite set of instances of relations, i.e. a set of expressions of
the form 〈R(c1, . . . , cn), s〉, where R is an n-ary predicate, every ci is a constant and s
is the degree of truth (score) of the fact. If s is omitted, as e.g. in traditional databases,
then the truth degree 1 is assumed. I |= 〈R(c1, . . . , cn), s〉 iff RI(c1, . . . , cn) ≥ s.

A DLMedia multimedia base K = 〈F ,O〉 consists of a facts component F , and
a axioms component O. I |= K iff I is a model of each component of K. We say
K entails R(c) to degree s, denoted K |= 〈R(c), s〉, iff for each model I of K, it is
true that RI(c)≥ s. The greatest lower bound of R(c) relative to K is glb(K, R(c)) =
sup{s | K |= 〈R(c), s〉}. The basic inference problem that is of interest in DLMedia
is the top-k retrieval problem, formulated as follows. Given a multimedia base K and
a query with head q(x), retrieve k tuples 〈c, s〉 that instantiate the query predicate q
with maximal score, and rank them in decreasing order relative to the score s, denoted
ansk(K, q) = Topk{〈c, s〉 | s = glb(K, q(c))}.

From a reasoning point of view, the DLMedia system extends the DL-Lite/DLR-
Lite reasoning method [3] to the fuzzy case (see [11]). Roughly, given a query q(x)←
R1(z1) ∧ . . . ∧Rl(zl),

1. by considering O only, the user query q is reformulated into a set of conjunc-
tive queries r(q,O). Informally, the basic idea is that the reformulation procedure
closely resembles a top-down resolution procedure for logic programming, where
each axiom is seen as a logic programming rule. For instance, given the query
q(x) ← A(x) and suppose that O contains the axioms B1 v A and B2 v A, then



we can reformulate the query into two queries q(x) ← B1(x) and q(x) ← B2(x),
exactly as it happens for top-down resolution methods in logic programming;

2. the reformulated queries in r(q,O) are evaluated over F only (which is solved by
accessing a top-k database engine [7] and a multimedia retrieval system), producing
the requested top-k answer set ansk(K, q) by applying the Disjunctive Threshold
Algorithm (DTA, see [11] for the details). For instance, for the previous query, the
answers will be the top-k answers of the union of the answers produced by all three
queries.

3 DLMedia at work

A prototype of the DLMedia system has been implemented. The main interface is
shown in Figure 3.

Fig. 3. DLMedia main interface.

In the upper pane, the currently loaded ontology component O is shown. Below it
and to the right, the current query is shown (“find a child”, we also do not report here
the concrete syntax of the DLMedia DL).

So far, in DLMedia, given a query, it will be transformed, using the ontology, into
several queries (according to the query reformulation step described above) and then the
conjunctive queries are transformed into appropriate queries (this component is called
wrapper) in order to be submitted to the underlying database and multimedia engine.
To support the query rewriting phase, DLMedia allows also to write schema mapping
rules, which map e.g. a relation name R into the concrete name of a relational table
of the underlying database. The currently supported wrappers are for (of course other
wrappers can be plugged in as well.)



– the relational database system Postgres; 4

– the relational database system with text similarity MySQL; 5 and
– our multimedia retrieval system Milos, which supports XML data.

For instance, the execution of the toy query shown in Figure 3 (“find a child”) produces
the ranked list of images shown in Figure 4.

Fig. 4. DLMedia results pane.

Related to each image, we may also access to it’s metadata, which is in our case an
excerpt of MPEG-7 (the data can be edited by the user as well) as shown e.g. in Figure 5.

Fig. 5. DLMedia image info pane.

4 http://www.postgresql.org/
5 http://www.postgresql.org/



4 Conclusions

In this work, we have outlined the DLMedia system, i.e. an ontology mediated multi-
media retrieval system. Main features (so far) of DLMedia are that: (i) it uses a DLR-
Lite(D) like language as query and ontology representation language; (ii) it supports
queries about the form and content of multimedia data; and (iii) is scalable -though
we did not address it here, query answering in DLMedia is LogSpace-complete in data
complexity. The data complexity of DLMedia directly depends by the data complexity
of the underlying database and multimedia retrieval engines.
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