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1. Static Optical Response

To determine the optical response of an individual nanostructure upon plane wave illumi-

nation, its absorption, scattering and extinction cross-sections, σA, σS and σE respectively,

should be defined. By considering a monochromatic linearly polarised plane wave in the

quasi-static approximation (QSA), these quantities are readily expressed in terms of the

particle polarizability, α, most generally a spectrally dispersed and complex-valued tensor.1

For the specific case of nanoellipsoids, with wavelength dependent permittivity ε(λ), em-

bedded in a homogeneous medium with wavelength independent dielectric constant εm, the

polarizability tensor α = diag(αx, αy, αz) has diagonal components given by

αi(λ) = ε0V
ε(λ)− εm

Liε(λ) + (1− Li)εm
, (S1)

where i = x, y, z, V is the nanoparticle volume, ε0 the vacuum permittivity. The coefficients

Li are geometrical factors accounting for depolarization effects, reading:1

Li =
axayaz

2

∫ ∞
0

fi(q)dq, (S2)

fi(q) =
1

(a2
i + q)

√
(a2
x + q)(a2

y + q)(a2
z + q)

, (S3)

for nanoellipsoids of semi-axes ax, ay, az. The absorption and scattering cross-sections are

then computed as σA = PA/I0 and σS = PS/I0, with PA and PS the total power absorbed

and scattered by the nano-object, respectively, and I0 = 1
2

√
εmcε0|E0|2 the incident intensity,

given the incident (uniform) electric field E0. The total extinction cross-section is then simply

given by the sum σE = σA + σS. In particular, regarding the absorbed power, PA is defined

as a volume integral of the ohmic losses power density over the nanoparticle. Under QSA,

assuming that the incident electric field E0 induces a point-like electric dipole p = εmα ·E0,

we have PA = πc
λ

Im
{
pT ·E0

}
. On the other hand, the power scattered by the nanostructure

can be expressed by introducing in the QSA leading order the effects of radiation reaction
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onto the induced electric currents, which leads to PS =
4
√
εmπ3c

3ε0λ4
|p|2.

Note that, having an anisotropic polarizability (i.e. αy = αz and αx 6= αy,z), spheroids

with different orientation of the major axis with respect to the polarization of light exhibit

different amplitudes of the two plasmonic oscillations. To mimic the random orientation of

the nanorods (NRs) in the sample, the incident electric field in the simulations was written

as E0 = [cos(θx), cos(θy), cos(θz)]E0, with an average polarization angle θx = 75◦ to best fit

the experimental absorbance (θy and θz being arbitrarily chosen, in view of the degeneracy

αy = αz, under the constraint cos2(θx) + cos2(θy) + cos2(θz) = 1).

Finally, when a realistic macroscopic sample is considered, e.g. an ensemble of single-size

nanoellipsoids dispersed in aqueous solution with concentration Np, the optical quantity of

interest is the transmission of light, T , by the cuvette sample. Being L the cuvette thickness,

Lambert-Beer’s law gives

T = exp
[
− σE(α)NpL

]
. (S4)

For gold permittivity, a Drude-Lorentz model2 fitted on experimental data3 was adopted.

Finally, in order to mimic the broadening of the plasmonic resonances caused by size inho-

mogeneities and scattering defects in the NR ensemble, an increased Drude damping Γ was

introduced by following the same approach as the one reported in Ref. 4. We found a good

agreement with the linear extinction measurements for Γ/Γ0 ' 2.5, with Γ0 = 72 meV the

Drude damping in bulk gold.2

2. Permittivity Modulation

The temporal evolution of the electronic temperature ΘE determines a variation of the

occupation probability of thermalized electrons:9,10

∆fT (E, t) = f
[
E,ΘE(t)

]
− f(E,Θ0) (S5)
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where f(E,ΘE) is the Fermi-Dirac distribution and Θ0 is the equilibrium temperature in

static conditions. This modulation entails a modification ∆JT of the Joint Density of States

(JDOS) for interband optical transitions near the L-point in the irreducible Brillouin zone,

which, in turns, results in the variation of the absorption probability.5,6 Precisely,

∆JT (λ, t) = −
∫ E′′

E′
D(E, λ)∆fT (E, t)dE, (S6)

where D(E, λ) is the energy distribution of the JDOS of the considered transition, with E

the energy of the final state and λ the probe wavelength. Following the well-established9

approach proposed by Rosei and co-workers,5,6 we computed D(E, λ) under parabolic band

approximation and chose E ′ and E ′′, the effective masses, energy gaps and dipole matrix

element as in the previously cited work.6

The following step consisted in deriving the variation of the imaginary part of the inter-

band dielectric function at the probe wavelength λ:7

∆ε′′ΘE
(λ, t) =

e2λ2

12πε0m2c2
|PL|2 ∆JT (λ, t) (S7)

with m the electron mass an PL the electric-dipole matrix element. Finally, Kramers-Kronig

relations allow to retrieve the corresponding variation of the real part of the permittivity,

∆ε′ΘE
(λ, t).

Regarding the contribution to permittivity modulation arising from N(t), the calculation

of ∆εN(λ, t) proceeds similarly to ∆εΘE
(λ, t), the only difference being in the modulation

of the electron occupation probability induced by N , which is not a Fermi-Dirac function,

but rather a double step-like distribution.8 ∆εΘL
(λ, t) is instead retrieved from the modifica-

tion of the Drude permittivity, since a higher Au lattice temperature results in an increased

Drude damping factor12 and a reduced plasma frequency as a consequence of volume expan-

sion.9 The total modulation of gold permittivity is finally computed as the sum of the three

contributions detailed above, i.e. ∆ε = ∆εN + ∆εΘE
+ ∆εΘL

.
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3. Experimental Measurements

The NR samples were synthesized by seedless growth methods11 and characterized through

UV-vis extinction measurements and transmission electron microscopy (TEM, more details

in Ref. 10). The obtained NRs were in the form of prolate spheroids with aspect ratio R ' 2

(length ' 50 nm and diameter ' 25 nm) in water colloidal solution with molar concentration

np ' 0.6 nM. Due to size inhomogeneities and scattering defects, the static response of the

sample was found to be in satisfactory agreement with simulations results obtained for aspect

ratio R′ = 2.4 in the ideal monodispersed sample, and the correspondence between the two

systems was set accordingly.

Transient absorption spectroscopy was performed with a regeneratively amplified Ti:sapphire

laser (Libra, Coherent) with a fundamental at 800 nm with 1 kHz repetition rate, providing

100 fs pump pulses at the interband wavelength of 400 nm through second harmonic genera-

tion. The probe spectrum was obtained by white light continuum generation, by focusing the

fundamental wavelength beam in a 3 mm sapphire crystal. A spectrometer (SP2150 Acton,

Princeton Instruments) and a linear image sensor driven by a custom-built board (Stresing,

Entwicklungsburo) allowed to measure the transmitted probe beam after the sample, with

single-shot detection at the laser repetition rate.

4. Broadband Transient Absorption Spectroscopy

Transient absorption spectroscopy allows for determining the ultrafast dynamics of the pho-

toexcited system over a broad spectral region. Specifically, Figure S1 displays the pump-

probe signal over the visible range of wavelengths (from 450 to 700 nm) for a time delay

up to 15 ps. Results of the experiments performed for the lowest (F1) and highest (F4)

fluences (Fig. S1a and S1b, respectively) are compared to numerical simulations (Fig. S1c,

S1d), showing a good agreement over the entire spectral region under consideration. The

most pronounced mismatch is observed at the shortest wavelengths (highest energies), be-
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tween 450 and ∼ 480 nm, where simulations partially fail in reproducing the dynamics of

the negative lobe observed in the experiments.
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Figure S1: Differential transmittance maps. a-d, Experimental (a, b) and simulated (c,
d) maps of the transient absorption spectroscopy signal for the lowest (F1, 0.13 mJ/cm2 for
experiments. 0.05 mJ/cm2 for simulations) and highest (F4, 3.12 mJ/cm2 for experiments,
1.50 mJ/cm2 for simulations) fluences over a broad range of wavelengths. Black contours
highlight the isosbestic points (i.e. zeros of the ∆T/T signal). e-f, Experimental (e) and
simulated (f) static transmission spectrum of the water colloidal solution with Au NRs. The
two plasmonic resonances (TSPR and LSPR) are marked by arrows.

We ascribe such a mismatch to the interband transitions contributing to the Au photoinduced

permittivity modulation and not included in the model, which is accounting for the dominant

one only (around the L point of the Brillouin zone, see Supporting Section 2). Moreover,

Figure 1 shows the static transmission of the sample, for which again experiments (Fig. S1e)

and simulations (Fig. S1f) are in good agreement in terms of intensity, spectral position and

width of the two, longitudinal and transverse, resonances (marked by arrows) of the NR

solution. Finally, across the maps of the differential transmittance signal, the three selected
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wavelengths analysed in the main text are also highlighted (horizontal lines). Interestingly,

the ones for which nonperturbative effects are discussed in the main text (λ2 and λ3) are

shown to fall on the red wings of the LSPR and TSPR respectively, at the edges of the ∆T/T

lobes delimited by the isosbestic points.

5. The Three-Temperature Model (3TM)

The three-temperature model (3TM)8 reads as follow:

dN(t)

dt
= −aN(t)− bN(t) + Pabs(t), (S8)

CE
dΘE(t)

dt
= −G

(
ΘE(t)−ΘL(t)

)
+ aN(t), (S9)

CL
dΘL(t)

dt
= G

(
ΘE(t)−ΘL(t)

)
+ bN(t). (S10)

Here, the coefficients a and b are coupling constants detailing the relaxation of non-thermalized

electrons via electron-electron and electron-phonon scattering, respectively. CE = γEΘE and

CL are the electron and lattice heat capacities, with γE the electron heat capacity constant,

whereas G is the electron-phonon coupling coefficient. A detailed discussion on the estima-

tion of all the parameters of the 3TM is reported in Ref. 9. Note that the linear dependence

of CE on ΘE, as outlined in the main text, affects the electronic temperature dynamics in

the nonperturbative regime. Indeed, such dependence results in an increased time constant

for the hot electron temperature relaxation, which tends to become linear in time for very

high fluences. The higher is the temperature, the higher is the heat capacity, i.e. the longer

is the time required to exchange energy, because of the increased thermal inertia of the

electronic population. Furthermore, Pabs(t) is the pump pulse absorbed power in unit of

volume, representing the driving term modelling the ultrashort pump pulse photoexcitation
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and expressed as a function of the pump fluence F by

Pabs(t) =

√
2

π

σAeff(λp)F

V τp
exp (−2t2/τ 2

p ). (S11)

In this formula, σAeff is the effective absorption cross-section at the pump wavelength (λp = 400

nm) and τp = 200 fs the half width of the pump signal at 1/e2 power.

6. Modelling Au optical nonlinearities

In order to reproduce numerically the transient absorption spectroscopy measurements, we

implemented a multi-step model for the photoexcitation and the subsequent energy relax-

ation processes taking place in plasmonic nanostructures upon illumination with ultrashort

laser pulses. Figure S2 summarises our approach by illustrating a schematic of the model,

starting from the information on the incident pump pulse (top left) to determine the dy-

namical ∆T/T signal (bottom right) to compare with experiments.

De = De' + iDe''

Pump 
Fluence 

Pabs(t)

3TM

DT/T

N(t)

QL(t)

DfN

DG, Dwp

QE(t) Full 
model

DfT =  f (QE) - f (Q0) Linearized
model

DfT = DQE∂f ∂QE Q0
*

Figure S2: Modelling Au optical nonlinearities upon ultrashort laser pulse illumi-
nation. Schematic of the algorithm for the implementation of the numerical model employed
to predict the dynamical evolution of the differential transmittance signal ∆T/T retrieved
by transient absorption spectroscopy experiments.

The photoexcitation level of the structure is set by the fluence of the pump, its value

being used to determine Pabs(t), the power density (Eq. S11) absorbed by the nano-objects

and following the time evolution of the pump pulse. Such quantity, as outlined in Supporting

section 5, acts as the drive term of the 3TM, which in turn, when integrated, provides the
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dynamics of the energetic degrees of freedom of the plasmonic nanostructure, i.e. N(t),ΘE(t)

and ΘL(t). With those three time-dependent quantities at hand, the permittivity modula-

tion of Au driven by each of them is then computed, following the procedure mentioned in

the Supporting section 2. Specifically, (from top to bottom of the central panel in Fig. S2)

the energy density stored in the nonthermal fraction of electrons N(t) results in a mod-

ification of the electronic energy distribution ∆fN , the excited electron temperature ΘE

determines a change of the hot electron distribution ∆fT , and finally, as a consequence of

an increased lattice temperature ΘL, the Drude damping Γ and the plasma frequency ωp are

modified. Importantly, based on the same temporal evolution of the electronic temperature,

two approaches can be pursued to determine the variation in the thermalised hot electron

distribution ∆fT . According to the model we refer to as full in the main text, i.e. fully

nonperturbative, ∆fT is at each time instant is given by the rigorous difference between

the Fermi-Dirac distribution corresponding to an excited ΘE and the static f(E,Θ0), as

written in Eq. S5. Conversely, when the linearised model is considered, such ∆fT is, indeed,

linearised with respect to the electronic temperature variation. Its expression, written in

the central box as well as in the main text, is given by the product of the temperature in-

crease, ∆ΘE, by an energy-dependent constant factor, computed as the partial derivative of

f(E,ΘE) with respect to ΘE, evaluated at a given temperature Θ∗0. As such, the linearised

model treats ∆fT as if it has a constant distribution in energy (fixed by and corresponding to

the one of such factor, depending exclusively on the electron energy), modulated in time by

the dynamical evolution of the electronic temperature throughout the photoexcitation (the

solution of the 3TM). As a result, no smearing of the Fermi-Dirac distribution is observed

in the case of the linearised model, since the structure in energy of f(E) is the same over

time, regardless of the value of ΘE. Subsequently, once the modification in the hot electron

energy distribution has been computed for each time instant of the simulations, the model

of Au thermo-modulational nonlinearities5 outlined in Supporting section 2 is applied over

time to determine the corresponding variation of Au permittivity (Eqs. S6-S7). Eventually,
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corresponding to the modified time-dependent optical properties of the structure, an excited

polarizability (Eq. S1) is then computed and employed to determine (by iteratively applying

Eq. S4) the dynamical evolution of the system transmission and the differential signal ∆T/T .

7. Nonthermal electron contribution

To ascertain the role of thermalised and nonthermal electrons as the origin of the non-trivial

dynamics of the pump-probe signal experimentally observed and theoretically predicted, we

employed our model to disentangle the contributions to the optical modulation arising from

the three energetic degrees of freedom of the plasmonic nanostructure, that is, N , ΘE and ΘL.

Figure S3 reports such disentanglement of the differential transmittance ∆T/T computed for

the wavelength λ2 = 546 nm examined in the main text, for the simulated fluences F1 = 0.05

mJ/cm2 (Fig. S3a-S3d) and F3 = 0.64 mJ/cm2 (Fig. S3e-S3h).
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Figure S3: Ultrafast differential transmittance signal disentanglement. a - d, The
total simulated ∆T/T signal (a) at λ2 = 546 nm computed for a pump pulse fluence of
F1 = 0.05 mJ/cm2 is disentangled in terms of contributions arising from nonthermal hot
carriers (b), thermalised electrons (c) and the metal lattice (d).e - h, Same as (a - d) for a
pump pulse fluence of F3 = 0.64 mJ/cm2.

Consistently with the discussion presented in the main text, the total signal (Fig. S3a,
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S3e) is shown to be dominated for both fluences by the effect arising from thermalised

electrons (Fig. S3c, S3g), which contribute to the optical modulation to a much larger extent

than nonthermal carriers, mostly acting on an ultrafast (sub-ps) timescale (Fig. S3b, S3f)

and the lattice, much slower (Fig. S3d, S3h). Moreover, also in the nonperturbative regime,

thermalised hot carriers are demonstrated to be at the origin of the peculiar dynamics of the

∆T/T . Indeed, by inspecting the dynamics of the disentangled signals at high fluence (right

panels), the contribution arising from N (Fig. S3f) cannot explain the abrupt changes in

the total differential transmittance (Fig. S3e), both for relative magnitude and sign (N gives

a positive transmission modulation). On the contrary, the signal due to ΘE (Fig. S3g, as

well as Fig. 3f in the main text) precisely follows the non-trivial temporal trend of the total

∆T/T , which can thus be understood by considering the non-perturbative effects discussed

in the main text. Moreover, note that at low fluence, the ∆T/T due to thermalised electrons

(Fig. S3c) follows the regular trend typical of the pump-probe signal in the weak perturbation

regime (i.e. preserving the electronic-optical correspondence), and the negative peak observed

at high fluence (Fig. S3g) disappears, since indeed due to non-perturbative nonlinear effects.

Conversely, although scaled because of the decreased absorbed power, nonthermal electrons

still give the same positive peak within the first ps as at high fluence (compare Fig. S3b and

S3f).

In general, however, nonthermal and thermalised electrons can indeed produce a non-

trivial interplay of contributions to the optical modulation, resulting in complex dynamics

of the ∆T/T signal even in the weak perturbation regime, as they give effects which are

dispersed in wavelength (possibly with opposite sign in certain spectral regions) and acting

on delayed yet ultrafast timescales. To illustrate the phenomenon (accurately captured by

our model, as also shown in previous reports9,13,14), we analysed the experimental optical

modulation for the lowest pump fluence F1 = 0.13 mJ/cm2 at an exemplary wavelength

λ4 of 650 nm and compared measurements with simulations (performed with the linearised

model for the hot electron energy distribution) at 635 nm for F1 = 0.05 mJ/cm2 (same

11



values as in the main text). Temporal traces of the differential transmittance are reported in

Fig. S4a and S4b respectively. Indeed, an ultrafast non-trivial dynamics in the total ∆T/T

is observed, with an ultrafast positive peak and a sign reversal within the first ∼ 300 fs, a

negative peak reached at ∼ 500 fs, and a further sign change at ∼ 2 ps.
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Figure S4: Ultrafast dynamics of the differential transmittance signal. a, Experi-
mental pump-probe trace recorded at λ4 = 650 nm for a pump fluence of F1 = 0.13 mJ/cm2.
b-e, The total simulated ∆T/T signal (b) is disentangled in terms of contributions arising
from nonthermal electrons (c), thermalised hot carriers (d) and the metal lattice (d). In the
simulation, λ4 = 635 nm and F1 = 0.13 mJ/cm2.

By disentangling the contributions to the ∆T/T arising from nonthermal electrons, ther-

malised carriers and the lattice, each of the main features of the dynamics can in fact be

ascribed to one specific of the three terms. The first ultrafast peak could be interpreted as

the fingerprint of nonthermal electrons, giving a positive contribution to modulation at 635
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nm during the early times following photoexcitation (Fig. S4c). After hundreds of fs, the

thermal electron contribution, negative at this wavelength, starts being the dominant one

(Fig. S4d), explaining the change in sign at 300 fs. Then, at longer times, the contribu-

tion due to the lattice heating arises, bringing the signal from negative to positive values

(Fig. S4e).
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