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Abstract
Nonlocal quantum fluids emerge as dark-matter models and tools for quantum simulations and
technologies. However, strongly nonlinear regimes, like those involving multi-dimensional
self-localized solitary waves, are marginally explored for what concerns quantum features. We
study the dynamics of 3D+1 solitons in the second-quantized nonlocal nonlinear
Schrödinger–Newton equation. We theoretically investigate the quantum diffusion of the soliton
center of mass and other parameters, varying the interaction length. 3D+1 simulations of the Ito
partial differential equations arising from the positive P-representation of the density matrix
validate the theoretical analysis. The numerical results unveil the onset of non-Gaussian statistics of
the soliton, which may signal quantum-gravitational effects and be a resource for quantum
computing. The non-Gaussianity arises from the interplay between the soliton parameter quantum
diffusion and the stable invariant propagation. The fluctuations and the non-Gaussianity are
universal effects expected for any nonlocality and dimensionality.

1. Introduction

Three-dimensional (3D) self-localized nonlinear waves enter various fields of research [1, 2], but their
quantum properties are unexplored. Classical 3D solitary waves (in short, 3D solitons) need to be stabilized
against catastrophic collapse. Nonlocality is a well-known mechanism for the stabilization [3–5] and
nonlocal soliton are a fascinating research direction involving long-range Bose–Einstein condensates
(BECs) [6–9], boson stars [10] and dark-matter models [11, 12]. However, a mean-field description that
overlooks quantum effects provides limited information on the dynamics of self-trapped multidimensional
waves. This limitation is specifically relevant as recent investigations suggest the solitons as non-classical
sources for quantum technologies and fundamental studies [13–18]. Results in 1D [19, 20] show that
nonlocality frustrates fluctuations. However, despite ab-initio investigations on long-range
interactions [21, 22], the quantum statistics of self-trapped 3D nonlocal solitons is an open issue.

In addition, recent work on gravitational interaction in BEC predicts non-Gaussian statistics [23].
Non-Gaussianity is a resource for continuous-variable quantum information science [24, 25] and its
understanding in quantum fluids may enable new universal quantum processors. Also, emerging of
non-Gaussian statistics in table-top experiments may open the way to study—or simulate—quantum gravity
in the laboratory. Howl et al [23] predicts that a BEC in a trap, once prepared in a squeezed state or
Schrödinger-cat state, triggers the non-Gaussian statistics measured by a signal-to-noise ratio (SNR)
parameter, which reveals quantized gravity. However—so far—no experiments or numerical simulations
validate these theoretical predictions. Also, quantum fluctuations and non-Gaussianity in multidimensional
self-trapped solitonic nonlocal condensates have never been considered before.
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Here, we study theoretically and numerically the quantum dynamics 3D nonlocal solitons. We use a
perturbative approach and we analytically predict the quantum diffusion of the soliton position and other
parameters. We validate our analytical results by ab-initio numerical simulations based on the 3D+1 positive
P-representation [21, 22, 26]. We compute the SNR parameter introduced in [23], which shows that
non-Gaussianity arises in the quantum dynamics of 3D+1 nonlocal solitons, starting from a coherent state.

2. Model and scaling

We consider the many-body Hamiltonian

Ĥ=
ℏ2

2m

ˆ
∇ψ̂† ·∇ψ̂d3x+

ˆ
U(x− x ′)ψ̂†(x ′)ψ̂(x)†ψ̂(x ′)ψ̂(x)d3xd3x ′ , (1)

withm is the boson mass, and U is the interaction potential. We adopt the phase-space representation
methods [21, 27] for studying the nonlocal interaction. The quantum field model is equivalent to a
Fokker–Planck equation, which is mapped to Ito nonlinear partial differential equations coupling two fields
ψ, and ψ+

ıℏ∂tψ =− ℏ2

2m
∇2ψ+ψU ∗ ρ+

√
ıℏψξU

−ıℏ∂tψ+ =− ℏ2

2m
∇2ψ+ +ψ+U ∗ ρ+

√
−ıℏψ+ ξ+U (2)

where the asterisk denotes a convolution integral. In (2) ρ= ψ+ψ, ξU and ξ+U are independent noises such
that

⟨ξU(x, t)ξU(x ′, t ′)⟩= ⟨ξ+U (x, t)ξ
+
U (x

′, t ′)⟩= U(x− x ′)δ(t− t ′) . (3)

The total number of particles is
´
ψψ+ d3x, its mean value is NT =

´
⟨ψψ+⟩d3x; the brackets here denote the

mean-field solution obtained with ξU = ξ+U = 0.
In our numerical calculations below, we consider self-gravitating screened potential U=−Gm2e−r/Λ/r,

where Λ is the interaction length. Gmeasures the coupling corresponding to the gravitational constant, butU
also models other long-range interactions as, e.g. thermal effects in photonic BEC [8]. The mean-field theory
is obtained by ξU = ξ+U = 0, and ψ+ = ψ∗, and corresponds to the Schrödinger–Newton equation [28].

We write the stochastic equations in dimensionless units by letting

(x,y,z) → (x,y,z)r0

t → tt0(
ψ,ψ+

)
→

(
ψ,ψ+

)
ψ0

and

t0 = 2mr 20/ℏ , (4)

ψ2
0 =

ℏ2

2Gm3r40
, (5)

n0 =
ℏ2

2Gm3r0
=

NT

M
(6)

being

M=

ˆ ⟨
ψψ+

⟩
d3x . (7)

n0 measures the number of particles in the condensate in units ofM, the norm of the numerically obtained
bound state profile (equation (13) below).

In the dimensionless units, equations (2) read

+ı∂tψ+∇2ψ−ψU ∗ ρ= s

−ı∂tψ+ +∇2ψ+ −ψ+U ∗ ρ= s+ (8)

2
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with

U=− e−r/σ

r
, (9)

σ = Λ/r0 and

s=
√

ı
n0
ξUψ ,

s+ =
√

−ı
n0
ξ+U ψ

+ .
(10)

ξU(x,y,z, t) and ξ
+
U (x,y,z, t) are uncorrelated noise terms such that

⟨ξU(x, t)ξU(x ′, t ′)⟩= ⟨ξ+U (x, t)ξ
+
U (x

′, t ′)⟩= U(x− x ′)δ(t− t ′). (11)

σ and n0 are the dimensionless interaction length and particle number, respectively.
According to equation (6), one can either fix r0 or n0 to set all the other normalization constants. We

choose to use n0 because it appears explicitly in the normalized equation in a way such that the limit n0 →∞
corresponds to the mean-field regime. Indeed, the total mean particle number is NT = n0M.

Once we have the numerical solution of the bound state (equation (13) below), which is determined by
the scale σ, we study its quantum fluctuations by numerically solving equation (8). In this paper, we fix a
specific value for n0, which allows us to perform numerical simulations with unitary time-scale in our
normalized scale (i.e. t≃ 1 as in figure 2), and we study the effects of a varying interaction length σ.

3. Self-gravitating non-local soliton

In the mean-field theory, equations (8) admit a stable radially-symmetric bound-state solution: a
self-localized 3D solitary wave. We write the solution with a Galileian boost as

ψ = u(xa −Xa)exp

[
ıθ− ıEt+

i

2
V a(xa −Xa)

]
, (12)

ψ+ = ψ∗, with a= 1,2,3, x1 = x, x2 = y, x3 = z and omitting the sum symbol over repeated Latin indices.
u(xa) is the real-valued soliton profile, such that

∆u−U ∗ u2u= Eu . (13)

The soliton energy E is time-independent. For the position Xa = Xa(t), we have (dot is the time-derivative)

Ẋa = V a

V̇ a = 0

θ̇ =
1

4
V2, (14)

with V2 = δabV aVb, and δab the Kronecker symbol (b= 1,2,3). Equations (14) imply

Xa = Xa(t) = Xa(0)+V a t ,

θ = θ(t) = θ(0)+
1

4
V2 t . (15)

Figure 1 shows the evolution of the time-invariant soliton profile obtained from equation (13), compared
with the evolution in the absence of nonlinearity (U = 0). We also show the soliton compared with
corresponding potential U ∗ ρ. The field profile and the potential are computed numerically. We use a
pseudo-spectral parallel relaxation procedure in a 3D Cartesian domain. Figure 1 shows the calculated
classical bound state u. In the absence of interaction, the mass spreads upon evolution. In the presence of
self-attraction, the solitonic wave packet is invariant upon propagation.

3
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Figure 1. Self-gravitating solitonic core. (a) Comparison of time dynamics with and without interaction (G= 0); 3D isodensity
surfaces at different instants for freely evolving fields (top panel) and in the presence of the nonlinearity (bottom panel) with the
time-invariant self-trapped wave-packet. (b) Two-dimensional projection (average in the z-direction) of the density profile (blue)
and resulting long-range potential (yellow).

4. Quantum effects on the 3D nonlocal soliton

In the quantum regime, with ξU ̸= 0 and ξ+U ̸= 0, the soliton, initially prepared in a coherent state, evolves
with fluctuations depending on the interaction length σ. The 3D+1 stochastic partial differential equations
in (8) are solved by following Drummond and Chaturvedi [21]. We adopt an iterative stochastic solver with
pseudospectral discretization and parallelized with the Fastest Fourier Transform in the West (FFTW) [29]
and the message passing interface (MPI) protocol. Figure 2(a) shows the numerical solution of the stochastic
equation (8), which unveils that the soliton undergoes a random walk (figures 2(c)–(e)).

To study the quantum regime, we derive equations for the soliton parameters by (8) using soliton
perturbation theory. In the presence of noise, equation (14) are replaced by stochastic differential equations,
which we derive by introducing the vectorial notation

ψ =

(
ψ

ψ+

)
. (16)

Equation (8) are written as

ıσ3∂tψ+∆ψ−U ∗ (ψψ+)ψ = s , (17)

with the Pauli matrix

σ3 =

(
1 0
0 −1

)
, (18)

and

s=

(
s
s+

)
. (19)

We introduce the following vector

e=

(
eıθ−ıEt+ i

2V
a(xa−Xa)

e−ıθ+ıEt− i
2V

a(xa−Xa)

)
, (20)

being u= u(xa −Xa,E) solution of equation (13). We also define

fθ = eu (21)

4
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Figure 2. Classical and quantum evolution of the 3D+1 nonlocal soliton. (a) Isosurfaces of the density ρ of the solitonic core at
different instants. We show a single run (top panel), an average of 10 runs, and the classical propagation invariant solution
(bottom panel). (b) Diffusion coefficient DX after (56) for various degrees of nonlocality σ. (c)–(e) Computed trajectories for the
X1(t) displacement for 100 runs for three values of σ. The thick line is the standard deviation ⟨X1(t)2⟩1/2, the dashed line is (56)
for comparison with theory without fitting parameters.

fE = ıσ3e
∂u

∂E
, (22)

f aX =−ıσ3e
∂u

∂xa
, (23)

f aV = e
1

2
(xa −Xa)u . (24)

We introduce a scalar product for two vectors f and g such that

(f,g) = 2ℜ
ˆ
f∗ · gd3x . (25)

By using this scalar product, we build a bi-orthogonal system by the conjugate vectors to (21)–(24)

f̂θ = ıσ3fE (26)

f̂E =−ıσ3fθ (27)

f̂ aX = ıσ3f
a
V (28)

5
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f̂ aV =−ıσ3f aX . (29)

We have (̂
f aX, f

b
X

)
=
(̂
f aV, f

b
V

)
=Mδab (30)

and (̂
fE, fE

)
=
(̂
fθ, fθ

)
= dM

dE(̂
fθ, fE

)
=
(̂
fE, fθ

)
= 0 ,

(31)

with

M=

ˆ
u2 d3x (32)

and all the other scalar products are vanishing.
In the presence of the quantum noise s, we assume that all the soliton parameters are time-dependent,

and using (12) and we have after (8)

ıσ3∂tψ+∆ψ−U ∗ (ψψ+)ψ = s= fθ
(
−θ̇+ tĖ+ 1

2V
aẊ a − V2

4

)
+ fEĖ+ f aX

(
Ẋ a −V a

)
+ f aV

(
−V̇ a

)
(33)

where the dot indicates the time derivative. Equation (33) are valid at the lowest order of perturbation,
higher orders can be determined by radiative corrections to the soliton profile. By scalar multiplying by f̂Xa

and f̂V a , we obtain the stochastic equations for the position and the velocity of the soliton

MẊ a =MV a +
(̂
f aX,s

)
(34)

MV̇ a =−
(̂
f aV,s

)
. (35)

Equations (34) and (35) describe the dynamics of the soliton position and velocity with quantum noise.
Seemingly, we get equations for θ and E. At the lowest order in t and letting V a = Xa = 0 at t= 0, we have

M ′Ė=
(̂
fE,s
)

(36)

M ′θ̇ =−
(̂
fθ,s
)

(37)

being

M ′ =
dM

dE
. (38)

5. Quantum-induced parameter diffusion and randomwalk

We have for the perturbation vector s,

s=

√
ı

n0

(
ξU
ıξ+U

)
ue . (39)

As detailed in appendix A, by using (39), (34), (35) and (29), we obtain

MẊ a =MV a + F a
X(X, t) (40)

MV̇ a = F a
V(X, t) (41)

where F a
X and F a

V, with a= 1,2,3, are stochastic terms acting on the position Xa and velocity Va of the
soliton with massM. We have

F a
X =

1
√
n0

ˆ
ρ(x−X)(xa −Xa)ξ+(x, t)d

3x (42)

6
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F a
V =

1
√
n0

ˆ
∂ρ

∂xa
(x−X)ξ+(x, t)d3x (43)

with X= (X1,X2,X3) the soliton position, ρ= u2, and ξ+(x, t) a real noise such that

⟨ξ+(x ′, t ′)ξ+(x, t)⟩=−U(x− x ′)δ(t− t ′) . (44)

For the stochastic terms in equation (41) we have

⟨FaX(X, t)FbX(X, t ′)⟩=
1

n0
Qa

Xδabδ(t− t ′) , (45)

⟨FaV(X, t)FbV(X, t ′)⟩=
1

n0
Qa

Vδabδ(t− t ′) , (46)

⟨FaX(X, t)FbV(X, t ′)⟩=
1

n0
Qa

XVδabδ(t− t ′) , (47)

with the correlation coefficients

Qa
X =−

ˆ
xa1x

a
2ρ(x1)ρ(x2)U(x1 − x2)d3x1 d3x2 (48)

Qa
V =−

ˆ
∂ρ(x1)

∂xa1

∂ρ(x2)

∂xa2
U(x1 − x2)d3x1 d3x2 (49)

Qa
XV =−

ˆ
xa1ρ(x1)

∂ρ(x2)

∂xa2
U(x1 − x2)d3x1 d3x2. (50)

Equations (40) and (41) with Xa(0) = V a(0) = 0 give for the moments

⟨[V a(t)]2⟩= Da
Vt , (51)

and

⟨[Xa(t)]2⟩= Da
Xt+Da

XVt
2 +Da

V
t3

3
. (52)

The velocity and the position undergo a diffusive random walk with

Da
X =

Qa
X

n0M2
(53)

Da
V =

Qa
V

n0M2
(54)

Da
XV =

Qa
XV

n0M2
. (55)

The diffusion in the position in (52) arise from both the quantum noise and the diffusion of the velocity. At
the lowest order in t, we have

⟨[Xa(t)]2⟩= Da
Xt+Da

XVt
2 +Da

V
t3

3
≃ Da

Xt . (56)

For the random walk of θ and E, we obtain after equation (37)

⟨E(t)2⟩ ≃ DEt
⟨θ(t)2⟩ ≃ Dθt

(57)

with

DE =− 4

(M ′)2n0

ˆ
ρ(x1)ρ(x2)U(x1 − x2)d3x1 d3x2 , (58)

Dθ =− 1

(M ′)2n0

ˆ
ρ ′(x1)ρ

′(x2)U(x1 − x2)d3x1 d3x2 , (59)

being ρ ′(x) = ∂ρ(x)/∂E.

7
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For the radially symmetric soliton, we show in figure 2(b) the diffusion coefficient D1
X = D2

x = D3
x = DX,

as obtained by the numerical profile u computed with the screened gravitational potential U. One finds that
for a growing σ the quantum diffusion is frustrated, as it happens in 1D [19, 20]. This can be deduced
from (48), indeed, as σ→∞, one has U(x1 − x2)≃ constant, and Qa

X → 0, as for the soliton profile
ρ(x) = ρ(−x).

We compare (56) with the full 3D+1 stochastic simulations and we find excellent agreement, as shown in
figures 2(c)–(e) where we report the dynamics of solitary waves with n0M≃ 106 atoms.

The diffusion constant D= ℏDX/2m in physical units reads

D=

(
Q2

X

2n0M2

)
ℏ
m

=

(
Q2

X

2M

)
ℏ

NTm
. (60)

In equation (60) equation NT = n0M is the total number of particles, and NTm= n0Mm the total mass of the
condensate. Q2

X/2M is a numerical constant that depends on the profile of the soliton and Λ. We find that
quantum fluctuations vanish when NT →∞ or ℏ→ 0. In the original units of equation (2), the diffusion
constant can be also cast as

D=
Gm2

ℏ

ˆ ˆ
x1ρ(x1)´
ρd3x

x2ρ(x2)´
ρd3x

e−|x1−x2|/Λ

|x1 − x2|
d3x1 d

3x2 . (61)

We remark that equation (61) is written in the original physical units of equation (2), such that in
equation (61) x is a length and the dimensions of D arem2/s in the MKS system. Equation (61) shows the
interplay of quantum and gravitational effects through the ratio Gm2/ℏ and returns D in terms of the
measurable density profile ρ(x).

6. Non-Gaussian statistics

In our stochastic simulations, the initial state is a coherent state, whose statistical properties change upon
evolution. Here we follow [23] to determine if deviations from Gaussianity arise. We report in figure 3(a) the
evolution of the statistical distribution of the density ρ(x= 0) as computed by equation (8) at the center of
the classical solitonic core. The initial state is coherent, and the histogram is localized in the initial value of
the peak. Upon evolution, the distribution spreads and manifestly displays a bell-shaped non-Gaussian
profile. Similar behavior is also obtained for the quadratures of the field (not reported).

To quantify the deviation from Gaussianity, we consider the SNR introduced in [23]

SNR=
|κ4|√
vark4

(62)

here κ4 is the fourth cumulant of the statistical distribution. vark4 is its uncertainty (see appendix B). For
Gaussian statistics, all the cumulants higher than second order vanish, hence SNR measures deviation from
non-Gaussianity including the uncertainty vark4 due to a finite number of samples. We compute SNR for the
density and the field quadratures with similar results.

At variance with [23], we account for the heterogeneous features of SNR, i.e. we measure SNR in
different spatial locations. Figure 3(b) shows the 3D isosurface of the SNR at different instants. The statistical
distributions at different positions become non-Gaussian with time. Figure 3(c) shows the spatially averaged
value of the SNR, which demonstrates that a self-trapped solitonic wave packet develops non-Gaussian
statistics. Results in figure 3 refer to a representative case with n0M≃ 104 atoms; we found these dynamics
for different interaction lengths and particle numbers.

To understand the physical origin of the non-Gaussianity, we observe that—at the lowest order in t—the
soliton parameters Xa, Va, θ, and E, are the time-integral of white noise terms (i.e. Wiener processes). Thus
they are the sum of many independent variables and hence obey Gaussian statistics. Non-Gaussianity arises
from the fact that the soliton profile is a nonlinear function of these parameters, and any observable depends
on the soliton profile. In general terms, the statistical distribution of a nonlinear function of a Gaussian
variable is expected to be non-Gaussian. Thus, as far as the soliton is stable with respect to fluctuations,
non-Gaussianity arises. Nonlocal solitons are stable self-trapped nonlinear waves, and their robustness
against quantum fluctuations induces non-Gaussianity.

8
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Figure 3. Time evolution and non-Gaussianity of the statistical distribution of 3D nonlocal solitons. (a) Histogram (after 1000
runs) at different instants of the density ρ computed at the classical soliton peak x= 0; the vertical axis is truncated at 300, the
number of counts at t= 0 and ρ(0) = 1.0 is 1000 as indicated by the arrow. (b) Temporal evolution of the spatial distribution of
the non-Gaussianity parameter SNR of the density as 3D isosurfaces. (c) Mean value of the SNR computed on the spatial profile
versus time (parameters σ = 1,M= 138, n0 = 102).

7. Summary

In conclusion, we studied theoretically and by first-principle numerical simulations the 3D+1 dynamics of
non-local self-gravitating boson fluids. The quantum noise induces diffusion in the self-localized
wave-packet position determined by the degree of nonlocality and the particle number. The theoretical
results agree with ab-initio 3D+1 simulations with no fitting parameters.

The quantum diffusion is due to the interplay of the quantum fluctuations and the long-range
self-interaction. This interplay causes non-Gaussian statistics that spread in the solitonic core upon
evolution. We remark that this is a universal phenomenon that is not dependent on the specific interaction
potential U but arises from the general stability properties of solitons.

Experimental investigations may involve long-range Bose–Einstein condensates (see, e.g. [8] and
references therein), and also nonlinear optical systems, where low-dimensional reductions of the
Schrödinger–Newton equation have been considered [30].

The results open the way to using non-Gaussian multidimensional solitary waves as non-classical
reservoirs for continuous-variable quantum information and as quantum simulators for quantum gravity
models. Notably enough, the numerical simulations suggest that signatures of a quantized gravity may arise
even without careful preparation of the initial state as Schrödinger cat (or squeezed state), but starting from a
coherent solitonic state. Also, the results show the relevance of quantum fluctuations in cold dark-matter
models, which can potentially impact the investigation of self-gravitating BEC and enable tests within
astrophysical observations.
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Appendix A. Stochastic equations for the soliton parameter

The perturbation vector is written as

s=
1

√
n0

( √
ıξU√
−ıξ+U

)
ue ,

where the two independent complex noises ξU and ξ+U are such that

⟨ξU(x, t)ξU(x ′, t ′)⟩= U(x− x ′)δ(t− t ′) (A1)

and

⟨ξ+U (x, t)ξ
+
U (x

′, t ′)⟩= U(x− x ′)δ(t− t ′) , (A2)

9
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being U(x) =−exp(−r/σ)/r< 0. We let

ξU(x, t) = ıC(x)ξ(x, t)

ξ+U (x, t) = ıC(x)ξ+(x, t) (A3)

which satisfy (A1) and (A2), with C(x) a real-valued function such that

C(x) ∗C(−x) =
ˆ

d3x ′C(x− x ′)C(−x ′) =−U(x)> 0 , (A4)

or, equivalently,

ˆ
C(x− x ′)C(y− x ′)d3x ′ =−U(x− y)> 0 . (A5)

Following equation (34), we need the scalar product
(̂
f aX, s

)
at Xa = 0, that is

√
n0
(̂
f aX,s

)
= 2ℜ

ˆ
d3x
[
−ıσ3

(̂
f aV

)∗]
· s

= ℜ
ˆ

d3xxau2(x)
(
−ı

√
ıξU + ı

√
−ıξ+U

)
= ℜ
ˆ

d3xxau2C ∗ (
√
ıξ−

√
−ıξ+)

=

ˆ
d3xxau2C ∗ ξ− ξ+√

2
(A6)

=

ˆ
d3xxau2C ∗ ξ− , (A7)

with ξ− ≡ (ξ− ξ+)/
√
2 a real noise such that ⟨ξ−(x, t)ξ−(x ′, t ′)⟩= δ(x− x ′)δ(t− t ′). Seemingly, we have

in equation (35)

√
n0
(̂
f aV,s

)
=

ˆ
d3x

(
−∂u

2

∂xa

)
C ∗ ξ− . (A8)

To solve the resulting Ito stochastic equations we define ξ+ = C ∗ ξ− [see (43)], and

FaX(t) =

ˆ
d3x

(̂
f aX,s

)
=

1
√
n0

ˆ
d3xxau2C ∗ ξ− =

1
√
n0

ˆ
d3xxau2ξ+ , (A9)

and

FaV(t) =−
ˆ

d3x
(̂
f aV,s

)
=

1
√
n0

ˆ
d3x

∂u2

∂xa
C ∗ ξ− =

1
√
n0

ˆ
d3x

∂u2

∂xa
ξ+ . (A10)

Equations (34) and (35) read

MẊ a =MV a + FaX(t)

MV̇ a = FaV(t) . (A11)

Equation (A11) are solved by quadratures with Xa(0) = Va(0) = 0 as follows

MVa(t) =

ˆ t

0
FaV(s)ds (A12)

MXa(t) =M

ˆ t

0
Va(s)ds+

ˆ t

0
FaX(s)ds=

ˆ t

0

ˆ s

0
FV(u)duds+

ˆ t

0
FaX(s)ds . (A13)

From (A12) we have

M2⟨Va(t)Vb(t ′)⟩=
ˆ t

0

ˆ t ′

0
FaV(s)F

b
V(s

′)dsds ′ . (A14)

10
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From (A13)

M2⟨Xa(t)Xb(t ′)⟩=
ˆ t

0

ˆ s

0

ˆ t ′

0

ˆ s ′

0
⟨FaV(u)FbV(u ′)⟩dudu ′ dsds ′

+

ˆ t

0

ˆ t ′

0

ˆ s

0
⟨FaV(u)FbX(s ′)⟩duds ′ ds

+

ˆ t

0

ˆ t ′

0

ˆ s ′

0
⟨FaV(u ′)FbX(s)⟩du ′ ds ′ ds

+

ˆ t

0

ˆ t ′

0
⟨FaX(s)FbX(s ′)⟩dsds ′. (A15)

We also have from equations (A9) and (A10) the following

⟨FaV(t)FbV(t ′)⟩=
1

n0
Qa

Vδabδ(t− t) (A16)

⟨FaX(t)FbV(t ′)⟩=
1

n0
Qa

XVδabδ(t− t) (A17)

⟨FaX(t)FbX(t ′)⟩=
1

n0
Qa

Xδabδ(t− t) (A18)

where we accounted for the fact that u2(x) = u2(−x), and (48), (49) and (50) hold. By using in (A14)
and (A15) and letting t= t ′ we have equations (51) and (52). Similar arguments lead to (57).

Appendix B. Non-Gaussianity parameter

The fourth order cumulant κ4 is computed by using the value of the density ρ(x, t), or of the field
quadratures. Denoting as q a value of a single run, we first determine the non-central moments
(m= 0,1,2, . . .)

µ ′
m = ⟨qm⟩ . (B1)

Then we compute the first 8 cumulants κn with κ1 = µ ′
1, and (n> 1)

κn = µ ′
n −

n−1∑
m=1

κn−mµ
′
m . (B2)

For the k−statistics, we have ⟨k4⟩= κ4, and, lettingM the number of runs,

var(k4) = ⟨(k4 −κ4)
2⟩=+

κ8
M

+ 16
κ2κ6
M− 1

+ 48
κ3κ5
M− 1

+ 34
κ24

M− 1

+ 72
Mκ22κ4

(M− 1)(M− 2)
+ 144

Mκ2κ
2
3

(M− 1)(M− 2)
+ 24

M(M+ 1)κ22
(M− 1)(M− 2)(M− 3)

. (B3)
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