
Compressed Indexes for
Fast Search of Semantic Data

(Extended Abstract)

Raffaele Perego
ISTI-CNR, Pisa, Italy

Giulio Ermanno Pibiri
ISTI-CNR, Pisa, Italy

Rossano Venturini
University of Pisa, Pisa, Italy

Abstract—The sheer increase in volume of RDF data demands
efficient solutions for the triple indexing problem, that is devising a
compressed data structure to compactly represent RDF triples by
guaranteeing, at the same time, fast pattern matching operations.
This problem lies at the heart of delivering good practical
performance for the resolution of complex SPARQL queries on
large RDF datasets. We propose a trie-based index layout to solve
the problem and introduce two novel techniques to reduce its
space of representation for improved effectiveness. The extensive
experimental analysis reveals that our best space/time trade-off
configuration substantially outperforms existing solutions at the
state-of-the-art, by taking 30–60% less space and speeding up
query execution by a factor of 2–81 times.

I. THE PERMUTED TRIE INDEX

The Resource Description Framework (RDF) is a W3C
standard offering a general graph-based model for describing
information as a set of (subject, predicate, object) relations,
known as triples. Each one of these components is a URI string
(or even a literal in the case of an object). Since URI strings
can be very long and the same URI generally appears in many
RDF statements, the components of triples are commonly
mapped to an integer ID to save space, so that each triple in the
dataset can be represented with three integers. In this work, we
focus on reducing the space of representation of the integer
triples while attaining to efficient resolution of all possible
selection patterns, noting that this is crucial for guaranteeing
practical SPARQL query evaluation [Perego et al., 2020].

As a high-level overview, our solution maintains three
different permutations of the triples, with each permutation
sorted to allow efficient searches and effective compression
as we are going to detail next. The permutations chosen are
SPO, POS and OSP in order to (symmetrically) support all the
six different triple selection patterns with one or two wildcard
symbols: SP? and S?? over SPO; ?PO and ?P? over POS;
S?O and ??O over OSP. The two additional patterns with,
respectively, all symbols specified or none, can be resolved
over any permutation, e.g., over the canonical SPO in order
to avoid permuting back each returned triple.

Each permutation of the triples is represented as a trie with
3 levels, where nodes at the same level concatenated together
to form an integer sequence. We keep track of where groups of
siblings begin and end in the concatenated sequence of nodes
by storing such pointers as absolute positions in the sequence
of nodes. Therefore, the pointers are integer sequences as

well. The advantage of this layout is two-fold: first, we can
effectively compress the integer sequences that constitute the
levels of the tries to achieve small storage requirements;
second, the triple selection patterns are made cache-friendly
and, hence, efficient by requiring to simply scan ranges of
consecutive nodes in the trie levels. In the following, we refer
to this solution as the 3T index.
Cross Compression. It is possible to employ levels of the
tries to compress levels of other tries, thus holistically cross-
compressing the different permutations. Cross-compression
works by noting this crucial property: the nodes belonging
to a sub-tree rooted in the second level of trie j are a subset
of the nodes belonging to a sub-tree rooted in the first level of
trie i, with j = (i+2) mod 3, for i = 0, 1, 2. The correctness
of this property follows automatically by taking into account
that the triples indexed by each permutation are the same.
Therefore, the children of x in the second level of trie j can be
re-written as the positions they take in the (larger, enclosing)
set of children of x in the first level of trie i. Re-writing the
node IDs as positions relative to the set of children of a sub-
tree yields a clear space optimization because the number of
children of a given node is much smaller (on average) than
the number of distinct subjects or objects (see also Table II
for the precise statistics).
Eliminating a Permutation. The low number of predicates
exhibited by RDF data leads us to consider a different select
algorithm for the resolution of the query pattern S?O, able
to take advantage of such skewed distribution. The idea is to
pattern match S?O directly over the SPO permutation. For a
given subject s and object o, in short, we operate as follows.
We consider the set of all the predicates that are children of
s. For each predicate p in the set, we determine if the object
o is a child of p with a search operation: if it is, then (s,
p, o) is a triple to return. In the light of this algorithm, we
consider another index layout. In fact, now five of out the
eight different selection patterns can be solved efficiently by
the trie SPO, i.e.: SPO, SP?, S??, S?O and ???. In order to
support other two selection patterns, we can either chose to: (1)
materialize the permutation POS for predicate-based retrieval
(query patterns ?PO and ?P?); (2) materialize the permutation
OPS for object-based retrieval (query patterns ?PO and ??O).
The choice of which permutation to maintain depends on the
statistics of the selection patterns that have to be supported.



Index DBLP Geonames DBpedia Freebase

bits/triple bits/triple bits/triple bits/triple

3T 75.24 (+31%) 71.59 (+32%) 80.64 (+33%) 74.20 (+30%)
CC 63.54 (+18%) 67.04 (+27%) 66.91 (+19%) 70.46 (+26%)
2To 56.46 (+8%) 53.23 (+8%) 57.51 (+6%) 55.72 (+6%)
2Tp 51.99 48.98 54.14 52.17

ns/triple ns/triple ns/triple ns/triple

SPO all 203 221 353 521
SP ? all 197 347 11 3
S ? ? all 28 40 10 3
? ? ? all 11 13 9 9

S ? O 3T,CC 2490 (5.6×) 3767 (7.7×) 1833 (2.6×) 6547 (1.8×)
2To,2Tp 445 490 692 3736

? PO 3T,2To,2Tp 5 5 5 5
CC 12 (2.4×) 15 (3.0×) 16 (3.2×) 14 (2.8×)

? ? O
3T,CC 12 (2.4×) 12 (2.4×) 12 (2.4×) 10 (2.0×)
2To 5 5 5 5
2Tp 5 (1.0×) 5 (1.0×) 6 (1.2×) 10 (2.0×)

? P ?
3T,2Tp 9 8 6 6
CC 21 (2.3×) 36 (4.5×) 30 (5.0×) 29 (4.8×)
2To 81 (9.0×) 138 (17.2×) 22 (3.7×) 18 (3.0×)

TABLE I: Comparison between the performance of 3T, CC
and 2T indexes, expressed as the total space in bits/triple and
in average ns/triple for all the different selection patterns.

Dataset Triples Subjects (S) Predicates (P) Objects (O)

DBLP 88,150,324 5,125,936 27 36,413,780
Geonames 123,020,821 8,345,450 26 42,728,317
DBpedia 351,592,624 27,318,781 1,480 115,872,941
Freebase 2,067,068,154 102,001,451 770,415 438,832,462

TABLE II: Datasets statistics.

We stress that the introduced algorithm allows us to actually
save the space for a third permutation that costs roughly 1/3
of the whole space of the index. We call this solution the 2T
index; with two concrete instantiations 2Tp (predicate-based)
and 2To (object-based).

II. EXPERIMENTS

We perform our experimental analysis on large and publicly
available standard datasets, whose statistics are summarized
in Table II. All the experiments are performed on a server
machine with 4 Intel i7-7700 cores (@3.6 GHz), 64 GB of
RAM DDR3 (@2.133 GHz) and running Linux 4.4.0, 64 bits.
The C++14 implementation of our indexes is freely available
at https://github.com/jermp/rdf indexes. We compiled the code
with gcc 7.3.0 using the highest optimization setting. To
measure the query processing speed, we use a set of 5000
triples drawn at random from the datasets and set 0, 1 or
2 wildcard symbols. In all tables, percentages and speed up
factors are taken with respect to the values in bold font.
The Permuted Trie Index. By looking at the results reported
in Table I, we can conclude that: (1) the 3T index is the
one delivering best worst-case performance guarantee for all
triple selection patterns; (2) the 2T variants reduce its space of
representation by 25–33% without affecting or even improving
the retrieval efficiency on most triple selection patterns (only
one out of the eight possible has a lower query throughput
in the worst-case); (3) the cross-compression technique is
outperformed by the 2T index layouts for space usage but

Index DBLP Geonames DBpedia Freebase

bits/triple bits/triple bits/triple bits/triple

2Tp 51.99 48.98 54.14 52.17
HDT-FoQ 76.89 (+32%) 88.73 (+45%) 76.66 (+29%) 83.11 (+37%)
TripleBit 125.10 (+58%) 120.03 (+59%) 130.07 (+58%) —

ns/triple ns/triple ns/triple ns/triple

? PO
2Tp 5 5 5 5
HDT-FoQ 12 (2.4×) 13 (2.6×) 14 (2.8×) 13 (2.6×)
TripleBit 15 (3.0×) 13 (2.6×) 14 (2.8×) —

S ? O
2Tp 445 490 692 3736
HDT-FoQ 1789 (4.0×) 2097 (4.3×) 3010 (4.3×) 0.7×107 (2057×)
TripleBit 11872 (26.7×) 13008 (26.5×) 18023 (26.0×) —

SP ?
2Tp 197 347 11 3
HDT-FoQ 640 (3.2×) 897 (2.6×) 30 (2.7×) 9 (3.0×)
TripleBit 1222 (6.2×) 927 (2.7×) 42 (3.8×) —

S ? ?
2Tp 28 40 10 3
HDT-FoQ 110 (3.9×) 154 (3.9×) 29 (2.9×) 9 (3.0×)
TripleBit 2275 (81.2×) 3261 (81.5×) 490 (49.0×) —

? P ?
2Tp 9 8 6 4
HDT-FoQ 108 (12.0×) 173 (21.6×) 32 (5.3×) 41 (6.8×)
TripleBit 28 (3.1×) 28 (3.5×) 40 (6.7×) —

? ? O
2Tp 5 5 6 10
HDT-FoQ 17 (3.4×) 17 (3.4×) 18 (3.0×) 18 (1.8×)
TripleBit 24 (4.8×) 60 (12.0×) 24 (4.0×) —

TABLE III: Comparison between the performance of different
indexes, expressed as the total space in bits/triple and in
average ns/triple.

offers a better worst-case performance guarantee than 2Tp for
the pattern ?P?. Therefore, as a reasonable trade-off between
space and time, we elect 2Tp as the solution to compare against
the state-of-the-art alternatives.
Overall Comparison. We now compare the performance of
our selected solution 2Tp against the competitive approaches
HDT-FoQ [Martı́nez-Prieto et al., 2012] and TripleBit [Yuan
et al., 2013]. We use the C++ libraries provided by the corre-
sponding authors: https://github.com/rdfhdt/hdt-cpp, and https:
//github.com/nitingupta910/TripleBit, respectively. Table III
reports the space of the indexes and the timings for the
different selection patterns, but excluding (due to page limit)
the ones for SPO and ???: our approach is anyway faster for
both by at least a factor of 3× (TripleBit does not support
the query pattern SPO). Concerning the space, we see that
the 2Tp index is significantly more compact, specifically by
30% and almost 60% compared to HDT-FoQ and TripleBit
respectively, on average across all different datasets (TripleBit
fails in building the index on Freebase). Concerning the speed
of triple selection patterns, most factors of improved efficiency
range in the interval 2–5× and, depending on the pattern
examined, we report peaks of 26×, 49×, 81×, or even 2057×.

REFERENCES

M. A. Martı́nez-Prieto, M. A. Gallego, and J. D. Fernández.
Exchange and consumption of huge rdf data. In Extended
Semantic Web Conference, pages 437–452. Springer, 2012.

R. Perego, G. E. Pibiri, and R. Venturini. Compressed indexes
for fast search of semantic data. IEEE Transactions on
Knowledge and Data Engineering. To appear, 2020.

P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu. Triplebit:
a fast and compact system for large scale rdf data. PVLDB,
6(7):517–528, 2013.


