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Abstract. Gossip protocols form the basis of many smart collective
adaptive systems. They are a class of fully decentralised, simple but ro-
bust protocols for the distribution of information throughout large scale
networks with hundreds or thousands of nodes. Mean field analysis meth-
ods have made it possible to approximate and analyse performance as-
pects of such large scale protocols in an efficient way. Taking the gossip
shuffle protocol as a benchmark, we evaluate a recently developed refined
mean field approach. We illustrate the gain in accuracy this can provide
for the analysis of medium size models analysing two key performance
measures. We also show that refined mean field analysis requires spe-
cial attention to correctly capture the coordination aspects of the gossip
shuffle protocol.
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1 Introduction and Related Work

Many collective adaptive systems rely on the decentralised distribution of in-
formation. Gossip protocols (also known as epidemic or random walk protocols)
have been proposed as a paradigm that can provide a stable and reliable method
for such decentralised spreading of information [23,6,3,17,9,8,4,2,22]. Gossip pro-
tocols are able to scale up to the very large environments that collective adaptive
systems are envisioned for. The basic mechanism of information spreading fol-
lowed by a gossip protocol is that nodes exchange part of the data they keep in
their cache with randomly selected peers in pairwise synchronous communica-
tions on a regular basis.

Interesting performance aspects of such gossip protocols are the diffusion or
replication of a newly inserted fresh data element in a network and the dynamics
of network coverage. Diffusion or replication of a data element occurs when nodes
exchange the data element in pairwise communication. Two relevant measures
are of interest in this case. One is the fraction of the population that has the data
element in its cache at a certain point in time (replication). The other concerns
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network coverage (coverage), i.e. the fraction of the population of network nodes
that have “seen” the data element since its introduction into the network, even
if they may no longer have it in their cache due to further exchanges with other
peers.

Traditionally, these performance measures have been studied based on simu-
lation models. However, when large populations of nodes are involved, such sim-
ulations may be very resource consuming. Recently these protocols have been
studied using classic mean field approximation techniques [2,1]. In that classic
approach the full stochastic model of a gossip network, i.e. one in which each
node is modelled individually, is replaced by a much simpler model in which
the pairwise synchronous interactions between individual nodes are replaced by
the average effect that all those interactions have on a single node and then the
model of this single node is studied in the context of the overall average network
behaviour. Of course, the average effects may change over time as nodes may
change their local states. This is taken into account in a mean field model by
letting the probabilities of interactions possibly depend on the fraction of nodes
that are in a particular local state. Compared to traditional simulation methods,
mean field approximation techniques scale very well to large populations because
these techniques are independent of the exact population size3. This method of
derivation of a mean field model from a large population of interacting objects
relies on what is known as the assumption of “propagation of chaos” (also called
“statistical independence” or “decoupling of joint probabilities”) [20,7,10,18].
The assumption is based on the fact that when the number of interacting nodes
becomes very large, their interactions tend to behave as if they were statistically
independent.

However, in reality, we are not always dealing with huge systems, but rather
with medium size ones. These are still resource intensive when analysed using
simulation and, unfortunately, the classical mean field approximation is less ac-
curate for such medium size systems. For example, in Fig. 1 the results of classical
mean field approximation are shown together with a Java based simulation of
the protocol for a medium size gossip system with 2500 nodes where initially one
node has a new data element that will spread over the network by gossiping. It is
easy to see that there is a discrepancy between simulation and classic mean field
approximation, both for replication of the data element and for the coverage,
even in this not so small system.

In this paper we revisit an analysis of the gossip shuffle protocol using a
refined mean field approximation for discrete time population models that we
developed in [12,13], and which was in turn inspired by an earlier result for
continuous time population models in [11]. The gossip shuffle protocol was anal-
ysed in detail by Bahkshi et al. in [4,2,1] both analytically and by using classic
mean field approximation in [2,1] and, more recently, by using on-the-fly mean

3 As long as this size is large enough to obtain a sufficiently accurate approximation.
The computational complexity of these techniques does depend on the number of
local states of an object in a population.
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Fig. 1. Replication (left) and Coverage (right) for one new data element in a network
with N = 2500. Average of 500 simulation runs of the Java simulator [1]. Vertical bars
show standard deviation for the simulation.

field discrete time model checking techniques in [19]. The present paper is an
extended version of the short paper [14].

Contributions The main contribution of this paper is a novel benchmark (clock-
synchronous) DTMC population model of the gossip shuffle protocol analysed
using our refined mean field analysis [12,13]. In particular:

– We show that with refined mean field approximation better accuracy can
be obtained compared to classical mean field approximation for medium size
populations for this gossip protocol, but that this requires a novel model that
reflects the synchronisation effects of the pairwise interaction of the original
protocol.

– The developed model is parametric in Gmax, i.e. the number of steps it
remains passive in between active interactions with peer gossip nodes.

– The results we obtained are very close both to those of independent Java
based simulation from the literature in [2] (taken as “ground truth”) and to
those of the event simulation of the model itself, but with the advantage that
the refined mean field approximation is several orders of magnitude faster
to obtain and independent of the system size.

– Development of a proof-of-concept implementation in F# of both the clas-
sical and the refined mean field techniques and a discrete event simulator
used for the analysis of the gossip shuffle protocol [21].

Like classic mean field approaches, the refined approach is computationally
non-intensive and the analysis time is independent of the population size. The
analysis is orders of magnitudes faster than discrete event based simulation.
Therefore it is an interesting candidate for being integrated with other analysis
approaches such as (on-the-fly) mean field model checking, which is planned in
future work. The current study aims at providing further insight in the feasibility
of applying the refined mean field approach, that implies the use of symbolic
differentiation, on larger benchmark examples and in the possible complications
of such an analysis that need to be taken into consideration.
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The outline of the paper is as follows. The relevant aspects of the gossip
shuffle protocol are briefly recalled in Section 2. The refined mean field approach
used in this paper applies to the classical population model of [20,10,18] and is
briefly recalled in Section 3. Section 4 presents full and aggregated classical mean
field models of the protocol which form the starting point for the novel gossip
model suitable for refined mean field approximation presented and analysed in
Section 5. Section 6 presents conclusions.

2 Benchmark Gossip Shuffle Protocol

We briefly recall the main aspects of the gossip shuffle protocol described in [15,1,2]
that serves as our benchmark. This particular version has been extensively stud-
ied by Bahkshi et al., leading to an analytical model of the gossip protocol [3], a
classical mean field model [2] and a Java implementation of a simulator for the
protocol [2], which makes it a very suitable candidate of a real-world application
that allows for the comparison of new results. In the following we briefly recall
some main aspects of the shuffle gossip protocol and the Java simulator. Further
details can be found in [2,1].

2.1 Informal description

The gossip shuffle protocol distributes data items throughout a network of small
devices. Such networks typically consist of a very large collection of nodes. Each
node has a limited amount of storage space (called its cache) for the data items.
At any instant, gossip nodes are divided into two classes: active and passive
nodes. Active nodes can initiate a shuffle, i.e. an exchange of data between two
peers, by contacting a passive neighbouring node and exchange part of their
data. Such a passive node is selected through an underlying layer4 that keeps
track of which nodes are active or passive.

Each gossip node maintains a finite list of data items in its cache. Both the
active node and its passive partner exchange a random subset from their local
caches in one atomic peer-to-peer communication session. Given the limited size
of the cache, a node may have to discard some items it receives. This is done
in such a way that no information is lost in the network, i.e. a node discards
items selected among those that it has just sent to its peer and does not discard
new items it has just received from the peer. Fig. 2 recalls the pseudo code of a
generic shuffle protocol (adapted from [1]).

Two main key measures that are of interest for this protocol are the transient
aspects of the replication of a newly introduced element in the network and that
of the coverage of the network, i.e. the fraction of network nodes that have seen
the new data element when time is passing. These measures depend on a num-
ber of characteristics of the network. In the following we use N to denote the

4 This layer is not explicitly modelled. For example, in wireless environments such
passive peers may be determined by the radio connectivity between nodes.
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while true do
wait (∆t time units)
B := randomPeer()
sA := itemsToSend(cA);
send sA to B;

sB := receive(·);
cA := itemKeep(cA\(sA\sB), sB\cA);

(a) An active node A

while true do

sA := receive(·);
sB := itemsToSend(cB);
send sB to sender(sA);
cB := itemKeep(cB\(sB\sA), sA\cB);

(b) A passive contacted node B

Fig. 2. Pseudo code of a generic shuffle protocol (adapted from [1]). cA and sA denote
the cache and selection of active node A. Similarly, cB and sB denote those of passive
node B. ∆t = Gmax . The operation ‘itemsToSend(ci)’ selects the items to be sent from
the cache ci. The operation ‘itemKeep(c,s)’ in node A decides which items to keep in
the cache (c) removing from the cache those selected for sending (sA) except those that
where received from B (sB), and adding to those the elements from sB that were not
yet in the cache of A. Similarly for the operation in node B.

size of the network, i.e. the number of gossiping nodes, n to denote the number
of different data items in the network, c to denote the size of the cache and s
to denote the size of the selected items from the cache to be exchanged with
a neighbour. In the context of this work, and for comparison with the results
presented in [1], the network is assumed to be fully connected. We consider a dis-
crete time variant of the protocol with a maximal delay between two subsequent
active data-exchanges of a node denoted by Gmax .

2.2 The gossip Java simulator

To assess the quality of classic mean field approximation results, Bahkshi et al.
developed a Java-based implementation of a simulator for the shuffle protocol
with which networks of various sizes can be simulated on a single processor [2].
In this paper we also adopt the results produced by this simulator, the source
code of which was generously shared with us by the developers, as the “ground
truth” with which to compare our own results. This simulator works as follows.
It takes the network size N , and the specific size of the storage, c, the number
of messages exchanged in each shuffle, s and the total number of different data
elements in the network, n. It divides all network nodes into Gmax + 1 different
groups, each representing a different value of the gossip delay. Recall that the
maximal period between two consecutive contact initiations of any particular
network node is Gmax . The nodes in the group with gossip delay equal to zero
are the active nodes, i.e. those that initiate contact with their peers in the current
round uniformly at random. If an active node contacts a node that is already in
contact with another node, the interaction between all three nodes fails, leading
to a collision. At the start of the simulation, a new data item is introduced in
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the network (i.e. one different from the n types of data-elements that are already
present in the network and that are assumed to be uniformly distributed over
the local cash of all network nodes. After each round, the total number of copies
of the new data element in the network (replication) and the number of nodes
that have seen the data element (coverage) are measured.

3 Background

In the sequel we use theoretical results on discrete time mean field approximation
[20,7,12]. We briefly recall the notation and main results in the following. We
consider a population model of a system composed of 0 < N ∈ IN identical
interacting objects, i.e. a (model of a) system of size N . We assume that the
set {0, . . . , n − 1} of local states of each object is finite; we refer to [12] for a
discussion on how to deal with infinite dimensional models. Time is discrete and
the behaviour of the system is characterised by a (time homogeneous) discrete

time Markov chain (DTMC) X(N)(t) = (X
(N)
1 (t), . . . , X

(N)
N (t)), where X

(N)
i (t)

is the state of object i at time t, for i = 1, . . . , N .
The occupancy measure vector at time t of the model is the row-vector DTMC

M (N)(t) = (M
(N)
0 (t), . . . ,M

(N)
n−1(t)) where, for j = 0, . . . , n − 1, the stochastic

variable M
(N)
j (t) denotes the fraction of objects in state j at time t, over the

total population of N objects:

M
(N)
j (t) =

1

N

N∑
i=1

1{X(N)
i (t)=j}

and 1{x=j} is equal to 1 if x = j and 0 otherwise. At each time step t ∈ IN each
object performs a local transition, possibly changing its state. The transitions
of any two objects are assumed to be independent from each other, while the
transition probabilities of an object may depend also on M(t), thus, for large
N , the probabilistic behaviour of an object is characterised by the one-step
transition probability n × n matrix K(m), where Kij(m) is the probability for
the object to jump from state i to state j when the occupancy measure vector is
m ∈ Un; Un is the unit simplex of IRn

≥0, that is Un = {m ∈ [0, 1]n |
∑n

i=1mi =
1}. In this paper, for simplicity, we assume K(m) to be a continuous function
of m that does not depend on N . In the sequel, for reasons of presentation,
we provide a graphical specification of the relevant models. The computation of
matrix K(m) from such a model specification is straightforward.

3.1 Discrete Time Classical Mean Field Approximation

Below we recall Theorem 4.1 of [20] on classic mean field approximation, under
the simplifying assumptions mentioned above:

Theorem 4.1 of [20] (Convergence to Mean Field) Assume that
the initial occupancy measure M (N)(0) converges almost surely to the
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deterministic limit µ(0). Define µ(t) iteratively by (for t ≥ 0):

µ(t+ 1) = µ(t) K(µ(t)). (1)

Then for any fixed time t, almost surely, limN→∞M (N)(t) = µ(t).

The above result thus allows one to use, for large N , a deterministic approx-
imation µ of the average behaviour of a discrete population model.

3.2 Discrete Time Refined Mean Field Approximation

In [12] we proposed a refined mean field method for discrete time population
models that has shown to provide a considerably better approximation than
classic mean field in the case of population models with a medium population
size N . This work was inspired by the development of a refined mean field
approximation for continuous time population models in [11]. Before recalling
the theoretical results for the refined mean field approximation technique for
discrete time models we introduce some further basic notation.

IRn
≥0 denotes the set of n-tuples—i.e. 1 × n matrices—of non-negative real

numbers. For n×m matrix A we let AT denote its m×n transposed matrix. For
function f : IRn → IRp continuous and twice differentiable, let the p×n (function)
matrix Df(m) and the p × n × n tensor D2f(m) denote its first and second

derivatives, respectively: (Df(m))ij = ∂fi(m)
∂mj

and (D2f(m))ijk = ∂2fi(m)
∂mj∂mk

. Let

function Φ : IN→ Un → Un be defined as follows:

Φ0(m) = m; (Φ1(m))j =

n−1∑
i=0

miKij(m); Φt+1(m) = Φ1(Φt(m)).

Note that Φ1(Φt(m)) = Φt(Φ1(m)) and that, for µ(t) defined as in Equation
(1), we have: µ(t+1) = Φ1(µ(t)) = Φt+1(µ(0)); so, function Φ makes explicit the
dependence of µ(t) on the initial occupancy measure vector m. Suppose function
h : Un → IRp

≥0 models a measure of interest over the occupancy measure vectors.
Below we recall Theorem 1 we proved in [12] on Refined mean-field approxi-

mation:

Theorem 1 of [12] (Refined Mean Field) Assume that function Φ1 is
twice differentiable with continuous second derivative and that M (N)(0)
converges weakly to µ(0). Let At and Bt be respectively the n×n matrix
At = (DΦ1)(µ(t)) and the n×n×n tensor Bt = (D2Φ1)(µ(t)). Then for
any continuous and twice differentiable function with continuous second
derivative h : Un → IRp

≥0 we have:

lim
N→∞

NE
[
h(M (N)(t))− h(Φt(M

(N)(0)))
]

= Dh(µ(t))Vt+
1

2
D2h(µ(t))·Wt,

where Vt is an n×1 vector and Wt is an n×n matrix, defined as follows:

Vt+1 = AtVt + 1
2Bt ·Wt and Wt+1 = Γ (µ(t)) +AtWtA

T
t ,
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with V0 = 0, W0 = 0 and Γ (m) is the following n× n matrix:

Γjj(m) =
∑n−1

i=0 miKij(m)(1−Kij(m))

Γjk(m) = −
∑n−1

i=0 miKij(m)Kik(m)

The following corollary illustrates the relationship between the refined mean
field result and the classic convergence theorem:

Corollary 1(i) of [12] Under the assumptions of Theorem 1 of [12],
it holds that for any coordinate i and any time-step t ∈ IN

E
[
M

(N)
i (t)

]
= µi(t) +

(Vt)i
N

+ o

(
1

N

)
.

In other words, the expected value of the fraction of the objects in local state
i of the full stochastic model with population size N at time t, is equal to the
classic limit mean field value µi(t) plus a factor that is a constant (Vt)i, calculated
as shown in Theorem 1, divided by the population size N plus a residual amount
of order o

(
1
N

)
. It is easy to see that the larger is N the smaller this additional

factor gets. Essentially, the refined mean field takes not only the first moment
(the mean) but also the second moment (variance) into consideration in the
approximation.

In [12] we have applied this discrete time refined mean field approximation
on a number of examples ranging from the well-known epidemic model SEIR
to wireless networks. It was shown that the approach works well under the
assumption that the models have a unique fixed point and exponentially stable
behaviour, i.e. possible oscillations in the behaviour of the system, due to a finite
input, will die out at an exponential rate. Here we investigate its application to
the more complex gossip shuffle protocol.

A proof-of-concept implementation of both the classical and the refined mean
field techniques and a discrete event simulator has been developed by one of
the authors of the present paper in F# using the DiffSharp package [5] for
symbolic differentiation. The results in this paper have been obtained using this
implementation which can be found at [21].

4 Gossip Shuffling Protocol Mean Field Model

Following the classic discrete time mean field approximation technique [20,1,2]
the behaviour of an individual gossip node can be described based on its local
state and the current occupancy measure vector. This exploits what is known as
the “decoupling principle”, i.e. in the limit for N going to infinity, the evolution
of each individual object is assumed to be stochastically independent from other
specific objects – except through dependence on the global occupancy measure
– even in the presence of explicit cooperation (i.e. synchronisation) between
objects [20,7,16]. Such a model of an individual node can then be used to analyse
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global properties of the network such as the replication and coverage measures
that are relevant in this case study.

Without going into full detail5, the mean field models proposed in the work
by Bahkshi et al. [2] consider a gossip network as consisting of active and pas-
sive nodes that possess, or do not possess, the specific data element in their
cache. This is illustrated in Fig. 3 (left), where the local states of a single node
are shown. States in which the node actively looks for a gossip peer are red,
those in which it passively receives requests are blue. States in which the node
has the data-element in its cache are labelled by Di, those in which it does not
are labelled by Oi. Transitions between states occur with certain probabilities,
which depend on the global occupancy measure and the conditional probabili-
ties of pairwise node interaction, shown in Fig. 3 (right), under the assumption
of a uniform distribution of data items over the local storages of all nodes.
P (A′B′|AB) denotes the conditional probability of the state of an active-passive
pair AB to have state A′B′ after their interaction, where A,B,A′, B′ ∈ {O,D}.

D0 D1 D2 D3

O0 O1 O2 O3

dksdksdks

onsonsons

dlsdlsdls

ogsogsogs

onr

dkr

ogr

dlr

OO OD

DDDO

P(OO|OO)

P(DO|DO) P(DD|DD)

P(OD|OD)

.P(O
D
|D

O
)

P(D
O
|O

D
) P

(D
D
|O

D
) P

(O
D
|D

D
)

P(DO|DD)

P(DD|DO)

Fig. 3. Left: Push-pull gossip model of individual gossip node with rounds of length
3 (i.e. Gmax = 3). Active states are red, passive ones blue. Model for replication.
Right: Transition diagram of conditional probabilities pairwise interaction between
gossip nodes. D: data element in cache; O: data element not in cache.

The conditional probabilities6 can be expressed in terms of n (number of
different data elements), c (size of the cache) and s (number of selected elements
for exchange), as follows:

5 More details can be found in the Appendix, which will not be part of this paper.
6 See [1,2] for further details on this pairwise communication probabilities.
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P(OD|DO) = P(DO|OD) = s
c ∗

n−c
n−s

P(OD|OD) = P(DO|DO) = c−s
c

P(DD|OD) = P(DD|DO) = s
c ∗

c−s
n−s

P(OD|DD) = P(DO|DD) = s
c ∗

c−s
c ∗

n−c
n−s

P(DD|DD) = 1.0− 2.0 ∗ s
c ∗

c−s
c ∗

n−c
n−s

P(OO|OO) = 1.0

This mean field model can be further simplified, leading to a model that is
parametric in Gmax , by aggregating the O-states and the D-states, respectively.
This uses the experimental observation that when, in the initial state, the O-
states all have the same occupancy measure, and all the D-states have the same
occupancy measure, this situation remains so when time evolves7. This observa-
tion is illustrated in Fig. 4 for a network with 2500 nodes and Gmax = 3, with
10 nodes in each O-state and 615 nodes in each D-state initially.
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Fig. 4. Diffusion of d-element in the network for N = 2500 with initially 615 nodes in
each O-state and 10 nodes in each D-state. Occupancy measure of D-states (left) and
of O-states (right).

The simplified aggregated mean field model is shown in Fig. 5 (left) for the
analysis of the replication, and on the right for the analysis of coverage. The
latter shows an additional state (I). This models the state in which the node
does not have the data-element in its cache currently and also has never had it
before. The O-state in this model represents the fact that it does not have the
data element at the moment, but that is has seen it previously (i.e. the node is
already covered).

The transition probability functions in the three-state model of Fig. 5, with
states O, D and I are defined as follows, for m = (mO,mD) ∈ U2:

– from O to D: get (m) = Gmax

Gmax+1 (ogs′ (m)) + 1
Gmax+1 (ogr′ (m))

– from D to O: loose (m) = Gmax

Gmax+1 (dls′ (m)) + 1
Gmax+1 (dlr′ (m))

7 Note that we do not assume that the occupancy measure of an O-state is equal to
that of a D-state.
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D

O

get loose

1-get

1-loose

D

O

I

get loose

1-get

1-loose
get

1-get

Fig. 5. Two-state (left) and three-state (right) aggregate push-pull gossip model of an
individual gossip node with rounds of length Gmax .

– from I to D: get as above

where
ogs′(m) = 1

Gmax+1mD(P (OD|DO) + P (DD|DO))noc

dls′(m) = 1
Gmax+1 ((mO +mI)P (DO|OD) +mDP (DO|DD))noc

ogr′(m) = Gmax

Gmax+1mD(P (DO|OD) + P (DD|OD))noc

dlr′ (m) = Gmax

Gmax+1 ((mO +mI)P (OD|DO) +mDP (DO|DD))noc

where noc is the no-collision probability, which, in the aggregated models, is
equal to e−2∗(1/(Gmax+1)); note that 1/(Gmax + 1) is the fraction of active nodes
in the network at any time instant. This is derived from [1], where it is shown
that in the limit for N to infinity, the probability of no collision is given by
e−2∗(frc (O0)+frc (D0)) where the sum frc (O0) + frc (D0) denotes the fraction of
active nodes in the network at any time. In the aggregated model this amounts
to 1/(Gmax + 1). In this model the number of replications of the data element
in the network corresponds to the number of nodes that are in state D. The
coverage of the network is given by the number of nodes that are in state D or
state O. The definitions of the transition probabilities for the two-state model are
similar, but with mI equal to zero. With the two state model only the number
replications can be analysed.

For very large systems both models show a surprisingly good correspondence
between the Java simulation results and the classic mean field approximation.
For N=25,000 the curves for both measures essentially overlap (see [1,2]). For
N=2,500, with initially one node in state D and all other nodes in state I, for
Gmax = 9, the results for replication and coverage are shown in Fig. 1. For that
system size already some differences can be observed, and, even though they are
not huge, there is a considerable difference in the time at which network coverage
seems to be reached. The Java simulation (average of 500 runs) indicates that
this happened close to time 1500, whereas the mean field indicates a time well
before that, just before time 1000, even though the mean field approximation
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is still just within the standard deviation of the simulation runs. In the next
section we illustrate what results can be obtained with the refined mean field
approximation and we also motivate why, in the general case, this requires a
more detailed mean field model.

5 Refined Mean Field Approximation of the Gossip
Shuffle Protocol

The mean field models of the gossip shuffle protocol in the previous section
were based on the principle of decoupling of joint probabilities [20,7] based on
a careful study of the pairwise probabilities of the various possible outcomes of
a shuffle between two gossip nodes (as in [1]). In our previous work on refined
mean field approximation we have shown for a number of other models that this
approximation technique can provide an increased accuracy w.r.t. classical mean
field and that there is also a close correspondence between the simulation of the
mean field model and the refined approximation [12,13]. However, simulation of
the mean field model8 of Fig. 3 for a small network of size N=120, with Gmax = 3,
with initially 29 nodes in each O-state and one in each D-state, shows that in
many simulation runs the system completely looses the introduced data-element.
In other words, no gossip node in the network has the element in its cache at a
certain point in time. This is clearly in contrast with the properties of the gossip
protocol itself. The refined mean field approximation is also sensitive to this
aspect of the model behaviour as can be observed in Fig. 6. Similar observations
can be made for the aggregated 3-state model of Fig. 5.
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Fig. 6. Replication of data element in the network for N = 120, Gmax = 3, with
initially 29 nodes in each O-state and 1 node in each D-state showing a single simulation
trace of the model of Fig. 3 (left)in which the data element gets lost from the network.
The figure also shows the classic mean field (blue) and refined mean field (green) results.

In the following we propose a more detailed mean field model in which (1) the
system can never completely loose the inserted data element and (2) the model

8 We really intend the simulation of the model here, and not the Java simulation of
the protocol.
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reflects more explicitly the effects of the pairwise interaction and synchronisation
between nodes. Note the emphasis on effects of node synchronisation because we
still are aiming at a model that respects the decoupling principle for its use in a
mean field setting. What we really aim at is to distinguish the effects of a node
getting a data element through exchanging it with another node–in which case
the total number of replicas of the data element in the system remains the same–
or through replication, i.e. the other node retains its copy of the data element
and the global number of the data element in the system increases by one.

With reference to Fig. 7, for what concerns point (1) above, we introduce a
specific state, PD, to the model representing that there always is a gossip node
in the network that possesses the data element.

To address point (2), we introduce two more states, FD and LD, to distinguish
between the effect of interactions between gossip nodes. State FD represents the
fact that the gossip node received the data element for the first time via an
exchange of the data element with another node. State LD also represents the
fact that the node received the data element via an exchange, but that it had
already seen the data element in the past. So in both cases, the data element is
simply exchanged, i.e. one node gives it to the other, and the total number of
gossip nodes that possess the data element is not changed by such an interaction.
Note that modelling the effect of an exchange of the data element between two
nodes in this way also means that we can retrieve the total number of gossip
nodes in the system that do not possess the data element as the sum of the nodes
that are in states FD, LD, I and O. This is so because we know that for each
node in state FD (LD, resp.) there is a node in the network that just lost its
data element in the synchronous shuffle with our current node. We will make
use of this in the probability functions associated with the transitions between
nodes.

A gossip node can also get involved in an interaction in which the data
element is replicated, i.e. a node gives it to another one but also retains a copy
itself. Note that this can happen both in case the node that receives the data
element does not possess the data element and when it does possess it. This
situation is modelled by state D and represents the fact that the interaction has
the effect that the total number of nodes in the network that possess the data
element increases (by one).

A third case exists where two nodes, both possessing the data element, inter-
act and one of them looses its copy. In that case the overall number of copies of
the data element in the network is reduced by one. Note that the gossip protocol
does not allow that both copies get lost in such an interaction. Moreover, if there
is only a single node left in the network with a copy of the data element this
copy cannot get lost because this node cannot interact with another node having
the data element.

To distinguish the various kinds of interactions mentioned above we refine the
transition probability functions introduced on page 10. In particular, we split the
probability functions get and loose into two distinct parts, get rep and get exc for
the get function to model data element replication and exchange, respectively,
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and likewise for the loose function as follows, where the appropriate conditional
probabilities are used:

get exc (m) = 2 ∗ Gmax

(Gmax+1)2 (mD +mPD)P (OD|DO)noc

get rep (m) = 2 ∗ Gmax

(Gmax+1)2 (mD +mPD)P (DD|DO)noc

loose exc (m) = 2 ∗ Gmax

(Gmax+1)2 (mO +mI +mLD +mFD)P (OD|DO)noc

loose rep (m) = 2 ∗ Gmax

(Gmax+1)2 (mD +mPD)P (DO|DD)noc

D

O

FD

LD

PD I

get rep

1

loose rep

1-(get rep)
-(get exc)get exc

1-(loose rep)
get rep

get rep

loose exc

get exc

loose exc

get rep

1-(loose exc)
-(get rep)

1-(loose exc)
- (get rep)

1-(get exc)
-(get rep)

Fig. 7. Six-state model of an individual gossip node with rounds of length Gmax .

Fig. 8 shows the replication as sum of the number of nodes in states D and PD
and the coverage as the sum of the number of nodes in D, PD, FD, LD and O9

for a network with N = 100, n = 500, c = 100 and s = 50 with initially one node
in state PD and all the others in state I. Besides the classic and refined mean
field approximations for the model in Fig. 7 and the Java simulation results of
the actual shuffle protocol, Fig. 8 also shows the average of the model simulation.
In particular, note the good approximation of the simulation results (both the
Java simulation and the model simulation) by the refined mean field even in
this very small network. This holds both for the diffusion of the replicas and for
the coverage. Similarly good results have been found for a system with N=2,500
shown in Fig. 9, also in the case in which there is only a single data element
in the system initially. An indication of the (non-optimised) performance of the
analysis for producing the results in Fig. 9 is: 0.543s (classic mean field); 25.459s
(refined mean field); 7m 1.389s (fast model simulation [20], 500 runs); 3h 42m
41.459s (Java simulation, 500 runs) on a MacBook Pro, Intel i7, 16GB. Recall

9 For the refined mean field this means the application of Thm. 1 with h(m) = mD +
mPD (replication) and h(m) = mD+mPD+mFD+mLD+mO (coverage), repectively.
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Fig. 8. Replication (left) and network coverage (right) of the data element in the
network for N = 100 with initially 99 nodes in the I-state and 1 node in the PD-state
for Gmax = 3. Average of 500 simulation runs of both the model and Java simulations.
Vertical bars show standard deviation for the Java simulation.

that the mean field and refined mean field analyses times are independent of the
size of the system and, as can be seen, several orders of magnitude faster than
traditional event simulation approaches.

6 Conclusion

Gossip protocols play an important role in the design of collective adaptive
systems providing a basic, but robust and scalable, mechanism of information
spreading in very large networks. Therefore they also form an interesting bench-
mark application for the analysis of scalable verification techniques. We have
developed a new mean field model for the shuffle gossip protocol with which
more accurate approximations for medium size gossip protocols can be obtained
via refined mean field approximation techniques. This model respects key as-
pects of the protocol such as the effects of different kinds of interactions and the
fact that a new data element cannot be lost by the system as a whole.

Good approximation of medium size systems is of interest for several reasons.
First of all, many practical systems consist of many, but not a huge number, of
components. However, even in case of medium size systems, simulation is still a
resource consuming effort and in that case a refined mean field approximation can
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Fig. 9. Replication (left) and network coverage (right) of data element for N = 2500
with initially 2499 nodes in I and 1 in PD, for Gmax = 9. Average of 500 simulation
runs for both model and Java simulations. Vertical bars show standard deviation for
the Java simulation.

provide fast but accurate approximations. Furthermore, we expect that refined
mean field approximation can also be of use when analysing systems in which
objects are mobile and move through physical space. The uneven distribution of
objects over partitions of such a space requires a mean field approximation that
is accurate also for those partitions with relatively few objects.
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8 Appendix: Detailed Models and Proofs

8.1 Details for gossip model in Fig. 3

Fig. 3 (left) shows the states and transitions of a single gossip node whereGmax =
3. The red states, D0 and O0, denote states in which the gossip node is active,
i.e. it can initiate an exchange of local information with a passive node; in D0
(resp. O0) the node has (resp. does not have) the data element in its local cache.
The blue states denote states in which the node is passive and is available for
data exchange with an active node when contacted by the latter. The number in
the node-labels denotes the value, ranging from 0 to 3, of the current gossip delay
g before the node becomes active again. The D/O convention w.r.t. having the
data element applies also to the states where the node is passive. The transition
labels in Fig. 3 (left) are shorthands for transition probability functions. The
latter depend on the occupancy measure vector. Their definition makes use of the
conditional probabilities shown in Fig. 3 (right). Furthermore, we recall from [1]
that there is a small probability that collision occurs in the communication
between two nodes. This happens when a gossip partner is selected that is already
involved in a shuffle with another node. In the limit for N to infinity, the value
of the probability of no collision is given by e−2∗(frc (O0)+frc (D0)) where frc (O0)+
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frc (D0) denotes the fraction of active nodes in the network at any time, i.e.
summing active nodes that have the d-element and those that do not.

In the definition of the transition probability functions, we also make use of
the following observation that greatly simplifies the definitions. Note that this
gossip model is a clock-synchronous model and that each node gets active every
Gmax time steps. This means that in every step, if the node is in state Di (or
Oi) then in the next step it leaves this state with probability 1.0 to move one
step closer towards the active state D0, or, if it was active, it moves to D3 (or
O3) modelling a reset of the time-to-activation; similarly for Oi states. In other
words, for all time steps t it holds that:

dks(µ(t)) + dls(µ(t)) = 1 and ons(µ(t)) + ogs(µ(t)) = 1

Similarly for the reset probabilities. The proofs can be found in Sect. 8.7 of this
Appendix.

The transition probability functions that concern the D-states are defined
as shown below. Note that here and in the remainder of the Appendix we also
use Currying notation for notational simplicity. In the sequel m denotes the
occupancy measure vector. Its components are indicated by mO1,mO2 and so
on.

d loss reset m = (mO1 +mO2 +mO3) ∗ P (OD|DO) ∗ (noc )+
(mD1 +mD2 +mD3) ∗ P (OD|DD) ∗ (noc )

d loss step m = mO0 ∗ P (DO|OD) ∗ (noc ) +mD0 ∗ P (DO|DD) ∗ (noc )

d keep reset m = 1.0− (d loss reset m)

d keep step m = 1.0− (d loss step m)

Function d loss reset corresponds to the transition dlr in Fig. 3, and so on.

The transition probability functions concerning the O-states are:

o getd reset m = (mD1 +mD2 +mD3) ∗ (P (DO|OD) + P (DD|OD)) ∗ (noc )

o getd step m = mD0 ∗ (P (OD|DO) + P (DD|DO)) ∗ (noc )

o nod reset m = 1.0− (o getd reset m)

o nod step m = 1.0− (o getd step m)

Defining a 8 × 8 matrix K with indexes i, j in {0, · · · , 7} then we can define
the gossip model as follows for the non-zero elements of K:
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K0,3 = 1.0− (o getd reset m)
K0,7 = o getd reset m
K1,0 = K2,1 = K3,2 = 1.0− (o getd step m)
K1,4 = K2,5 = K3,6 = o getd step m

K4,3 = d loss reset m
K4,7 = 1.0− d loss reset m
K5,0 = K6,1 = K7,2 = d loss step m
K5,4 = K6,5 = K7,6 = 1.0− d loss step m

This leads a set of eight difference equations for the model recalling that the
occupancy vector m at time t+ 1 is m(t+ 1) = m(t) ∗K(m(t)). These equations
are shown in full in the next section.

8.2 Difference equations for the gossip model in Fig. 3

We obtain the following set of difference equations10 for the O-states and the
D-states of the model, representing the occupancy measure of state Oi by mOi,
and Di by mDi, for i ∈ {0, · · · , 3}.

mO0 = mO1 −mO1 ∗ (o getd step m) +mD1 ∗ (d loss step m)
mO1 = mO2 −mO2 ∗ (o getd step m) +mD2 ∗ (d loss step m)
mO2 = mO3 −mO3 ∗ (o getd step m) +mD3 ∗ (d loss step m)
mO3 = mO0 −mO0 ∗ (o getd reset m) +mD0 ∗ (d loss reset m)

mD0 = mO1 ∗ (o getd step m) +mD1 −mD1 ∗ (d loss step m)
mD1 = mO2 ∗ (o getd step m) +mD2 −mD2 ∗ (d loss step m)
mD2 = mO3 ∗ (o getd step m) +mD3 −mD3 ∗ (d loss step m)
mD3 = mO0 ∗ (o getd reset m) +mD0 −mD0 ∗ (d loss reset m)

8.3 Classic Mean Field Model: Coverage.

Network coverage at time t denotes the fraction of the gossip nodes that have
seen the data element at any point in time t′, with t0 ≤ t′ ≤ t, where t0 is
the time the data element was introduced in the network. To analyse network
coverage we extend the model of an individual node in Fig. 10 with four more
states. These states are I0, I1, I2 and I3. A gossip node is in state Ii if the data
element is not in its cache and it has never seen the data element since it was
introduced in the network. The latter is the case initially for most nodes, hence
the name I: Initial O-state. If a node is in one of the other O-states this means
that it does not have the data element in its cache currently, but it was in its
cache at an earlier point in time, so the node has seen the data element since it
was introduced for the first time.

10 On the left of each equation the new value of the occupancy measure vector at
time step t+ 1, on the right the values of m are intended to be those at time t. For
notational simplicity t+ 1 and t have been omitted in the equations below.
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The probability functions for the outgoing transitions of the Ii nodes are
the same as for their companion O-nodes. Also the probability functions of the
incoming transitions, when they come from I-states, are the same. There are no
incoming transitions from D-nodes of course, since passing by a D-node would
mean that the data element has been in the cache of that node. Similarly, there
is no transition from an O-state to an I-state.

D0 D1 D2 D3

O0 O1 O2 O3

I0 I1 I2 I3

dksdksdks

onsonsons

onsonsons

dlsdlsdls

ogsogsogs

ogsogsogs

onr

dkr

onr

ogr

ogr

dlr

Fig. 10. Extended push-pull gossip model of individual gossip node with rounds of
length 3 (i.e. Gmax = 3) for the analysis of network coverage. Active states are red,
passive ones blue.

The probability functions have to be updated slightly to take the two versions
of the O-states into account.

d loss reset m = (mO1 +mO2 +mO3) ∗ P (OD|DO) ∗ (noc )+
(mI1 +mI2 +mI3) ∗ P (OD|DO) ∗ (noc )+
(mD1 +mD2 +mD3) ∗ P (OD|DD) ∗ (noc )

d loss step m = (mO0 +mI0) ∗ P (DO|OD) ∗ (noc )+
mD0 ∗ P (DO|DD) ∗ (noc )

and their dual probabilities, and

o getd reset m = (mD1 +mD2 +mD3) ∗ (P (DO|OD) + P (DD|OD)) ∗ (noc )

o getd step m = mD0 ∗ (P (OD|DO) + P (DD|DO)) ∗ (noc ).
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Similarly to the gossip model for replications we can define a 12 × 12 matrix
K with indexes i, j in {0, · · · , 11}. The definition of the non-zero elements of
this matrix can be found in the next section, as well as the additional set of
difference equations that can be obtained from it.

8.4 Transition matrix and difference equations for the gossip model
in Fig. 10

Numbering the states in the model of Fig. 10 as O0=0, O1=1, O2=2, O3=3,
D0=4, D1=5, D2=6, D3=7, I0=8, I1=9, I2=10 and I3=11, the non-empty ele-
ments of the K matrix are given by:

K0,3 = 1.0− (o getd reset m)
K0,7 = K8,7 = o getd reset m
K1,0 = K2,1 = K3,2 = 1.0− (o getd step m)
K1,4 = K2,5 = K3,6 = o getd step m

K4,3 = d loss reset m
K4,7 = 1.0− d loss reset m
K5,0 = K6,1 = K7,2 = d loss step m
K5,4 = K6,5 = K7,6 = 1.0− d loss step m

K9,4 = K10,5 = K11,6 = o getd step m
K9,8 = K10,9 = K11,10 = 1.0− (o getd step m)

We also obtain the following set of additional four difference equations10 for
the I-states of the model, representing the occupancy measure of state I0 by
mI0, I1 by mI1, I2 by mI2 and I3 by mI3:

mI0 = mI1 −mI2 ∗ (o getd step m)
mI1 = mI2 −mI2 ∗ (o getd step m)
mI2 = mI3 −mI3 ∗ (o getd step m)
mI3 = mI0 −mI0 ∗ (o getd reset m)

8.5 Transition matrix and difference equations for the gossip model
in Fig. 5 (right)

Numbering the states in the model of Fig. 5 (right) as O=0, D=1, I=2 the
non-empty elements of the K matrix are given by:

K0,1 = K2,1 = get m
K1,0 = loose m
K0,0 = K2,2 = 1.0− (get m)
K1,1 = 1.0− (loose m)

Representing the occupancy measure of state O by mO, D by mD, I by mI we
obtain the following set of difference equations10 for the model in Fig. 5 (right):
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mO = mO −mO ∗ (get m) +mD ∗ (loose m)
mD = mD +mO ∗ (get m)−mD ∗ (loose m)
mI = mI −mI ∗ (get m)

8.6 Transition matrix and difference equations for the gossip model
in Fig. 7

Numbering the states in the model of Fig. 7 as O=0, D=1, I=2, FD=3, PD=4,
LD=5, the non-empty elements of the K matrix are given by:

K0,1 = K2,1 = K3,1 = K5,1 = get rep m
K1,0 = loose rep m
K0,0 = K2,2 = 1.0− (get rep m)− (get exc m)
K0,5 = K2,3 = get exc m

K1,1 = 1.0− (loose rep m)
K3,0 = K5,0 = loose exc m
K3,3 = K5,5 = 1.0− (loose exc m)− (get rep m)
K4,4 = 1.0

Representing the occupancy measure of state O by mO, D by mD, I by mI ,
FD by mFD, PD by mPD and LD by mLD, we also obtain the following set of
difference equations10 for the model in Fig. 7:

mO = mO −mO ∗ ((get rep m) + (get exc m)) +mD ∗ (loose rep m)
+(mFD +mLD) ∗ (loose exc m)

mD = (mO +mI +mFD +mLD) ∗ (get rep m) +mD −mD ∗ (loose rep m)
mI = mI −mI ∗ (get rep m+ get exc m)
mFD = mFD −mFD ∗ (get rep m) +mI ∗ (get exc m)−mFD ∗ (loose exc m)
mPD = mPD

mLD = mLD +mO ∗ (get exc m)−mLD ∗ ((loose exc m) + (get rep m))

8.7 Detailed proofs

To prove: dks(µ(t)) + dls(µ(t)) = 1 for all t.. In the following frc (X) denotes the
fraction of nodes in state X.

dks(µ(t)) + dls(µ(t))

= {By Defs. of dks and dls}

(frc (O0) + frc (D0)) ∗ (1− e−2∗(frc (O0)+frc (D0))) +

(1− (frc (O0) + frc (D0))) +
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frc (O0) ∗ (P (OD|OD) + P (DD|OD)) ∗ e−2∗(frc (O0)+frc (D0)) +

frc (D0) ∗ (P (OD|DD) + P (DD|DD)) ∗ e−2∗(frc (O0)+frc (D0)) +

frc (O0) ∗ P (DO|OD) ∗ e−2∗(frc (O0)+frc (D0)) +

frc (D0) ∗ P (DO|DD) ∗ e−2∗(frc (O0)+frc (D0))

= {Use that frc (Di)(t) = frc (D)(t)
gmax+1 and frc (Oi)(t) = frc (O)(t)

gmax+1 }

( frc (O)(t)
gmax+1 + frc (D)(t)

gmax+1 ) ∗ (1− ∗e−2/(gmax+1)) +

(1− ( frc (O)(t)
gmax+1 + frc (D)(t)

gmax+1 )) +

frc (O)(t)
gmax+1 ∗ (P (OD|OD) + P (DD|OD)) ∗ e−2/(gmax+1) +

frc (D)(t)
gmax+1 ∗ (P (OD|DD) + P (DD|DD)) ∗ e−2/(gmax+1) +

frc (O)(t)
gmax+1 ∗ P (DO|OD) ∗ e−2/(gmax+1) +

frc (D)(t)
gmax+1 ∗ P (DO|DD) ∗ e−2/(gmax+1)

= {Simplify}

( frc (O)(t)
gmax+1 + frc (D)(t)

gmax+1 ) ∗ (1− e−2∗(frc (O0)+
frc (D)(t)
gmax+1 )) +

(1− ( frc (O)(t)
gmax+1 + frc (D)(t)

gmax+1 )) +

frc (O)(t)
gmax+1 ∗ (P (OD|OD) + P (DD|OD) + P (DO|OD)) ∗ e−2/(gmax+1) +

frc (D)(t)
gmax+1 ∗ (P (OD|DD) + P (DD|DD) + P (DO|DD)) ∗ e−2/(gmax+1)

= {Use P (OD|OD) + P (DD|OD) + P (DO|OD) = 1 and

P (OD|DD) + P (DD|DD) + P (DO|DD) = 1}

( frc (O)(t)
gmax+1 + frc (D)(t)

gmax+1 ) ∗ (1− e−2∗(frc (O0)+
frc (D)(t)
gmax+1 )) +

(1− ( frc (O)(t)
gmax+1 + frc (D)(t)

gmax+1 )) +

frc (O)(t)
gmax+1 ∗ e

−2/(gmax+1) +

frc (D)(t)
gmax+1 ∗ e

−2/(gmax+1)+

= {Simplify}

1

To prove: P (OD|OD) + P (DD|OD) + P (DO|OD) = 1

P (OD|OD) + P (DD|OD) + P (DO|OD) = 1
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= {Defs. of P a′b′ ab}
c−s
c + s

c ∗ ( c−s
n−s + n−c

n−s )

= {Simplify}
c−s
c + s

c ∗
n−s
n−s

= {Simplify}
c−s
c + s

c

= {Simplify}

1

The proof for P (OD|DD) + P (DD|DD) + P (DO|DD) = 1 is very similar.
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