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Abstract. This paper provides a unified point of view on fractional perimeters and Riesz potentials.
Denoting by Hσ - for σ ∈ (0, 1) - the σ-fractional perimeter and by Jσ - for σ ∈ (−d, 0) - the σ-

Riesz energies acting on characteristic functions, we prove that both functionals can be seen as limits

of renormalized self-attractive energies as well as limits of repulsive interactions between a set and its
complement.

We also show that the functionals Hσ and Jσ , up to a suitable additive renormalization diverging

when σ → 0, belong to a continuous one-parameter family of functionals, which for σ = 0 gives back
a new object we refer to as 0-fractional perimeter. All the convergence results with respect to the

parameter σ and to the renormalization procedures are obtained in the framework of Γ-convergence. As

a byproduct of our analysis, we obtain the isoperimetric inequality for the 0-fractional perimeter.

Keywords. Fractional perimeters, Riesz kernels, Γ-convergence, isoperimetric inequality.

AMS subject classifications. 49J45, 49J10, 49Q10, 49J99.

Contents

Introduction 1
1. Renormalized fractional perimeters and renormalized Riesz energies 3
2. Convergence of Ĥσ
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Introduction

Given σ ∈ (0, 1) , the σ-fractional perimeter [7] of a measurable set E ⊆ Rd is defined as

(0.1) Hσ(E) :=

∫
E

∫
Rd\E

1

|x− y|d+σ
dy dx .

Moreover, given σ ∈ (−d, 0) one can define σ-Riesz energy functionals as

(0.2) Jσ(E) := −
∫
E

∫
E

1

|x− y|d+σ
dy dx .

The main purpose of this paper is to introduce meaningful extensions of both functionals for all
σ ∈ (−d, 1). Clearly, plugging σ ∈ (−d, 0] in (0.1), as well as σ ∈ [0, 1) in (0.2), would give back infinite
tail and core energies, respectively. Moreover, for every set E with 0 < |E| < +∞ we have

lim
σ→0+

Hσ(E) = +∞, lim
σ→0−

Jσ(E) = −∞ .

A natural question is then to understand the blow up scaling of these energies as σ → 0. In [17, 29, 4],
the asymptotics of the σ-fractional perimeter and of the corresponding σ-fractional curvature inside a
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regular domain Ω, as σ → 0+, have been studied. In [17], the authors have proven that, under suitable
conditions on the set E , the σ-fractional perimeter of E scaled by σ, converge to dωd|E| as σ → 0+,
where ωd denotes the measure of the unit ball in Rd .

In this paper we provide a unified point of view on fractional perimeters and Riesz potentials and,
in particular, we develop a “first order” Γ-convergence analysis (see [3]) of the functionals Hσ and Jσ

as σ → 0. We first introduce suitable regularization procedures, usually referred to as the core radius
approach, to cut off the tail and the core energy from Hσ and Jσ respectively, extending these functionals
to all σ ∈ (−d, 1), including σ = 0, by setting

(0.3)

Hσ
ρ (E) :=

∫
E

∫
Bρ(x)\E

1

|x− y|d+σ
dy dx ,

Jσρ (E) := −
∫
E

∫
E\Bρ(x)

1

|x− y|d+σ
dy dx .

For σ ∈ (0, 1), the functionals Hσ
ρ converge to the σ-fractional perimeters as ρ → +∞, while for

σ ∈ (−d, 0), the functionals Jσρ converge to σ-Riesz potentials as ρ→ 0+. Clearly, in the remaining range
of parameters these functionals still diverge.

Then, we introduce suitable renormalized functionals, removing a tail energy from Hσ
ρ , and adding a

core energy to Jσρ . More precisely, for every σ ∈ (−d, 1), for every ρ > 0, and for every set E ⊂ Rd with
finite measure we set

Ĥσ
ρ (E) := Hσ

ρ (E)− γσρ |E| , Ĵσρ (E) := Jσρ (E)− γσρ |E| ,

where the constant γσρ is defined in (1.3). These renormalized functionals Ĥσ
ρ and Ĵσρ converge, for all

σ ∈ (−d, 1) \ {0} to fractional and Riesz type functionals. Setting γσ := dωd
σ , for σ ∈ (−d, 1) \ {0}, and

Ĥσ(E) := Hσ(E)− γσ|E| , for σ ∈ (0, 1) , Ĵσ(E) := Jσ(E)− γσ|E| , for σ ∈ (−d, 0) ,

we have that for σ ∈ (−d, 0), Ĥσ
ρ → Ĵσ as ρ → +∞ (and clearly Ĥσ

ρ → Ĥσ for σ ∈ (0, 1)) , while for

σ ∈ (0, 1), Ĵσρ → Ĥσ as ρ→ 0+ (and clearly Ĵσρ → Ĵσ for σ ∈ (−d, 0)) .

These two families Ĥσ and Ĵσ of renormalized energies are separated by the limit case σ = 0 . Indeed,
also for σ = 0 , the following limits exist

Ĥ0(E) := lim
ρ→+∞

Ĥ0
ρ(E) = lim

ρ→0+
Ĵ0
ρ (E) = H0

1 (E) + J0
1 (E) ,

where H0
1 (E) and J0

1 (E) correspond to the functionals defined in (0.3) with ρ = 1 and σ = 0. We refer

to the functional Ĥ0 as 0-fractional perimeter since this is formally the limit of Ĥσ as σ → 0+. Indeed,
we shall show that

lim
σ→0+

Ĥσ = lim
σ→0−

Ĵσ = Ĥ0 ,

where the limits are understood in the sense of Γ-convergence; therefore, we can set Ĵ0 := Ĥ0 and
understand the 0-fractional perimeter also as a 0-Riesz functional.

This functional is closely related to the notion of logarithmic laplacian L∆ introduced in [12]. There,
the authors prove that L∆, computed on regular enough functions, is the pointwise limit, as σ → 0+,
of a suitable renormalization of the fractional laplacian (−∆)

σ
2 . While [12] deals with the functional

analytic framework of the operator L∆, our paper focuses on the geometric framework of characteristic
functions, and specifically on the variational analysis of the σ-fractional perimeter as σ → 0 . In fact,
our analysis consists in a Γ-convergence approach to the two-parameter families of functionals introduced
above, showing that Ĥσ

R and Ĵσr are continuous, in the sense of Γ-convergence, with respect to variations
of all the parameters σ ∈ (−d, 1), r ∈ [0,+∞) and R ∈ (0,+∞] (see Theorems 6.3 and 6.5).

Our Γ-convergence results are completed with compactness properties for sequences with equi-bounded
energy. It is well known that families of equi-bounded sets of equi-bounded perimeter are pre-compact
in L1, and such property extends to fractional perimeters. Here we show the same compactness property
also for the new 0-fractional perimeter. In fact, we can deal also with the case of varying parameters
σ ∈ [0, 1), and R ∈ (0,+∞] (see Theorem 5.4). Analogous compactness results hold for the functionals Ĵσr
for σ ∈ [0, 1) when r → 0+, for Ĥσ

R when σ → 0− , and for Ĵσr when r → 0+ and σ → 0− simultaneously.
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In all the other cases we expect only weak∗ compactness in the family of L1 densities. We address the
interested reader to [24, 14], where the authors provide compactness results for nonlocal Sobolev spaces,
for a large class of non-integrable kernels.

Summarizing, the main novelty of our approach consists in casting fractional perimeters into the frame-
work of self-attractive Riesz potentials, and viceversa. The underlying idea is that fractional perimeters,
defined through interaction potentials of the set with its complement, can be formally seen as the op-
posite of the self-interaction of the set with itself, but with an infinite core energy. This heuristic point
of view is formalized by our analysis through rigorous renormalization procedures. The advantage of
this approach is that one can exploit classical techniques for self-attracting energies to the framework of
fractional perimeters and to the new 0-fractional perimeter. A clarifying example of this fact is given
by the isoperimetric inequality. Indeed, for self-attractive interaction potentials the celebrated Riesz in-
equality states that the energy is maximized on radially symmetric functions and, under L∞ constraint,
by characteristic functions of balls. In the terminology of fractional perimeters, this is nothing but the
fractional isoperimetric inequality, proven in [21, 22, 18, 19]. Here we provide a self-contained proof based
on Riesz inequality, which provides the σ-fractional isoperimetric inequality and its stability also in the
limit case σ = 0. We refer to [9, Proposition 3.1] for a similar result in the case of nonlocal perimeters
with a general radially symmetric interaction kernel.

Finally, we point out that the 0-fractional perimeter fits into the class of nonlocal perimeters introduced
in [11], up to the fact that it is, in general, non-positive. Therefore, it would be interesting to study the
corresponding 0-fractional mean curvature flow. We notice that σ-fractional mean curvature flows (for
σ ∈ (0, 1)) are nowadays relatively well understood (see [23, 11]), and that their limit as σ → 1 gives back
the classical mean curvature flow [23]. This is consistent with the fact that the σ-fractional perimeter,
rescaled by (1−σ), converges to dωd times the Euclidean perimeter (see [1], for a Γ-convergence result, and
the references therein). A natural problem is to study the limit of (suitably rescaled) σ-fractional mean
curvature flows as σ → 0+. On the one hand, one could expect that such flows, suitably reparametrized
in time, converge to evolutions of sets with constant normal velocity; on the other hand, gradient flows
of renormalized σ-fractional perimeters, as well as σ-fractional mean curvature flows with a volume
constraint, could converge to the 0-fractional mean curvature flow, as σ → 0+.

Acknowledgments: The authors are members of the Gruppo Nazionale per l’Analisi Matematica,
la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).
The authors thanks the anonymous referee for her/his careful revision of the paper.

1. Renormalized fractional perimeters and renormalized Riesz energies

Let M(Rd) be the family of measurable sets in Rd and let

Mf(Rd) := {E ∈M(Rd) : |E| < +∞} .
For σ ∈ (0, 1) , the σ-fractional perimeter Hσ : M(Rd) → [0,+∞] is defined in (0.1), while for every
σ ∈ (−d, 0) , the σ-Riesz energy Jσ : M(Rd)→ [−∞, 0] is defined in (0.2).

For every σ 6= 0 we define γσ := dωd
σ . Letting E ∈Mf(Rd), we recall that

(1.1) Ĥσ(E) := Hσ(E)− γσ|E| , Ĵσ(E) := Jσ(E)− γσ|E| .

Remark 1.1. By definition, Ĥσ : Mf(Rd) → (−∞,+∞] . Moreover, by Riesz inequality (see Theorem
A.1), we have

(1.2) Jσ(E) ≥ −
∫
B|E|

∫
B|E|

1

|x− y|d+σ
dy dx > −∞ ,

where B|E| denotes the ball with center at 0 and volume equal to |E| . It follows that Ĵσ : Mf(Rd)→ R .

We introduce two types of approximations of the functionals Ĥσ and Ĵσ above.
Let σ ∈ (−d, 1). For every R > 0 we define the functionals Hσ

R :M(Rd)→ [0,+∞] as

Hσ
R(E) :=

∫
E

∫
BR(x)\E

1

|x− y|d+σ
dy dx .
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Moreover, for every ρ > 0 we set

γσρ :=

 dωd
1− ρ−σ

σ
if σ 6= 0 ,

dωd log ρ if σ = 0 ,
(1.3)

and for every R > 0 we introduce the functionals Ĥσ
R defined by

Ĥσ
R(E) := Hσ

R(E)− γσR|E| .

Notice that if σ ∈ [0, 1) , then Ĥσ
R :Mf(Rd)→ (−∞,+∞] , whereas if σ ∈ (−d, 0) then Ĥσ

R :Mf(Rd)→
R .

Furthermore, for every r > 0 we define the functionals Jσr :M(Rd)→ [−∞, 0] as

(1.4) Jσr (E) := −
∫
E

∫
E\Br(x)

1

|x− y|d+σ
dy dx

and the renormalized functionals Ĵσr :Mf(Rd)→ R as

Ĵσr (E) := Jσr (E)− γσr |E|, for all E ∈Mf(Rd).

Remark 1.2. Let R > 0 . By Fatou Lemma, it immediately follows that the functionals Hσ, Ĥσ

(for σ ∈ (0, 1)) and Hσ
R, Ĥ

σ
R (for σ ∈ (−d, 1)) are lower semicontinuous with respect to the strong L1

convergence of characteristic functions.

Lemma 1.3. Let r > 0 . The functionals Jσ, Ĵσ (for σ ∈ (−d, 0)) and Jσr , Ĵ
σ
r (for σ ∈ (−d, 1)) are

continuous with respect to the strong L1 convergence of characteristic functions.

Proof. We first prove the continuity of the functionals Jσr and Ĵσr for every σ ∈ (−d, 1). Moreover we

notice that the functionals Ĵσr are nothing but a continuous perturbation of the functionals Jσr so that it
is enough to prove only the continuity of Jσr . For all η1, η2 ∈ L1(Rd; [0, 1]) , we set

(1.5) J σr (η1, η2) := −
∫
Rd
η1(x)

[∫
Rd\Br(x)

η2(y)

|x− y|d+σ
dy

]
dx .

Clearly, J σr is bilinear and continuous, i.e.,

(1.6) |J σr (η1, η2)| ≤ r−(d+σ)‖η1‖L1 ‖η2‖L1 for all η1, η2 ∈ L1(Rd; [0, 1]) .

It follows that J σr (ηn, ηn)→ J σr (η, η) as n→ +∞ for every {ηn}n∈N ⊂ L1(Rd; [0, 1]) converging to some
η ∈ L1(Rd; [0, 1]) . Since

Jσr (E) = J σr (χE , χE) for all E ∈Mf(Rd) ,
we get the claim.

Now we prove the continuity of the functionals Jσ for σ ∈ (−d, 0), which trivially implies also the

continuity of Ĵσ. In such a case, for every η1, η2 ∈ L1(Rd; [0, 1]) , we set R(η2) := (
‖η2‖L1

ωd
)

1
d ; by an easy

rearrangement argument we have∫
Rd
η1(x)

[∫
Rd

η2(y)

|x− y|d+σ
dy

]
dx ≤

∫
Rd
η1(x)

[∫
Rd

χBR(η2)(x)(y)

|x− y|d+σ
dy

]
dx

=‖η1‖L1dωd(−σ)[R(η2)]−σ = dω
1+σ

d

d (−σ)‖η1‖L1‖η2‖
−σd
L1 ;

again such an estimate yields the claim. �

Remark 1.4. We notice that, for every σ ∈ (−d, 1) , the renormalization constants introduced above
can be seen either as core or tail energy terms; in fact, they are nothing but

γσ =

∫
Rd\B1

1

|z|d+σ
dz if σ ∈ (0, 1), γσ = −

∫
B1

1

|z|d+σ
dz if σ ∈ (−d, 0),

γσR =

∫
BR\B1

1

|z|d+σ
dz if R ≥ 1, γσr = −

∫
B1\Br

1

|z|d+σ
dz if r ≤ 1 ,
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where here and below Bρ := Bρ(0) for every ρ > 0 . It follows that for every 0 < ρ1 < ρ2 < +∞

(1.7) γσρ2
− γσρ1

=

∫
Bρ2\Bρ1

1

|z|d+σ
dz .

Lemma 1.5. For all σ ∈ (−d, 1) and for all E ∈Mf(Rd) , the quantity

(1.8) Hσ
ρ (E) + Jσρ (E)− γσρ |E|

is independent of ρ . Moreover,

(1.9) Ĥσ = Hσ
1 + Jσ1 for σ ∈ (0, 1) , Ĵσ = Hσ

1 + Jσ1 for σ ∈ (−d, 0) .

Proof. For every 0 < r < R < +∞ , we have

Hσ
R(E) = Hσ

r (E) +

∫
E

∫
(BR(x)\Br(x))\E

1

|x− y|d+σ
dy dx

=Hσ
r (E) + γσR|E| − γσr |E| −

∫
E

∫
E\Br(x)

1

|x− y|d+σ
dy dx+

∫
E

∫
E\BR(x)

1

|x− y|d+σ
dy dx

=Hσ
r (E) + γσR|E| − γσr |E|+ Jσr (E)− JσR(E) ,

whence we deduce (1.8).
Let us pass to the proof of (1.9). First, we notice that

(1.10) lim
R→+∞

JσR(E) = 0 for all σ ∈ [0, 1) , lim
r→0

Hσ
r (E) = 0 for all σ ∈ (−d, 0) .

Then, recalling also Remark 1.4, (1.9) can be easily deduced by taking the limits as ρ→ 0 and ρ→ +∞
in (1.8). �

2. Convergence of Ĥσ
R as R→ +∞

In this section, we establish the convergence of Ĥσ
R as R → +∞ . We distinguish among three cases:

σ ∈ (−d, 0) , σ ∈ (0, 1) , σ = 0 .
We start by discussing the case σ ∈ (−d, 0) .

Proposition 2.1. Let σ ∈ (−d, 0) . For every E ∈Mf(Rd) , Hσ
R(E) and γσR are monotonically increasing

with respect to R and

(2.1) lim
R→+∞

Hσ
R(E) = lim

R→+∞
γσR = +∞ .

Moreover, Ĥσ
R(E) is monotonically non-increasing with respect to R and

(2.2) Ĵσ(E) = lim
R→+∞

Ĥσ
R(E) for all E ∈Mf(Rd) .

Furthermore, for all ε > 0 the convergence in (2.2) is uniform with respect to σ ∈ [−d+ ε, 0); precisely,
for every R > 0

(2.3) 0 ≤ Ĥσ
R(E)− Ĵσ(E) ≤ |E|

2

Rd+σ
for all E ∈Mf(Rd) .

Finally, Ĵσ is the Γ-limit of the functionals Ĥσ
R as R→ +∞ , with respect to the strong L1 topology.

Proof. The limits in (2.1) are trivial consequences of the definitions of Hσ
R(E) and γσR for σ ∈ (−d, 0) .

Let now R > 0 . By Remark 1.4, we have

γσR − γσ =

∫
BR

1

|z|d+σ
dz,

whence we deduce

(2.4)

Ĥσ
R(E) =−

∫
E

∫
BR(x)∩E

1

|x− y|d+σ
dy dx− γσ|E|

=Ĵσ(E) +

∫
E

∫
E\BR(x)

1

|x− y|d+σ
dy dx ;
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since the last integral is monotonically non-increasing with respect to R , the same holds for Ĥσ
R(E);

moreover, by the monotone convergence Theorem, we deduce that Ĥσ
R(E) converge to Ĵσ(E) . By (2.4),

it follows that

Ĥσ
R(E)− Ĵσ(E) =

∫
E

∫
E\BR(x)

1

|x− y|d+σ
dy dx ≤ |E|

2

Rd+σ
,

i.e., (2.3) holds. Finally, the Γ-convergence of Ĥσ
R to Ĵσ is an obvious consequence of (2.3). �

We now consider the case σ ∈ (0, 1). Both the result and its proof are fully analogous to those of
Proposition 2.1; we only provide the corresponding statement.

Proposition 2.2. Let σ ∈ (0, 1). For every E ∈ M(Rd), Hσ
R(E) is monotonically non-decreasing with

respect to R and tends to Hσ(E) as R→ +∞.
Moreover, γσR is monotonically increasing with respect to R and tends to γσ as R → +∞. As a

consequence,

(2.5) Ĥσ(E) = lim
R→+∞

Ĥσ
R(E) for all E ∈Mf(Rd).

Furthermore, Ĥσ
R(E) is monotonically non-increasing with respect to R, and the convergence in (2.5) is

uniform with respect to σ; precisely, for every R > 1

0 ≤ Ĥσ
R(E)− Ĥσ(E) ≤ |E|

2

Rd+σ
for all E ∈Mf(Rd) .

Finally, Ĥσ is the Γ-limit of the functionals Ĥσ
R as R→ +∞ , with respect to the strong L1 convergence

of characteristic functions.

We finally introduce the 0-fractional perimeter as the limit of the functionals Ĥ0
R as R→ +∞ .

Proposition 2.3. For every E ∈Mf(Rd) the functionals Ĥ0
R(E) are monotonically non-increasing with

respect to R and

(2.6) lim
R→+∞

Ĥ0
R(E) = H0

1 (E) + J0
1 (E) =: Ĥ0(E) .

Finally, Ĥ0 is the Γ-limit of the functionals Ĥ0
R as R→ +∞ , with respect to the strong L1 convergence

of characteristic functions.

Proof. Let 0 < R1 < R2 < +∞ ; then, recalling (1.7), we have

Ĥ0
R2

(E) = Ĥ0
R1

(E) +

∫
E

[∫
(BR2

(x)\BR1
(x))\E

1

|x− y|d
dy + γ0

R1
− γ0

R2

]
dx

≤ Ĥ0
R1

(E) +

∫
E

[∫
BR2

(x)\BR1
(x)

1

|x− y|d
dy − dωd log

R2

R1

]
dx

= Ĥ0
R1

(E) .

Therefore, Ĥ0
R(E) are monotonically non-increasing with respect to R. Moreover, by Lemma 1.5, for

every R > 0, we have

H0
R(E) + J0

R(E)− γ0
R|E| = H0

1 (E) + J0
1 (E) ,

whence, sending R → +∞ and recalling (1.10) we deduce (2.6). Finally, by Remark 1.2 and by Lemma

1.3, we have that the functional Ĥ0 is lower semicontinuous with respect to the strong L1 convergence
of the characteristic functions; therefore, by the monotonicity of Ĥ0

R with respect to R and by [15,
Proposition 5.7], we deduce the Γ-convergence result. �

Lemma 2.4. For every E ∈Mf(Rd) we have

Ĥ0(E) ≥ −|E|ωd log
( |E|
ωd

)
.
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Proof. For every R > 0 we set rR,E(x) := ( |E∩BR(x)|
ωd

)
1
d . By Lemma A.5, we have

H0
R(E) =

∫
E

∫
BR(x)\E

1

|x− y|d
dy dx

≥
∫
E

∫
BR(x)\BrR,E(x)(x)

1

|x− y|d
dy dx =

∫
E

dωd log
R

rR,E(x)
dx

= γ0
R|E| − ωd

∫
E

log
|E ∩BR(x)|

ωd
dx ,

whence the claim follows by sending R→ +∞ and using Proposition 2.3 and the monotone convergence
Theorem. �

Definition 2.5. We refer to the functional Ĥ0 :Mf(Rd)→ (−∞,+∞] as 0-fractional perimeter.

We observe that, as a consequence of the definition above and of [12, formula (1.4)], we can write the
0-fractional perimeter of E as

Ĥ0(E) =
1

cd

∫
E

L∆χE(x) dx− ρd
cd
|E|;

here L∆ denotes the logarithmic laplacian introduced in [12], cd := 2
dωd

and ρd := 2 log 2 + ψ(d2 ) + Γ′(1),

where Γ is the Euler Gamma function and ψ := Γ′

Γ is the Digamma function (see [12] for further details).

Remark 2.6. By (1.9) and (2.6) it immediately follows that, for every E ∈ Mf(Rd) with positive

measure, Ĥσ(E) is increasing with respect to σ ∈ [0, 1).

Remark 2.7. If E is a bounded set, by arguing as in the proof of Proposition 2.3, one immediately has

Ĥ0
R1

(E) = Ĥ0
R2

(E) for every R2 > R1 > diam (E) ,

whence

Ĥ0(E) = Ĥ0
R(E) for every R > diam (E) .

Analogously, one can show that if E is a bounded set, for every R > diam (E) it holds

Ĵσ(E) = Ĥσ
R(E) (for σ ∈ (−d, 0)) and Ĥσ(E) = Ĥσ

R(E) (for σ ∈ (0, 1)) .

Lemma 2.8. Let σ ∈ (−d, 1) . For every R > 0 the functionals Hσ
R are submodular, i.e., for every

E1, E2 ∈Mf(Rd)

(2.7) Hσ
R(E1 ∪ E2) +Hσ

R(E1 ∩ E2) ≤ Hσ
R(E1) +Hσ

R(E2) .

As a consequence, also the functionals Ĥσ
R are submodular.

Moreover, the functionals Ĥσ are submodular for σ ∈ [0, 1) and the functionals Ĵσ are submodular for
σ ∈ (−d, 0) .

Finally, for every σ ∈ (−d, 1) and for every r > 0, also the functionals Jσr and the functionals Ĵσr are
submodular.

Proof. Fix R > 0 and let E1, E2 ∈Mf(Rd) . Trivially,

(2.8) |E1 ∪ E2|+ |E1 ∩ E2| = |E1|+ |E2|.

Therefore, once (2.7) is proven, the submodularity of Ĥσ
R follows, and in turn the submodularity of Ĥσ

and Ĵσ, by sending R→ +∞ and using Propositions 2.1, 2.2 and 2.3.
To prove (2.7) we preliminarily notice that for every disjoint sets A1, A2 ∈ Mf(Rd) and for every

x ∈ Rd we have

BR(x) ∩A2 ⊆ BR(x) \A1, BR(x) \ (A1∪̇A2) = (BR(x) \A1) \ (BR(x) ∩A2)
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(where ∪̇ denotes the disjoint union), so that

(2.9)

Hσ
R(A1∪̇A2) =Hσ

R(A1)−
∫
A1

∫
BR(x)∩A2

1

|x− y|d+σ
dy dx

+Hσ
R(A2)−

∫
A2

∫
BR(x)∩A1

1

|x− y|d+σ
dy dx .

Since

E1 ∪ E2 = (E2 \ E1)∪̇E1 ,

by (2.9), we deduce

(2.10)

Hσ
R(E1 ∪ E2) =Hσ

R(E2 \ E1)−
∫
E2\E1

∫
BR(x)∩E1

1

|x− y|d+σ
dy dx

+Hσ
R(E1)−

∫
E1

∫
BR(x)∩(E2\E1)

1

|x− y|d+σ
dy dx .

Analogously, since

E2 = (E2 \ E1)∪̇(E1 ∩ E2) ,

then, again by (2.9), we get

(2.11)

Hσ
R(E2) =Hσ

R(E2 \ E1)−
∫
E2\E1

∫
BR(x)∩(E1∩E2)

1

|x− y|d+σ
dy dx

+Hσ
R(E1 ∩ E2)−

∫
E1∩E2

∫
BR(x)∩(E2\E1)

1

|x− y|d+σ
dy dx .

In conclusion, by (2.10) and (2.11), we obtain

Hσ
R(E1 ∪ E2) +Hσ

R(E1 ∩ E2) = Hσ
R(E1) +Hσ

R(E2)

+

∫
E2\E1

∫
BR(x)∩(E1∩E2)

1

|x− y|d+σ
dy dx+

∫
E1∩E2

∫
BR(x)∩(E2\E1)

1

|x− y|d+σ
dy dx

−
∫
E2\E1

∫
BR(x)∩E1

1

|x− y|d+σ
dy dx−

∫
E1

∫
BR(x)∩(E2\E1)

1

|x− y|d+σ
dy dx

≤Hσ
R(E1) +Hσ

R(E2) ,

i.e., (2.7) holds.

The proof of the submodularity of Jσr and of Ĵσr works analogously. We just sketch it. In view of (2.8),
it is enough to prove only the submodularity of Jσr . By arguing as in (2.10) and (2.11), we obtain

Jσr (E1 ∪ E2) =Jσr (E2 \ E1)−
∫
E2\E1

∫
E1\Br(x)

1

|x− y|d+σ
dy dx

+ Jσr (E1)−
∫
E1

∫
(E2\E1)\Br(x)

1

|x− y|d+σ
dy dx,

Jσr (E2) =Jσr (E2 \ E1)−
∫
E2\E1

∫
(E1∩E2)\Br(x)

1

|x− y|d+σ
dy dx

+ Jσr (E1 ∩ E2)−
∫
E1∩E2

∫
(E2\E1)\Br(x)

1

|x− y|d+σ
dy dx,

whence we get

Jσr (E1 ∪ E2) + Jσr (E1 ∩ E2) = Jσr (E1) + Jσr (E2)

+

∫
E2\E1

∫
(E1∩E2)\Br(x)

1

|x− y|d+σ
dy dx+

∫
E1∩E2

∫
(E2\E1)\Br(x)

1

|x− y|d+σ
dy dx

−
∫
E2\E1

∫
E1\Br(x)

1

|x− y|d+σ
dy dx−

∫
E1

∫
(E2\E1)\Br(x)

1

|x− y|d+σ
dy dx

≤ Jσr (E1) + Jσr (E2),
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i.e., the submodularity of Jσr .
�

For every σ ∈ (−d, 1) we extend the functional Hσ
R to L1 functions, obtaining a generalized total

variation functional TVHσR : L1(Rd)→ [0,+∞] (see [31, 32]) defined by

(2.12) TVHσR(u) :=

∫ +∞

−∞
Hσ
R({u > t}) dt for all u ∈ L1(Rd).

By Lemma 2.8 and by [10, Proposition 3.4], TVHσR is convex. Analogously, one can consider for all

σ ∈ (−d, 1) the functionals TVĤσR
: L1

c(Rd)→ (−∞,+∞] defined by

TVĤσR
(u) :=

∫ +∞

−∞
Ĥσ
R({u > t}) dt for all u ∈ L1

c(Rd) ,

where L1
c(Rd) denotes the set of L1 functions compactly supported in Rd .

3. Convergence of Ĵσr as r → 0+

In this section, we study the convergence of the functionals Ĵσr as r → 0+ . We preliminarily notice
that for every σ ∈ (−d, 1) and for every r > 0

(3.1) Ĵσr (E) =

∫
E

jσr (x,E) dx, where jσr (x,E) := −
∫
E\Br(x)

1

|x− y|d+σ
dy − γσr .

Lemma 3.1. Let σ ∈ (−d, 1). For every E ∈ Mf(Rd), the functions jσr (·, E) : Rd → R, as well as the

functionals Ĵσr (E), are monotonically non-increasing with respect to r . In particular, for every x ∈ Rd
there exists jσ(x,E) := limr→0+ jσr (x,E) and there exists the limit

(3.2) lim
r→0+

Ĵσr (E) =

∫
E

jσ(x,E) dx .

Moreover, if σ ∈ (−d, 0) , then

(3.3) jσ(x,E) = −
∫
E

1

|x− y|d+σ
dy − γσ ,

and

Ĵσ(E) = lim
r→0+

Ĵσr (E) ,

where Ĵσ is the functional defined in (1.1).

Proof. Let 0 < r1 < r2 < +∞ . By the very definition of jσr (·, E) and by (1.7), for every x ∈ Rd we have

jσr1(x,E) = jσr2(x,E)−
∫

(Br2 (x)\Br1 (x))∩E

1

|x− y|d+σ
dy + γσr2 − γ

σ
r1

≥ jσr2(x,E)−
∫
Br2 (x)\Br1 (x)

1

|x− y|d+σ
dy + γσr2 − γ

σ
r1

= jσr2(x,E) .

Therefore, jσr (x,E) monotonically converge to some jσ(x,E) for every x ∈ Rd . Moreover, by (3.1) and
by the monotone convergence Theorem, we deduce (3.2). Finally, (3.3) is again a consequence of the

monotone convergence Theorem and of the very definition of Ĵσ . �

Definition 3.2. Thanks to Lemma 3.1 we can extend the definition of Ĵσ(E) also to the case σ ∈ [0, 1),

by setting Ĵσ(E) := limr→0+ Ĵσr (E) for all E ∈ Mf(Rd), as in (3.2). In Remark 3.3 below we show that

actually Ĵσ :Mf(Rd)→ (−∞,+∞].
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Remark 3.3. Let σ ∈ (−d, 1) , E ∈ Mf(Rd) , and r ∈ (0, 1] ; by the very definition of Jσr in (1.4), we
have

(3.4) |Jσr (E)| = −Jσr (E) ≤ |E|
2

rd+σ
,

and hence

Ĵσr (E) ≥ − |E|
2

rd+σ
− γσr |E| .(3.5)

Therefore, by (3.5) and by Lemma 3.1, we deduce

Ĵσ(E) ≥ Ĵσ1 (E) = Jσ1 (E) ≥ −|E|2 .(3.6)

Notice that the lower bound in (3.6) is worse than the one obtained in (1.2) for σ ∈ (−d, 0) . Nevertheless,

such a lower bound is enough to guarantee that Ĵσ :Mf(Rd)→ (−∞,+∞] for every σ ∈ [0, 1) .

Now we extend the functionals Ĵσr and Ĵσ to L1 densities by setting, for all ρ ∈ L1(Rd; [0, 1]),

(3.7)

Ĵσr (ρ) =

∫
Rd
ρ(x)jσr (x, ρ) dx,

where jσr (x, ρ) := −
∫
Rd\Br(x)

ρ(y)

|x− y|d+σ
dy − γσr .

Arguing as in the proof of Lemma 3.1, one can prove the following result.

Lemma 3.4. Let σ ∈ (−d, 1); for every ρ ∈ L1(Rd; [0, 1]), the functions jσr (·, ρ) : Rd → R, as well as the

functionals Ĵσr (ρ), are monotonically non-increasing with respect to r . In particular, for every x ∈ Rd
there exists jσ(x, ρ) := limr→0+ jσr (x, ρ) and there exists

Ĵσ(ρ) := lim
r→0+

Ĵσr (ρ) =

∫
Rd
ρ(x)jσ(x, ρ) dx .

Moreover, if σ ∈ (−d, 0) , then

jσ(x, ρ) = −
∫
Rd

ρ(y)

|x− y|d+σ
dy − γσ .

By arguing as in Remark 3.3 we have that Ĵσr (ρ) and Ĵσ(ρ) are bounded from below by −‖ρ‖2L1 .

Moreover, in Remark 5.2 we will see that if σ ∈ [0, 1) then Ĵσ(ρ) = +∞ whenever ρ is not the characteristic
function of a set with finite measure.

Proposition 3.5. Let σ ∈ (−d, 1); for every r > 0 , the functionals Ĵσr : L1(Rd; [0, 1])→ (−∞,+∞] are

continuous with respect to the strong L1 convergence. As a consequence, their monotone limit Ĵσ is lower
semicontinuous; more precisely, Ĵσ is the Γ-limit of {Ĵσr }r>0 with respect to the strong L1 topology, as

r → 0+. The same Γ-convergence result holds true for the functionals Ĵσr , Ĵσ defined on Mf(Rd).

Proof. By arguing verbatim as in the proof of Lemma 1.3 (see formulas (1.5) and (1.6)), one can prove

the continuity of the functionals Ĵσr with respect to the strong L1 convergence. Moreover, it is well
known that monotone convergence of continuous functionals implies Γ-convergence to the pointwise (lower
semicontinuous) limit [15]. �

Remark 3.6. Notice that for every r ∈ (0, 1) the functionals Ĵσr are monotonically non-decreasing with
respect to σ ∈ (−d, 1). Indeed, recalling (3.1), it is easy to check that

jσr (x,E) =

∫
(B1(x)\Br(x))\E

1

|x− y|d+σ
dy +

∫
E\B1(x)

− 1

|x− y|d+σ
dy,

and that both the addenda are monotonically non-decreasing with respect to σ.
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4. Ĥσ = Ĵσ

In view of Proposition 2.1 and Lemma 3.1 we have that for every σ ∈ (−d, 0) and for every E ∈Mf(Rd)

lim
R→+∞

Ĥσ
R(E) = Ĵσ(E) = lim

r→0+
Ĵσr (E) ,

where Ĵσ(E) is finite for every E ∈ Mf(Rd) . By definition we set Ĥσ := Ĵσ for every σ ∈ (−d, 0).

Moreover, we recall that Ĥσ := Ĵσ = Hσ
1 + Jσ1 for every σ ∈ (−d, 0) . In this section we show that the

identities above extends also to the functionals Ĥσ and Ĵσ for σ ∈ [0, 1) . More precisely, we prove that

for every σ ∈ [0, 1) the functionals Ĥσ and Ĵσ coincide on all the measurable sets with finite measure
and are finite on smooth sets.

Theorem 4.1. Let σ ∈ [0, 1) . For every E ∈Mf(Rd), it holds

Ĵσ(E) = Ĥσ(E) .

Moreover, Ĵσ(E) and Ĥσ(E) are finite if and only if Hσ
1 (E) < +∞ .

Proof. We distinguish among two cases.
Case 1: Ĥσ(E) = +∞ . By Proposition 2.2 and by Proposition 2.3, we have that Ĥσ

1 (E) = +∞
which, by the monotone convergence Theorem, implies

(4.1) lim
r→0+

∫
E

∫
(B1(x)\Br(x))\E

1

|x− y|d+σ
dy dx = Hσ

1 (E) = Ĥσ
1 (E) = +∞ .

Moreover, by Remark 1.4 for every r ∈ (0, 1] we have

(4.2)

∫
E

∫
(B1(x)\Br(x))\E

1

|x− y|d+σ
dy dx

=− γσr |E| −
∫
E

∫
E∩(B1(x)\Br(x))

1

|x− y|d+σ
dy dx

=− γσr |E| −
∫
E

∫
E\Br(x)

1

|x− y|d+σ
dy dx+

∫
E

∫
E\B1(x)

1

|x− y|d+σ
dy dx

=Ĵσr (E)− Ĵσ1 (E) .

Therefore, by taking the limit as r → 0+ in (4.2), using (4.1), Lemma 3.1 and (3.4), we deduce that

Ĵσ(E) = +∞ .

Case 2: Ĥσ(E) < +∞ . By Proposition 2.2 and by Proposition 2.3, we have that there exists R1 ≥ 1
such that

(4.3) Ĥσ
R(E) ≤ Ĥσ(E) + 1 for R ≥ R1 .

Let now r ≤ 1 and R ≥ R1 ; then, by (4.3) and Lemma 1.5, we get

(4.4)
Ĥσ(E) + 1 ≥Ĥσ

R(E) = Ĵσr (E) +Hσ
r (E)− JσR(E) ≥ Ĵσ1 (E) +Hσ

r (E)

≥− |E|2 +Hσ
r (E) ,

where we have used also that −JσR(E) ≥ 0 , Lemma 3.1 and (3.6) ; it follows that

(4.5) Hσ
r (E) ≤ |E|2 + Ĥσ(E) + 1 < +∞ for every 0 < r ≤ 1 .

By the non-negativity and the monotonicity of Hσ
r (E) with respect to r , we deduce that there exists

lim
r→0+

Hσ
r (E) ∈ [0,+∞) .

Let now 0 < r̄ ≤ 1 ; by the monotone convergence Theorem, we have

Hσ
r̄ (E)− lim

r→0+
Hσ
r (E) = lim

r→0+
(Hσ

r̄ (E)−Hσ
r (E))

= lim
r→0+

∫
E

∫
(Br̄(x)\Br(x))\E

1

|x− y|d+σ
dy dx

= Hσ
r̄ (E) ,
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i.e.,

(4.6) lim
r→0+

Hσ
r (E) = 0 .

In conclusion, by taking first the limit as r → 0+ and then the limit as R→ +∞ in the equality in (4.4),

by Lemma 3.1, (4.6), Proposition 2.3 and (1.10), we deduce that Ĥσ(E) = Ĵσ(E) .

Finally, we prove the last sentence in the statement. If Ĥσ(E) = +∞, then Hσ
1 (E) = Ĥσ

1 (E) ≥
Ĥσ(E) = +∞ , whereas, if Ĥσ(E) < +∞, then (4.5) with r = 1 yields Hσ

1 (E) < +∞. �

It is well-known that fractional perimeters are finite on smooth sets. Next, we extend this property to
the 0-fractional perimeter. This fact is not completely obvious, since Hσ(E), together with its renormal-
ization γσ|E|, diverges as σ → 0+; clearly, we expect that the C2 regularity condition assumed below is

far from being sharp in order to have finite Ĥ0-perimeter.

Proposition 4.2. Let σ ∈ [0, 1) . If E is an open bounded set with boundary of class C2, then Ĥσ(E) =

Ĵσ(E) < +∞ .

Proof. In view of Theorem 4.1 it is enough to show that Hσ
1 (E) < +∞ . Let T := 1

2‖H ‖
−1
L∞(∂E), where

H is the second fundamental form. Moreover, for all t > 0 we set

(4.7) Et := {x ∈ E : dist(x, ∂E) > t}.
Since E has boundary of class C2, we have that T < +∞ ; moreover, there exists C > 0 such that
Hd−1(∂Et) ≤ C and Et has boundary of class C2 for all t ∈ (0, T ). Then, for 0 < r < min{1, T} by
coarea formula we have

Hσ
r (E) =

∫
E

∫
Br(x)\E

1

|x− y|d+σ
dy dx =

∫
E\Er

∫
Br(x)\E

1

|x− y|d+σ
dy dx

=

∫ r

0

∫
∂Et

∫
Br(x)\E

1

|x− y|d+σ
dy dx dt

≤
∫ r

0

∫
∂Et

∫
Br(x)\Bt(x)

1

|x− y|d+σ
dy dx dt

≤ C
∫ r

0

(Gσ(r)−Gσ(t)) dt < +∞,

where Gσ(τ) is the primitive of τ−1−σ and in the last inequality we have used that it is integrable around
the origin. By Propositions 2.2 and 2.3, we conclude that

Hσ
1 (E) = Ĥσ

1 (E) ≤ Ĥσ
r (E) = Hσ

r (E)− γσr |E| < +∞.
�

The following lemma clarifies the scaling property of Ĥσ for σ ∈ (−d, 1).

Lemma 4.3. Let σ ∈ (−d, 1). For every E ∈Mf(Rd) and for every λ > 0 it holds

(4.8) Ĥσ(λE) = λd−σĤσ(E)− λdγσλ |E|,
with γσλ defined in (1.3).

Proof. Let E ∈Mf(Rd) and λ > 0. We preliminary notice that, by the very definition of γσρ in (1.3) and
by a change of variable in the functional Hσ

ρ defined in (0.3), for every R > 0 it holds

γσλR = λ−σγσR + γσλ , Hσ
λR(λE) = λd−σHσ

R(E).

These two facts imply that, for every R > 0,

Ĥσ
λR(λE) = Hσ

λR(λE)− γσλR|λE|
= λd−σHσ

R(E)− (λ−σγσR + γσλ )λd|E|
= λd−σHσ

R(E)− λd−σγσR|E|+ λdγσλ |E|
= λd−σĤσ

R(E) + λdγσλ |E|,
whence (4.8) follows by sending R→ +∞ and using Propositions 2.1, 2.2, and 2.3. �
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5. Compactness

This section is devoted to the proof of compactness results for the functionals Ĵσ, Ĵσr , Ĥ
σ
R . First we

prove compactness properties for the functionals Ĵσr and Ĵσ for σ ∈ [0, 1).

Theorem 5.1 (Compactness). Let {σn}n∈N ⊂ [0, 1) and let rn → 0+. Let U ⊂ Rd be an open bounded
set and let {En}n∈N ⊂Mf(Rd) be such that En ⊂ U for all n ∈ N . Finally, let C > 0 .

If Ĵσnrn (En) ≤ C for all n ∈ N, then, up to a subsequence, χEn → χE in L1(Rd) for some E ∈Mf(Rd).
In particular, if Ĵσn(En) ≤ C for all n ∈ N , then, up to a subsequence, χEn → χE in L1(Rd) for some

E ∈Mf(Rd).

Proof. Recalling the definition of jσr in (3.7), we claim the following two properties satisfied by all η ∈
L1(Rd; [0, 1]):

(1) For every x ∈ Rd, r ∈ (0, 1) it holds j0
r (x, η) ≥ −‖η‖L1 .

(2) For every Lebesgue point x ∈ Rd with Lebesgue value λ ∈ (0, 1) it holds

lim
r→0+

j0
r (x, η) = +∞.

Proof of (1). For every r ∈ (0, 1] we write

(5.1) j0
r (x, η) = −

∫
Rd\B1(x)

η(y)

|x− y|d
dy −

[∫
B1(x)\Br(x)

η(y)

|x− y|d
dy + γ0

r

]
.

By Remark 1.4 the last term in square brackets is always non-positive, whence property (1) easily follows.
Proof of (2). We have to show that, whenever the Lebesgue value λ of η at x is in (0, 1), the last term
in square brackets in (5.1) in fact tends to −∞ as r → 0+. To this purpose, in order to short notation
we assume x = 0, we let θ ∈ (0, 1) be defined by θd = 1−λ

2 , and for all k ≥ 1 we set Ak := Bθk−1 \ Bθk .

Since λ is the Lebesgue value of η at 0, there exists k̄ ∈ N such that, for all k > k̄ we have

1

ωdθ(k−1)d

∫
B
θk−1

η(y) dy ≤ λ+
1− λ

4
=

1 + 3λ

4
.

It follows that, for all k > k̄,∫
Ak
η(y) dy ≤

∫
B
θk−1

η(y) dy ≤ ωd
1 + 3λ

4
θ(k−1)d =: mk.

Now, we apply Lemma A.6 with m replaced by mk, s replaced by θk and in turn R(m, s) replaced by

R(mk, θ
k). Therefore, setting Âk := BR(mk,θk) \Bθk , for all k > k̄ we have

(5.2)

∫
Ak

η(y)

|y|d
dy ≤

∫
Âk

1

|y|d
dy .

Now we prove that there exists δd,λ > 0 (independent of k) such that

(5.3)

∫
Âk

1

|y|d
dy + γ0

θk − γ
0
θk−1 ≤ −δd,λ .

By the very definition of R(mk, θ
k) in Lemma A.6, we have that |Âk| = mk so that

(5.4) R(mk, θ
k) = θk−1

(
θd +

1 + 3λ

4

) 1
d

= θk−1

(
λ+ 3

4

) 1
d

.

By using (5.4), we deduce (5.3) as follows:∫
Âk

1

|y|d
dy + γ0

θk − γ
0
θk−1 = dωd log

R(mk, θ
k)

θk
+ dωd log θ

= ωd log

(
λ+ 3

4

)
=: −δd,λ ,
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Therefore, by (5.2), (5.3) and by the fact that γ0
1 = 0, for all K > k̄ we get∫

B1\BθK

η(y)

|y|d
dy + γ0

θK

=

k̄∑
k=1

(∫
Ak

η(y)

|y|d
dy + γ0

θk − γ
0
θk−1

)
+

K∑
k=k̄+1

(∫
Ak

η(y)

|y|d
dy + γ0

θk − γ
0
θk−1

)

≤
K∑

k=k̄+1

(∫
Ak

η(y)

|y|d
dy + γ0

θk − γ
0
θk−1

)
≤

K∑
k=k̄+1

(∫
Âk

η(y)

|y|d
dy + γ0

θk − γ
0
θk−1

)
≤ −(K − k̄)δd,λ.

Letting K → +∞, we deduce property (2).

Conclusion. Up to a subsequence, ρn := χEn
∗
⇀ ρ for some ρ in L1(Rd; [0, 1]). For every r̄ ∈ (0, 1), by

Remark 3.6 and Lemma 3.4, we have

lim inf
n→+∞

Ĵσnrn (En) ≥ lim inf
n→+∞

Ĵ0
rn(En)

≥ lim inf
n→+∞

∫
U

ρn(x)j0
r̄ (x, ρn) dx

=

∫
U

ρ(x)j0
r̄ (x, ρ) dx,

where in the last equality we have used that ρn
∗
⇀ ρ in L∞(U) and that, by the dominated convergence

Theorem, j0
r̄ (·, ρn)→ j0

r̄ (·, ρ) in L1(U) as n→ +∞ .
Setting N := {x ∈ U : ρ(x) ∈ (0, 1)} and using the claims (1) and (2) we deduce that

C ≥ lim inf
n→+∞

Ĵσnrn (En) ≥ lim
r̄→0

∫
U

ρ(x)j0
r̄ (x, ρ) dx ≥ +∞|N| − ‖ρ‖2L1 .

As a consequence N is a negligible set, hence ρ is the characteristic function of some set E ⊂ U . It
follows that χEn → χE strongly in L1(Rd).

The last part of the theorem is a trivial consequence of the monotonicity of Ĵσr established in Lemma
3.4. �

Remark 5.2. By the proof of Theorem 5.1, and in particular by claims (1) and (2), it immediately

follows that, for every σ ∈ [0, 1) , Ĵσ(ρ) = +∞ whenever ρ is not the characteristic function of a set with
finite measure.

We notice that the compactness property stated in Theorem 5.1 is not satisfied by the functionals Ĵσ

for σ ∈ (−d, 0) . In this case, indeed, Ĵσ(η) is finite for every density η ∈ L1(Rd; [0, 1]) . Nevertheless we

have the following compactness result for the functionals Ĵσ as σ → 0− .

Theorem 5.3. Let {σn}n∈N ⊂ (−d, 0) and {rn}n∈N ⊂ R+ be such that σn → 0− and rn → 0+ . Let
U ⊂ Rd be an open bounded set and let {En}n∈N ⊂Mf(Rd) be such that En ⊂ U for all n ∈ N . Finally,
let C > 0 .

If Ĵσnrn (En) ≤ C for all n ∈ N , then, up to a subsequence, χEn → χE in L1(Rd) for some E ∈Mf(Rd).
In particular, if Ĵσn(En) ≤ C for all n ∈ N , then, up to a subsequence, χEn → χE in L1(Rd) for some

E ∈Mf(Rd).

Proof. Up to a subsequence, ρn := χEn
∗
⇀ ρ for some ρ in L1(Rd; [0, 1]). For every r̄ ∈ (0, 1), by Lemma

3.4, we have

lim inf
n→+∞

Ĵσnrn (En) ≥ lim inf
n→+∞

∫
U

ρn(x)jσnr̄ (x, ρn) dx

=

∫
U

ρ(x)j0
r̄ (x, ρ) dx,
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where in the last equality we have used that ρn
∗
⇀ ρ in L∞(U) and that, by the dominated convergence

Theorem, jσnr̄ (·, ρn) → j0
r̄ (·, ρ) in L1(U) as n → +∞ . By using claim (2) in the proof of Theorem 5.1

and arguing as in the conclusion therein we get the statements. �

Finally, we prove the following compactness result also for the functionals Ĥσ
R .

Theorem 5.4. Let {σn}n∈N ⊂ (−d, 1) and {Rn}n∈N ⊂ (0,+∞) . Let U ⊂ Rd be an open bounded set
and let {En}n∈N ⊂Mf(Rd) be such that En ⊂ U for all n ∈ N . Finally, let C > 0 .

If Ĥσn
Rn

(En) ≤ C for all n ∈ N, we have:

(a) if {σn}n∈N ⊂ [0, 1), then, up to a subsequence, χEn → χE in L1(Rd) for some E ∈Mf(Rd),
(b) if σn → 0, then, up to a subsequence, χEn → χE in L1(Rd) for some E ∈Mf(Rd).

Proof. By Proposition 2.2 we can assume without loss of generality that Rn > diam (U) . By Remark

2.7, we have that Ĥσn
Rn

(En) = Ĥσn(En) = Ĵσn(En) . By Theorems 5.1 and 5.3 we deduce (a) and (b). �

6. Γ-convergence

This section is devoted to the Γ-convergence analysis of the functionals Ĵσ, Ĵσr , Ĥ
σ
R as σ → σ̄ , r → r̄ ,

R→ R̄ for some σ̄ ∈ (−d, 1) , r̄ ∈ [0,+∞) , R̄ ∈ (0,+∞] .

Next, we shall prove the Γ-convergence of the functionals Ĥσ
R as σ → σ̄ . Firstly, for smooth sets E ,

we show the pointwise convergence of Ĥσ
R(E) to Ĥ σ̄

R̄
(E) as σ → σ̄ and R→ R̄ for some σ̄ ∈ (−d, 1) and

R̄ ∈ (0,+∞] . From now on, it is convenient to adopt the notation Ĥσ
∞ := Ĥσ.

Proposition 6.1. Let σ̄ ∈ (−d, 1) and R̄ ∈ (0,+∞] . Let moreover {σn}n∈N ⊂ (−d, 1) and {Rn}n∈N ⊂
(0,+∞] be such that σn → σ̄ and Rn → R̄ as n → +∞ . If E ∈ Mf(Rd) is an open bounded set with
boundary of class C2 , then

(6.1) lim
n→+∞

Ĥσn
Rn

(E) = Ĥ σ̄
R̄(E) .

Proof. We claim that

(6.2) lim
σ→σ̄

Ĥσ
R(E) = Ĥ σ̄

R(E) for every R ∈ (0,+∞] .

Now we prove that (6.2) implies (6.1). If R̄ ∈ (0,+∞) , in view of (1.7), we have

(6.3)

|Ĥσn
Rn

(E)− Ĥσn
R̄

(E)| ≤ |Hσn
Rn

(E)−Hσn
R̄

(E)|+ |γσnRn − γ
σn
R̄
||E|

≤
∣∣∣ ∫
E

∫
ARn,R̄(x)

1

|x− y|d+σn
dy dx

∣∣∣+ |γσnRn − γ
σn
R̄
||E|

= 2|γσnRn − γ
σn
R̄
||E| → 0 as n→ +∞ ,

where ARn,R̄(x) denotes the annular ring centered at x having as inner radius min{Rn, R̄} and as outer

radius max{Rn, R̄} . Moreover, if R̄ = +∞ , then for n large enough we have that Rn ≥ 1 and σn ≥ σ̂
for some σ̂ ∈ (−d, 1) . Therefore, by Proposition 2.1, Proposition 2.2 and Proposition 2.3, for every ε > 0
there exists Rε > 0 such that, for every σ ∈ (−d, 1) and Rn ≥ Rε we have

(6.4) |Ĥσ(E)− Ĥσ
Rn(E)| < ε .

By (6.3), (6.4), and (6.2), we get

lim
n→+∞

Ĥσn
Rn

(E) = lim
n→+∞

(Ĥσn
Rn

(E)− Ĥσn
R̄

(E)) + lim
n→+∞

Ĥσn
R̄

(E) = Ĥ σ̄
R̄(E) ,

i.e., (6.1) holds.
Now we prove (6.2) and we consider only in the case σ̄ = 0, being the proof in the other cases fully

analogous. By (6.4) and triangular inequality, for every ε > 0 there exists Rε > 0 such that, for every
σ ∈ (−d, 1) and R ≥ Rε we have

|Ĥσ(E)− Ĥ0(E)| < 2ε+ |Ĥσ
R(E)− Ĥ0

R(E)| .

Therefore, in order to get (6.2) for R ∈ (0,+∞], it is enough to prove it only for R ∈ (0,+∞) .
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Claim: For every ε > 0 and for every R > 0 there exists σε,R with |σε,R| > 0 such that

|Ĥσ
R(E)− Ĥ0

R(E)| < ε for all σ with |σ| < |σε,R| .

In order to prove the claim, we preliminarily notice that

(6.5) |Ĥσ
R(E)− Ĥ0

R(E)| ≤ |γσR − γ0
R||E|+ |Hσ

R(E)−H0
R(E)| .

As for the first addendum in (6.5), by the very definition of γσR and γ0
R in (1.3) , we get

(6.6) |γσR − γ0
R| = dωd| logR|

∣∣∣∣1− e−σ logR

σ logR
− 1

∣∣∣∣ ≤ |σ|dωd log2Rmax{Rσ, R−σ},

where the inequality follows by applying∣∣∣∣1− e−tt
− 1

∣∣∣∣ =

∣∣∣∣e−t − (1− t)
t

∣∣∣∣ ≤ t2e|t|

|t|
= |t|e|t|

with t = σ logR . In order to estimate the second addendum in (6.5), we notice that

(6.7)

|Hσ
R(E)−H0

R(E)| ≤
∫
E

∫
(BR(x)\E)\B1(x)

∣∣∣∣ 1

|x− y|d+σ
− 1

|x− y|d

∣∣∣∣ dy dx

+

∫
E

∫
(BR(x)\E)∩B1(x)

∣∣∣∣ 1

|x− y|d+σ
− 1

|x− y|d

∣∣∣∣ dy dx .

Notice also that, if R ≤ 1 , the first integral in (6.7) is equal to 0 , whereas, if R > 1 , in view of (6.6), we
have

(6.8)

∫
E

∫
(BR(x)\E)\B1(x)

∣∣∣∣ 1

|x− y|d+σ
− 1

|x− y|d

∣∣∣∣ dy dx

≤
∫
E

∫
BR(x)\B1(x)

∣∣∣∣ 1

|x− y|d+σ
− 1

|x− y|d

∣∣∣∣ dy dx = |E||γσR − γ0
R|

≤|σ|dωd log2Rmax{Rσ, R−σ}|E| ,

where the last equality follows by the fact that the integrand in the modulus has constant sign in the
annulus BR(x) \B1(x) .

In order to estimate the second integral in (6.7), we first consider the case σ > 0 . Setting R̄ :=
min{1, R} and rx := dist(x, ∂E) for every x ∈ E , we have

(6.9)

∫
E

∫
(BR(x)\E)∩B1(x)

∣∣∣∣ 1

|x− y|d+σ
− 1

|x− y|d

∣∣∣∣ dy dx

≤
∫
E

∫
BR̄(x)\Brx (x)

(
1

|x− y|d+σ
− 1

|x− y|d

)
dy dx

≤σ
∫
E

∫
BR̄(x)\Brx (x)

− log |x− y|
|x− y|d+σ

dy dx ≤ σdωd
∫
E

1

rσx

∫ R̄

rx

− log ρ

ρ
dρ dx

≤σdωd
1

2

∫
E

1

rσx
log2 rx dx− σdωd

1

2

1

R̄σ
log2 R̄|E| ,

where the first inequality follows by applying the bound (valid for t ≥ 1)

td+σ − td = td+σ(1− t−σ) ≤ td+σσ log t

with t = 1
|x−y| .

As for the case σ < 0 , by arguing as in (6.9) one can easily show that

(6.10)

∫
E

∫
(BR(x)\E)∩B1(x)

∣∣∣∣ 1

|x− y|d+σ
− 1

|x− y|d

∣∣∣∣ dy dx ≤ |σ|dωd
∫
E

log2 rx dx− |σ|dωd log2 R̄|E| .
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Therefore, in view of (6.5), (6.6), (6.7), (6.8), (6.9), (6.10), the equality (6.2) is proven once we show
that there exists a constant C(E) > 0 such that

(6.11)

∫
E

1

rσx
log2 rx dx ≤ C(E) for every σ ∈ [0, 1) .

Recalling that E has boundary of class C2, let T := 1
2‖H ‖

−1
L∞(∂E), where H is the second fundamental

form. Moreover, for all t > 0 let

Et := {x ∈ E : dist(x, ∂E) > t}.

Then, for all t ∈ (0, T ) we have that Et has boundary of class C2, and Hd−1(∂Et) ≤ C for some C
independent of t. Then, by coarea formula we have∫

E

1

rσx
log2 rx dx ≤

∫ T

0

Hd−1(∂Et)
1

tσ
log2 t dt+

( 1

Tσ
max{log2 diam (E), log2 T}

)
|ET |

≤c1
∫ T

0

1

tσ
log2 t dt+ c2 ≤ C(E),

i.e., (6.11) holds. �

In the following proposition we show that a set E ∈Mf(Rd) with Ĥσ(E) < +∞ can be approximated
by a sequence of smooth sets. The same property related to the σ-fractional perimeters, with σ > 0, has
been proved in [28].

Proposition 6.2 (Density of smooth sets). Let σ ∈ (−d, 1) and let R ∈ (0,+∞]. Let E ∈ Mf(Rd) . If

Ĥσ
R(E) < +∞ , then, there exists a sequence {En}n∈N of bounded sets with smooth boundary such that

χEn → χE strongly in L1(Rd) and Ĥσ
R(En)→ Ĥσ

R(E) as n→ +∞ .

Proof. First, we recall that for sets of finite perimeter, this result is classical, and its proof is based on the
lower semicontinuity of the perimeter, on the convexity of the total variation functional, and on the coarea
formula (see [2, Theorem 3.42]). Recalling that Hσ

R are lower semicontinuous and that the functionals
TVHσR introduced in (2.12) are convex, the same proof shows that, for every R ∈ (0,+∞), there exists a

sequence {ER,m}m∈N of bounded sets with smooth boundary such that χER,m → χE strongly in L1(Rd)
and Hσ

R(ER,m) → Hσ
R(E) as m → +∞. As a consequence, Ĥσ

R(ER,m) → Ĥσ
R(E) as m → +∞ . We

now prove the statement for R = +∞ . By Propositions 2.1 and 2.2, the functionals Ĥσ are lower
semicontinuous; this fact, together with Propositions 2.1, 2.2, and 2.3, implies

Ĥσ(E) ≤ lim inf
m→+∞

Ĥσ(ER,m) ≤ lim inf
m→+∞

Ĥσ
R(ER,m) = Ĥσ

R(E).

Since Ĥσ
R(E) → Ĥσ(E) as R → +∞, a standard diagonal argument provides a sequence {En}n∈N with

En = ERn,mn satisfying all the claimed properties. �

We are now in a position to prove the Γ-convergence result for the functionals Ĥσ
R as σ → σ̄ for some

σ̄ ∈ (−d, 1), and R→ R̄ for some R̄ ∈ (0,+∞] .

Theorem 6.3. Let R̄ ∈ (0,+∞] and σ̄ ∈ (−d, 1). Let moreover {Rn}n∈N ⊂ (0,+∞] and {σn}n∈N ⊂
(−d, 1) be such that Rn → R̄ and σn → σ̄ as n→ +∞ . The following Γ-convergence result holds true.

(i) (Γ-liminf inequality) For every E ∈ Mf(Rd) and for every sequence {En}n∈N with χEn → χE
strongly in L1(Rd) it holds

Ĥ σ̄
R̄(E) ≤ lim inf

n→+∞
Ĥσn
Rn

(En) .

(ii) (Γ-limsup inequality) For every E ∈Mf(Rd) , there exists a sequence {En}n∈N such that χEn →
χE strongly in L1(Rd) and

Ĥ σ̄
R̄(E) ≥ lim sup

n→+∞
Ĥσn
Rn

(En) .
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Proof. We first prove (i). We distinguish among two cases.
Case 1: R̄ ∈ (0,+∞) . Trivially, we have

(6.12)
lim inf
n→+∞

Ĥσn
Rn

(En)− Ĥ σ̄
R̄(E) ≥ lim inf

n→+∞
Hσn
Rn

(En)−H σ̄
R̄(E)

+ lim
n→+∞

γσnRn |En| − γ
σ̄
R̄|E| .

Moreover, by Fatou Lemma

lim inf
n→+∞

Hσn
Rn

(En) ≥
∫
Rd

∫
Rd

lim inf
n→+∞

χBRn (x)(y)
χEn(x)(1− χEn(y))

|x− y|d+σn
dy dx = H σ̄

R̄(E) ,

which, together with (6.12) and (6.6) implies (i).
Case 2: R̄ = +∞ . By Theorem 4.1, Lemma 3.1, Lemma 6.4 below, and Propositions 2.1, 2.2, 2.3, we

have
Ĥ σ̄(E) = Ĵ σ̄(E) = lim

r→0+
Ĵ σ̄r (E) = lim

r→0+
lim

n→+∞
Ĵσnr (En) ≤ lim inf

n→+∞
Ĵσn(En)

= lim inf
n→+∞

Ĥσn(En) ≤ lim inf
n→+∞

Ĥσn
Rn

(En) ,

i.e., (i) holds.

Now we prove (ii). We can assume without loss of generality that Ĥ σ̄
R̄

(E) < +∞ . If E is smooth,
in view of Proposition 6.1, in particular by (6.1), the constant sequence En ≡ E satisfies the Γ-limsup
inequality. The Γ-limsup inequality in the general case is an easy consequence of Proposition 6.2 and of
a standard diagunal argument, usually referred to as density argument in Γ-convergence. The details are
left to the reader. �

Lemma 6.4. Let σ̄ ∈ (−d, 1) and let r̄ > 0. Let {σn}n∈N ⊂ (−d, 1) and {rn}n∈N ⊂ (0,+∞) be such
that σn → σ̄ and rn → r̄ as n→ +∞ . Let moreover E ∈ Mf(Rd) and {En}n∈N ⊂Mf(Rd) be such that
χEn → χE strongly in L1(Rd) as n→ +∞ . Then,

jσ̄r̄ (x,E) = lim
n→+∞

jσnrn (x,En) for every x ∈ Rd(6.13)

Ĵ σ̄r̄ (E) = lim
n→+∞

Ĵσnrn (En) .(6.14)

Proof. We start by proving (6.13). Let x ∈ Rd. It is easy to see that

(6.15)

jσnrn (x,En) =

∫
Rd\Brn (x)

χE(y)− χEn(y)

|x− y|d+σn
dy

−
∫
Rd\Brn (x)

χE(y)

|x− y|d+σn
dy − γσnrn .

As for the first integral in (6.15) we have

(6.16)

∫
Rd\Brn (x)

|χEn(y)− χE(y)|
|x− y|d+σn

dy ≤ 1

rnd+σn
|En∆E| → 0 ,

while for the remaining terms, by the dominated convergence Theorem, we obtain

−
∫
Rd\Brn (x)

χE(y)

|x− y|d+σn
dy − γσnrn → jσ̄r̄ (x,E) as n→ +∞ ,

which together with (6.15), and (6.16), implies (6.13).
Now we prove (6.14). In view of the strong L1 convergence of the functions χEn we have that there

exists a constant C > 0 such that

(6.17) sup
n∈N
|En| ≤ C .

By (3.1), we have

(6.18) Ĵσnrn (En) =

∫
Rd

(χEn(x)− χE(x))jσnrn (x,En) dx+

∫
E

jσnrn (x,En) dx .
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By (6.17) we have

(6.19)

∫
Rd
|χEn(x)− χE(x)||jσnrn (x,En)| dx ≤ C

rnd+σn
|En∆E| → 0 as n→ +∞ ,

whereas by (6.13) and by the dominated convergence Theorem we deduce

(6.20)

∫
E

jσnrn (x,En) dx→ Ĵ σ̄r̄ (E) as n→ +∞ .

Therefore, (6.14) follows by (6.18), (6.19), and (6.20). �

Finally we prove the Γ-convergence result for the functionals Ĵσr as σ → σ̄ for some σ̄ ∈ (−d, 1) and

r → r̄ for some r̄ ∈ [0,+∞) . To this purpose, it is convenient to adopt the notation Ĵσ0 := Ĵσ .

Theorem 6.5. Let σ̄ ∈ (−d, 1) and let r̄ ∈ [0,+∞) . Let {σn}n∈N ⊂ (−d, 1) and {rn}n∈N ⊂ [0,+∞) be
such that σn → σ̄ and rn → r̄ as n→ +∞ . The following Γ-convergence result holds true.

(i) (Γ-liminf inequality) For every E ∈ Mf(Rd) and for every sequence {En}n∈N with χEn → χE
strongly in L1(Rd) it holds

Ĵ σ̄r̄ (E) ≤ lim inf
n→+∞

Ĵσnr̄n (En) .

(ii) (Γ-limsup inequality)For every E ∈ Mf(Rd) , there exists a sequence {En}n∈N such that χEn →
χE strongly in L1(Rd) and

Ĵ σ̄r̄ (E) ≥ lim sup
n→+∞

Ĵσnrn (En) .

Proof. If r̄ ∈ (0,+∞) , the statement follows immediately by (6.14). We discuss the case r̄ = 0 . By
Lemma 3.1 and by (6.14) we have

Ĵ σ̄(E) = lim
r→0+

Ĵ σ̄r (E) = lim
r→0+

lim
n→+∞

Ĵσnr (En) ≤ lim inf
n→+∞

Ĵσnrn (En) ,

i.e., (i). We prove (ii) for r̄ = 0 . By Theorem 6.3, Theorem 4.1, and Lemma 3.1, there exists a sequence
{En}n∈N ⊂Mf(Rd) such that χEn → χE as n→ +∞ and

Ĵ σ̄(E) = lim
n→+∞

Ĵσn(En) ≥ lim sup
n→+∞

Ĵσnrn (En) .

�

7. The fractional isoperimetric inequality

The isoperimetric inequality for the functionals Ĵσ for σ ∈ (−d, 0) is nothing but the Riesz inequality
(see [30] and Theorem A.1). For σ ∈ (0, 1), one deals with fractional isoperimetric inequalities, that have
been proven in [21], while their quantitative counterpart has been established in [22] (see also [18, 16, 19]).
Here we prove the isoperimetric inequality and its stability also for the 0-fractional perimeter. In fact,
our short proof based on Riesz inequality yields the result for every exponent σ ∈ [0, 1).

Let σ ∈ [0, 1) . For every r > 0, we set

(7.1) kσr (t) :=
1

max{td+σ, rd+σ}
+ (r − t)+ ,

and we define the functionals J σ
r :Mf(Rd)→ (−∞, 0] as

J σ
r (E) := −

∫
E

∫
E

kσr (|x− y|) dy dx for all E ∈Mf(Rd) .

Notice that kσr is strictly decreasing with respect to t and that, for every E ∈Mf(Rd),

(7.2) J σ
r (E) = Jσr (E)−

∫
E

∫
Br(x)∩E

1

rd+σ
+ (r − |x− y|)+ dy dx ,

We have the following result.



20 L. DE LUCA, M. NOVAGA, AND M. PONSIGLIONE

Lemma 7.1. Let E, F ∈ Mf(Rd) with |E| = |F |, and, for σ 6= 0, assume also that E and F have C2

compact boundary. Then,

(7.3) lim
r→0

(J σ
r (E)−J σ

r (F )) = lim
r→0

(Jσr (E)− Jσr (F )) = Ĵσ(E)− Ĵσ(F ).

Proof. We preliminarily notice that the second equality in (7.3) is a trivial consequence of the very

definition of Ĵσ and of the fact that |E| = |F | .
Moreover, we notice that, for all G ∈Mf(Rd) we have∫

G

∫
Br(x)∩G

(r − |x− y|)+ dy dx = δr ,

with δr → 0 as r → 0+ . Therefore, by (7.2) we have

(7.4)

J σ
r (E)−J σ

r (F ) = Jσr (E)− Jσr (F )

+
1

rd+σ

[ ∫
F

|Br(x) ∩ F | dx−
∫
E

|Br(x) ∩ E| dx
]

+ δr ,

with δr → 0 as r → 0+ .
We first consider the case σ = 0 . By the mean value and dominated convergence Theorems, for all

G ∈Mf(Rd) we have

(7.5) lim
r→0+

∫
G

∫
Br(x)∩G

1

rd
+ (r − |x− y|)+ dy dx = ωd|G|,

whence, by (7.4) we deduce (7.3).
Let now σ ∈ (0, 1). Using the notation in (4.7), by coarea formula, for all G ∈ Mf(Rd) with C2

compact boundary we have

(7.6)

∫
G\Gr

|Br(x) ∩G| dx ≤ ωdrd
∫ r

0

Hd−1(∂Gt) dt ≤ Cωdrd+1.

Moreover, we have

(7.7)

∣∣∣ ∫
Fr

|Br(x) ∩ F | dx−
∫
Er

|Br(x) ∩ E| dx
∣∣∣ = ωdr

d(|Er| − |Fr|)

=ωdr
d
∣∣∣|F \ Fr| − |E \ Er|∣∣∣ ≤ ωdrd(|F \ Fr|+ |E \ Er|) ≤ Cωdrd+1 ,

where the last inequality easily follows by the coarea formula and the regularity of ∂E, ∂F .
By (7.4), (7.6) and (7.7), we deduce (7.3) also for σ ∈ (0, 1) . �

Theorem 7.2 (Isoperimetric inequality). For every σ ∈ [0, 1), the ball Bm of measure equal to m > 0 is

the unique, up to translations, minimizer of the σ-fractional perimeter Ĵσ among all the measurable sets
with measure equal to m.

Moreover, if {En}n∈N is a sequence of sets such that |En| ≡ m and Ĵσ(En) → Ĵσ(Bm), then, there
exists a sequence of translations {τn}n∈N such that χEn+τn → χBm strongly in L1(Rd).

Proof. We set Inf := inf E∈Mf (Rd)
|E|=m

Ĵσ(E) ; for all ε > 0 let Eε (see Proposition 6.2 and [28] for σ > 0) be

a smooth set such that

(7.8) Ĵσ(Eε)− Inf ≤ ε .

In view of the scaling property (4.8) (and recalling that Ĥσ = Ĵσ) we can assume, without loss of
generality, that |Eε| = m for every ε > 0. Recalling the definition of kσr in (7.1), for every 0 < r1 ≤ r2 ≤ 1,
we set

kr1,r2(t) := kr1(t)− kr2(t) for all t > 0 .
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Noticing that kr1,r2 is monotonically non-increasing with respect to t, and using Riesz inequality (Theorem
A.1) we have

J σ
r1(Eε)−J σ

r1(Bm) = J σ
r2(Eε)−J σ

r1(Bm)−
∫
Eε

∫
Eε

kr1,r2(|x− y|) dy dx

≥J σ
r2(Eε)−J σ

r1(Bm)−
∫
Bm

∫
Bm

kr1,r2(|x− y|) dy dx

= J σ
r2(Eε)−J σ

r2(Bm) =: cr2(ε) ≥ 0 ,

where the last inequality follows again by Riesz inequality. Chosing r2 = 1 and letting r = r1 → 0+, by
Lemma 7.1 we deduce that

(7.9) Ĵσ(Eε)− Ĵσ(Bm) ≥ c1(ε),

and by (7.8) we conclude that c1(ε) (and in fact cr(ε) for all positive r) vanishes as ε → 0+. Therefore
J σ

1 (Eε) → J σ
1 (Bm) as ε → 0+ . Noticing that kσ1 is strictly decreasing, by Theorem A.4 we deduce

that, up to translations, χEε → χBm strongly in L1(Rd). The minimality of Bm is then a consequence of

the lower semicontinuity (together with the translational invariance) of Ĵσ. �

Remark 7.3. Notice that our proof of Theorem 7.2 relies on elementary rearrangement inequalities
which provide uniqueness and stability for the 0-isoperimetric problem. Actually, using the more refined
result in [13] (see also [20]) and the quantitative isoperimetric inequality for the Riesz functionals in [19],

we can easily show also a quantitative isoperimetric inequality for the functional Ĥ0. Indeed, writing
the last estimate in [19, proof of Theorem 4] in our notation, we have that there exists a constant cd
depending only on the dimension such that for every σ ∈ (−d, 0), m > 0, and for every measurable set
F ⊂ Rd with |F | = m, it holds

(7.10) Jσ(F )− Jσ(Bm) ≥ (d+ σ)cd|m|2A2[F ]

∫
I

1

Rd+σ+1
dR ,

where

A[F ] :=
1

2m
inf
a∈Rd

‖χF − χBm+a‖L1(Rd)

and I := {R > 0 : 1
4 ≤

|BR|
1
d

2m
1
d
≤ 3

4} ; by (7.10) we get

(7.11) Jσ(F )− Jσ(Bm) ≥ cd2d+σ
(

1− 1

3d+σ

)
ω

1+σ
d

d m1−σdA2[F ].

Now, let E ⊂ Rd with |E| = m, and let {σn}n∈N ⊂ (−d, 0) with σn → 0− as n → +∞. By Theorem
6.5(ii), there exists a sequence {En}n∈N with ‖χEn − χE‖L1(Rd) → 0 as n→ +∞ such that

(7.12) Ĵ0(E) ≥ lim sup
n→+∞

Ĵσn(En).

Set moreover mn := |En|. Clearly, ‖χBmn − χBm‖L1(Rd) → 0 as n → +∞ which in view of Theorem
6.5(i), yields

(7.13) Ĵ0(Bm) ≤ lim inf
n→+∞

Ĵσn(Bmn).

By (7.12) and (7.13), using that |En| = mn = |Bmn | and (7.11), we deduce that

Ĵ0(E)− Ĵ0(Bm) ≥ lim sup
n→+∞

(Ĵσn(En)− Ĵσn(Bmn)) = lim sup
n→+∞

(Jσn(En)− Jσn(Bmn))

≥ Cd lim sup
n→+∞

A2[En] = CdA
2[E] ,

where Cd > 0 depends only on d.

In view of (1.9) one may wonder whether both the functionals Hσ
1 and Jσ1 are minimized, under volume

constraints, by the ball. We show that this is the case for Hσ
1 (see Proposition 7.5) but, in general, not

for Jσ1 (see Remark 7.4).
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Remark 7.4. Let σ ∈ (−d, 1) and let r > 0 . We set mr := ωd(
r
2 )d . Clearly, for all m ∈ (0,mr) we

have that 0 = Jσr (Bm) ≥ Jσr (E) for all E with |E| = m . Moreover, taking E := B
m
2 ∪ Bm

2 (ξ) with
|ξ| = 2r , we have immediately that |E| = m and Jσr (E) < 0 . Therefore, for all m ∈ (0,mr) the ball
Bm is a maximizer of Jσr ; in particular, for general values of m and r the ball is not a solution of the
isoperimetric inequality.

Proposition 7.5. Let σ ∈ (−d, 1) and let R > 0 . The ball Bm of measure equal to m > 0 is the unique,
up to translations, minimizer of Hσ

R among all the measurable sets with measure equal to m.
Moreover, if {En}n∈N is a sequence of sets such that |En| ≡ m and Hσ

R(En)→ Hσ
R(Bm)as n→ +∞ ,

then, there exists a sequence of translations {τn}n∈N such that χEn+τn → χBm strongly in L1(Rd).

Proof. For every 0 < r ≤ R we set kσr,R(t) := χ[0,R](t)k
σ
r (t) where kσr is defined in (7.1), and we define

Kσr,R :Mf(Rd)→ (−∞, 0) as

Kσr,R(E) := −
∫
Rd

∫
Rd
χE(x)χE(y)kσr,R(|x− y|) dy dx .

Let E ∈Mf(Rd) with |E| = m and Hσ
R(E) < +∞ . For every 0 < r < r̄ < min{R, 1} we have

Hσ
R(E)−Hσ

R(Bm) = Kσr̄,R(E)−Kσr̄,R(Bm)

+(Kσr,R(E)−Kσr̄,R(E))− (Kσr,R(Bm)−Kσr̄,R(Bm))(7.14)

+Hσ
R(E)−Kσr,R(E)−Hσ

R(Bm) +Kσr,R(Bm)

≥ Kσr̄,R(E)−Kσr̄,R(Bm)(7.15)

+Hσ
R(E)−Kσr,R(E)−Hσ

R(Bm) +Kσr,R(Bm) ,(7.16)

where the non-negativity of the quantity in (7.14) follows by the monotonicity of kσr − kσr̄ and by Riesz
inequality.

Now we show that the sum in (7.16) tends to 0 as r → 0+ . Indeed, by the very definiton of Kσr,R and

by (7.1) we have

Hσ
R(E)−Kσr,R(E)−Hσ

R(Bm) +Kσr,R(Bm)

=

∫
E

∫
Rd\E

χBR(x)(y)

|x− y|d+σ
dy dx−

∫
E

∫
Rd\E

χBR(x)(y)kσr (|x− y|) dy dx(7.17)

−
∫
Bm

∫
Rd\Bm

χBR(x)(y)

|x− y|d+σ
dy dx+

∫
Bm

∫
Rd\Bm

χBR(x)(y)kσr (|x− y|) dy dx,(7.18)

and kσr (t) monotonically increases to 1
td+σ as r → 0+ . By the monotone convergence Theorem, we have

that the expressions in (7.17) and (7.18) tend to zero as r → 0+ . Therefore, by taking the limit as
r → 0+ in (7.16) and by (7.15), we get

(7.19) Hσ
R(E)−Hσ

R(Bm) ≥ Kσr̄,R(E)−Kσr̄,R(Bm) ≥ 0 ,

where the last inequality follows by Theorem A.1. Noticing that kσr̄,R is strictly decreasing in (0, R) and
using Proposition A.2, we get that, up to translations, the ball Bm is the unique minimizer of Kσr̄,R, and
hence of Hσ

R .
Finally, if {En}n∈N is a sequence of sets such that |En| ≡ m and Hσ

R(En) → Hσ
R(χBm), by (7.19) we

have that Kσr̄,R(En)→ Kσr̄,R(Bm) as n→ +∞ . By Theorem A.4 we deduce that there exists a sequence

of translations {τn}n∈N such that χEn+τn → χBm strongly in L1(Rd). �

Appendix A. Rearrangement inequalities

In this appendix we recall some results on rearrangement inequalities and we provide some cases of
uniqueness and stability for the Riesz inequality, in the specific case of a set interacting with itself.

Let K ∈ L1
loc(Rd; [0,+∞)) be such that K(z) = k(|z|) for some k : [0,+∞)→ [0,+∞) monotonically

non-increasing. For every η1, η2 ∈ L1(Rd; [0,+∞)) we set

I(η1, η2) :=

∫
Rd

∫
Rd
η1(x)η2(y)K(x− y) dy dx .
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First, we recall the classical Riesz inequality [30]. To this purpose, for every m > 0 and x0 ∈ Rd, we
denote by Bm(x0) the ball centered in x0 with |Bm(x0)| = m (Bm if x0 = 0). With a little abuse of
notation, for any x0 ∈ Rd and for any η ∈ L1(Rd; [0,+∞)), we set Bη(x0) := B‖η‖L1 (x0) (Bη := B‖η‖L1

if x0 = 0). Moreover, for every function η ∈ L1(Rd; [0,+∞)) we denote by η∗ the spherical symmetric
nonincreasing rearrangement of η, satisfying

(A.1) {η∗ > t} = Bmt where mt := |{η > t}| for all t > 0 .

Now, we state the Riesz inequality, restricting our analysis to densities with values in [0, 1]. The proof of
Theorem A.2 below follows from the Riesz rearrangement inequality [30, 6, 5] and the bathtub principle
[26, Theorem 1.14].

Theorem A.1 (Riesz inequality). Let η1, η2 ∈ L1(Rd; [0, 1]) with ‖η1‖L1 , ‖η2‖L1 > 0. Then,

(A.2) I(η1, η2) ≤ I(η∗1 , η
∗
2) ≤ I(χBη1 , χBη2 ) .

Moreover, if k is strictly decreasing, then the first inequality in (A.2) is an equality if and only if ηi(·) =
η∗i (· − x0) (i = 1, 2) for some x0 ∈ Rd, whereas the second inequality in (A.2) holds with the equality if
and only if η∗i = χBηi .

Equality cases have been largely studied in the literature (see [25, 5, 8, 9]); here we provide a case of
equality specific for a characteristic function interacting with itself.

For every E ∈Mf(Rd), we set K(E) := I(χE , χE) .

Proposition A.2 (An equality case). Assume that k is strictly decreasing in a neighborhood of the origin.
If E ∈Mf(Rd) satisfies

(A.3) K(E) = K(B|E|) ,

Then E = B|E|(x0) for some x0 ∈ Rd.

Proof. By the layer-cake principle, we have

K(E) =

∫ +∞

0

∫
Rd

∫
Rd
χE(x)χE(y)χ{K>t}(x− y) dy dx dt .

By (A.2) and (A.3) we have that for a.e. t > 0∫
Rd

∫
Rd
χE(x)χE(y)χ{K>t}(x− y) dy dx =

∫
Rd

∫
Rd
χB|E|(x)χB|E|(y)χ{K>t}(x− y) dy dx .

Set β(t) := |{K > t}| for every t . Since K is radially symmetric and k is monotonically decreasing, we
clearly have that {K > t} = Bβ(t) for all t > 0. Moreover, since k is strictly monotone in a neighborhood
of the origin, we have that for all β̄ > 0 the set Fβ̄ := {t > 0 : 0 < β(t) < β̄} has positive measure.
Furthermore, for a.e. t ∈ Fβ̄ we have

(A.4)

∫
Rd

∫
Rd
χE(x)χE(y)χBβ(t)(x− y) dx dy =

∫
Rd

∫
Rd
χB|E|(x)χB|E|(y)χBβ(t)(x− y) dx dy .

Now fix β̄ = 2|E| and let t ∈ Fβ̄ be such that (A.4) holds; by [5, Theorem 1] we conclude that, up to a

translation, E = B|E|. �

We will also need the following result.

Proposition A.3. Assume that k is strictly decreasing in a neighborhood of the origin. Let η ∈
L1(Rd; [0, 1]) be such that I(η, η) = I(χ

B
‖η‖

L1 , χB‖η‖L1 ) . Then η is a characteristic function.

Proof. The proof is based on first variation arguments; we briefly sketch it. Let η∗ be the spherical
symmetric rearrangement of η defined in (A.1). By Riesz inequality (A.2) we have I(η, η) ≤ I(η∗, η∗).
Assume by contradiction that there exists a Lebesgue point x̄ of η∗ with η∗(x̄) ∈ (0, 1). Since η∗ is radially
non-increasing there exists t̂ > |x̄| such that η∗(x) ∈ (0, 1) for a.e. x ∈ Bt̂\B|x̄|. Let η̃ : [0,+∞)→ [0,+∞)
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be the function defined by η̃(t) := η∗(tv) where v is a (arbitrarily chosen) unitary vector in Rd. For every

ε > 0 let f̃ε : [0,+∞)→ [0,+∞) with f̃ε(0) = 0 and derivative given by

f̃ ′ε(t) :=


1 if 0 ≤ t ≤ |x̄|
1− ε if |x̄| ≤ t ≤ t̂
1 elsewhere.

We set fε(x) := f̃ε(|x|) and let µε := f ]ε(η∗ dx) be the push-forward of the measure η∗ dx through fε.
Trivially, µε(Rd) = ‖η‖L1 ; moreover, notice that µε is absolutely continuous with respect to the Lebesgue
maesure, and, for ε sufficiently small, its density takes values in [0, 1]. By assumption there exists r∗ > 0
such that k is strictly decreasing in (0, r∗); for every x ∈ Rd we set

(A.5) Eε(x) := {y ∈ Rd : |fε(x)− fε(y)| < |x− y| < r∗}.
By the very definition of push-forward, for ε small enough we have

(A.6)

I(η∗, η∗) =

∫
Rd

∫
Rd
k(|f−1

ε (x)− f−1
ε (y)|) dµε(y) dµε(x)

<

∫
Rd

∫
fε(Eε(x))

k(|x− y|) dµε(y) dµε(x)

+

∫
Rd

∫
Rd\fε(Eε(x))

k(|x− y|) dµε(y) dµε(x) = I(µε, µε) ,

where the inequality is strict by the very definition of Eε(x) in (A.5), using also that∫
Rd

∫
fε(Eε(x))

dµε(y) dµε(x) ≥
∫
fε(Bt̂\B|x̄|)

∫
fε(Eε(x))

dµε(y) dµε(x) > 0.

By (A.6) and (A.2) we get the desired contradiction. �

Now we provide a stability result for the Riesz inequality.

Theorem A.4 (A stability case). Assume that k is strictly decreasing in a neighborhood of the origin.
Let m > 0 and let {En}n∈N ⊂Mf(Rd) with |En| ≡ m be such that K(En)→ K(Bm). Then, there exists
a sequence {τn}n∈N ⊂ Rd such that χEn(· − τn)→ χBm strongly in L1(Rd).

Proof. The proof is based on a concentration compactness argument à la Lions [27]. Roughly speaking,
such a method consists in showing that it is impossible to split En into two sets (with measure bounded
away from zero) whose mutual distance diverges. We can assume without loss of generality that m = 1 .
Let {A1

n}n∈N, {A2
n}n∈N be two sequences of open sets and let λ ∈ [ 1

2 , 1] be such that, up to a (not
relabelled) subsequence

|En ∩A1
n| → λ, |En ∩A2

n| → 1− λ,
dist(A1

n, A
2
n)→ +∞ as n→ +∞.

Let τ ∈ Rd be such that B1−λ(τ) ∩ Bλ = ∅, set Ê := B1−λ(τ) ∪ Bλ and notice that |Ê| = 1. By Riesz
inequality we have

K(B1) = lim sup
n→+∞

K(En) ≤ K(Bλ) +K(B1−λ) ≤ K(Ê) ≤ K(B1),

which, in view of Proposition A.3 implies that, up to a translation, Ê = B1, i.e., λ = 1. Once proven
that it is impossible to split (any subsequence of) En into two sets whose mutual distance diverges,
arguing as in the proof of [27, Lemma I.1], the tight convergence of χEn , up to subsequences and to
translations, follows. More precisely, there exists a sequence of translations {τn}n∈N and a probability

measure with density ρ such that, up to a subsequence, χEn(· − τn)
∗
⇀ ρ tightly. Since K is invariant by

translations and continuous with respect to the tight convergence of characteristic functions, we deduce
that I(ρ, ρ) = K(B1), which together with Proposition A.3, yields ρ = χE for some E ∈ Mf(Rd) . By
Proposition A.2 we get that E is a ball. Since the limit is uniquely determined, we conclude that the
whole sequence {χEn−τn} tightly converges to the characteristic function of a ball.

�
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We conclude with two lemmas that have been used in this paper. In these results we replace the
assumption K ∈ L1

loc(Rd; [0,+∞)) by the weaker assumption K ∈ L1
loc(Rd \ {0}; [0,+∞)) .

Lemma A.5. Let R > 0 and let F ∈Mf(Rd) with F ⊂ BR. Then∫
BR\F

K(y) dy ≥
∫
BR\B|F |

K(y) dy .

Lemma A.6. Let s, m > 0. Then, for all ρ ∈ L1(Rd; [0, 1]) with ‖ρ‖L1 ≤ m and with supp(ρ) ⊆ Rd \Bs,
we have ∫

Rd
ρ(y)K(y) dy ≤

∫
As,R(m,s)

K(y) dy,

where As1,s2 denotes the annulus Bs2 \ Bs1 for all 0 < s1 < s2, and R(m, s) = ( mωd + sd)
1
d (so that

|As,R(m,s)| = m) .

The proofs of Lemmas A.5 and A.6 are easy consequences of standard rearrangement techniques and
are left to the reader.
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