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A B S T R A C T   

Substitution of chloride by azide in cyclometalated 5-R-1,3-di(2-pyridyl)-benzene platinum(II) complexes (R =
mesityl, methyl or 2-thienyl) leads to novel azido complexes with an intense phosphorescence that is modulated 
by the nature of R. An increase of the concentration brings about to the formation of aggregates with a red-shifted 
emission. Furthermore, the presence of the ancillary azido group allows, via i-click reaction, the obtainment of 
even more emissive 1,2,3-triazole derivatives. The 1,2,3-triazolate of the mesityl and 2-thienyl N^C^N–Pt(II) 
complexes were characterized by X-ray diffraction analysis and their photophysical properties were deeply 
investigated.   

1. Introduction 

Cyclometalated platinum(II) complexes are of growing interest since 
the advent of their applications as efficient molecular materials, e.g. for 
nonlinear optics [1] and Organic Light Emitting Diodes (OLEDs) [2], for 
bioimaging [3], photodynamic therapy, due to their ability to photo
generate reactive oxygen species which can kill cancer cells [4], and for 
sensing devices [5]. Their square planar geometry allows the creation of 
bi-molecular states, either in the ground (dimers) or in the excited states 
(excimers), by means of Pt–Pt and/or ligand-ligand intermolecular in
teractions [6]. These features have gained importance in the preparation 
of OLEDs because the parallel emissions from bi-molecular and 
mono-molecular excited states of Pt complexes allow the modulation of 
their efficiency and color [2,7]. In particular, Pt(II) chloride complexes 
with a cyclometalated 1,3-di(2-pyridyl)benzene (dipyb), which provides 
the platinum center a rigid N^C^N coordination environment, are really 
fascinating, being (to our knowledge) the most luminescent Pt emitters 
in solution at room temperature. For example, in deaerated CH2Cl2, [Pt 
(dipyb)Cl] has a luminescence quantum yield (φlum) of 0.60 [8], one 
order of magnitude greater than the related compound [Pt(N^C-ppy) 
(N-ppyH)Cl] (ppyH = 2-phenylpyridine) [9,] because the rigidity of 
the cyclometalated 1,3-di(2-pyridyl)benzene prevents distortion and 
therefore non-radiative decays, whereas the short Pt–C bond leads to a 

particularly high ligand-field strength [10] The charm of these N^C^N Pt 
(II) complexes is boosted by the possibility to tune the emission color by 
introducing substituents on the benzene or pyridyl rings, safekeeping 
large quantum yields [2a]. Astonishingly, whereas a lot of studies have 
been dedicated to unveil the influence of the substituents on the N^C^N 
ligand, the investigation of the role of the co-ligand on the emissive 
behavior is still in its infancy. Some of us found that the replacement of 
chloride by other species such as isothiocyanate [2c] or 1-phenyl-1
H-tetrazole-5-thiolate [2h] preserves the great luminescence in dea
erated dichloromethane solution (φlum = 0.60–0.90) whereas 
replacement by a phenolate [11] or arenethiolate [12] leads to a large 
decrease of the quantum yields. These results prompted us to investigate 
the effect of the substitution of chloride by azide on the emissive 
properties of various Pt(II) complexes bearing a cyclometalated 1,3-di 
(2-pyridyl)benzene substituted in 5 position with a mesityl, a methyl 
or a 2-thienyl group. The substituents on the benzene ring were chosen 
in order to explore the effect of the presence of alkyl and (hetero)aryl 
groups on the luminescence of the obtained derivatives bearing an azide. 

The use of an azide as co-ligand is particularly appealing because 
azido platinum complexes can find application in photoactivated 
chemotherapy due to the photorelease of azidyl radicals that can attack 
cancer cells [4b,13]. 

Furthermore, the well-known “click” reactions are a powerful tool in 
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biochemistry and proteomics for inserting luminescent labels or for the 
facile synthesis of both bioactive small molecules as well as bio(macro) 
molecule conjugates [14]. In particular the 1,3-dipolar cycloaddition 
reaction between metal-azido complexes and alkynes (i-click reaction) is 
a method to introduce five-membered heterocyclic ligands directly in 
the inner coordination sphere of the metal centre. Recently, this 
approach was extended to C^N^N and unsubstituted N^C^N platinum 
complexes [15] but the photophysical properties of such new derivatives 
has not been investigated yet. 

2. Materials and methods 

In this contribution, we report the synthesis and characterization of 
three novel azido complexes and two triazole derivatives (1-N3, 2-N3, 3- 
N3, 4 and 5, Chart 1), thus adding new members to the interesting family 
of phosphorescent platinum(II) complexes. 

2.1. Synthesis of the Pt-azido complexes 

Compounds 1-N3, 2-N3, and 3-N3 were readily prepared by 

Fig. 1. Normalized absorption (black lines) and emission (blue and red lines) spectra of complexes 1-N3, 2-N3, 3-N3, 4 and 5 in CH2Cl2 at 298 K. Emission spectra 
refer to dilute (blue) and concentrated (red) solutions in degassed solvent. 
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treatment of the parent chloride derivatives with sodium azide in 
methanol at room temperature; the products were fully characterized by 
NMR spectroscopy and elemental analysis (details are given in the ESI) 
[16]. 

2.2. Synthesis of the Pt-1,2,3-triazole complexes 

Derivatives 4 and 5 were easily prepared at room temperature by i- 
click reaction in dichloromethane between 1-N3 or 3-N3 and diethyl 
acetylenedicarboxylate (Chart 2, the details are given in the ESI) [15b]. 
Unfortunately, the same reaction on complex 2-N3 did not lead to a 
single stable isomer but to a mixture, therefore it was not possible to 
proceed with the photophysical characterization. 

Chart 2 shows the synthetic pathway from the chlorido complex to 
azido and triazole derivatives. 

2.3. Photophysical characterization of the complexes 

The normalized absorption and photoluminescence spectra of the 
platinum(II) azido complexes in dichloromethane at low (1–5 ⋅10− 6 M) 
and high (2⋅10− 4 M) concentrations are shown in Fig. 1, whereas key 
data are listed in Table 1. 

Like their parent chloride derivatives [17], 1-N3, 2-N3, and 3-N3 are 
characterized by very intense absorption bands below 330 nm (ε >
18⋅103 M− 1cm− 1), because of 1π-π* transitions localized on the cyclo
metalated 1,3-di(2-pyridyl)benzene ligands, together with weaker 
bands at 350–450 nm caused by charge-transfer transitions concerning 
the cyclometalated ligand and the metal (Fig. 1). An increase of the 
concentration of the complexes leads to the appearance of a new band at 
lower energy, especially for the azido derivatives (see ESI, Fig. S9, S14 
and S19) ascribed to the formation of dimeric species by analogy with 
other N^C^N platinum(II) complexes [2h], as confirmed by a deviation 
from the Beer–Lambert law (See ESI, Figs. S1b and S2b). 

Similar features are also observed for derivatives 4 and 5, in which 
the involved transitions present the same nature of those of the parent 
azido compounds. 

2.4. X-ray structure determination of complexes 4 and 5 

Crystals of complex 4 (yellow) and complex 5 (dark orange) suitable 
for X-ray structure determination were obtained by slow evaporation 
from dichloromethane solutions. Single crystal X-ray diffraction exper
iments were performed at RT for 4 and at 150 K for 5 using a Rigaku 
XtaLAB Synergy-S diffractometer, operating with Cu-Kα (λ = 1.54184 Å) 
radiation and equipped with HyPix-6000HE detector. Data were 

corrected for absorption, scaled and integrated with CrysAlisPro software 
[18]. The structure of both complexes was solved with SHELXT and 
refined by iterative cycles of full-matrix least-squares on Fo2 and 
Fourier-difference synthesis with SHELXL2018/3 [19], within the 
WinGX suite of programs [20]. Additional details on structure deter
mination and refinement are provided in the ESI. Full crystallographic 
data are deposited within the CSD with CCDC codes 2309868 and 
2309869 for complex 4 and 5, respectively. These data can be obtained 
free of charge via https://www.ccdc.cam.ac.uk/structures/, or from the 
Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, 
CB2 1EZ UK (fax: +44− 1223 336033 or e-mail: deposit@ccdc.cam.ac. 
uk). 

3. Results and discussion 

3.1. DFT calculations 

To understand the electronic and optical properties of Pt-based 
complexes 1-N3, 2-N3, 3-N3, 4 and 5, Density Functional Theory 
(DFT) and Time Dependent DFT (TDDFT) calculations have been carried 
out in dichloromethane solution, this being the solvent used for the 
experimental absorption and photoluminescence spectra. All the 
computational details are accurately described in ESI (Section S3). The 
molecular geometry of the five complexes has been optimized, exhibit
ing comparable core Pt-di(2-pyridyl)benzene structures, which differ for 
the orientation of the substituent on the central benzene ring (see Fig. 2). 
The analysis of the main frontier orbitals of the investigated Pt(II) 
complexes, in terms of energy and electronic density distribution, are 
reported in Figs. 2 and 3. The frontier orbitals of 1-N3 and 2-N3 are very 
similar and the two complexes show the same ΔEH-L, testifying that the 
presence of methyl or mesityl group in 5 position of the cyclometalated 
1,3-di(2-pyridyl)benzene electronically does not affect the first HOMOs 
and LUMOs (see Fig. 2). The HOMO of both 1-N3 and 2-N3 is linearly 
delocalized on azide, Pt(II) and on the N^C^N benzene, while the HOMO- 
1 involves mainly azide and Pt. The HOMO/HOMO-1 of 3-N3 are slightly 
destabilized with respect to the corresponding orbitals of 1-N3 and 2-N3, 
due to the involvement of the 2-thienyl moiety in the orbitals; this fact 
reflects in a small decrease of the 3-N3 ΔEH-L gap, as shown in Fig. 2. The 
LUMO and LUMO+1 of the three complexes show similar electronic 
delocalization, being the result of the antibonding combinations of Pt 
and cyclometalated 1,3-di(2-pyridyl)benzene orbitals. The HOMO of 4 
and 5 complexes is linearly delocalized on the triazole, Pt(II) and the 
N^C^N benzene similarly the corresponding azido complexes, but stabi
lized by 0.50 eV and 0.31 eV with respect to the azido counterparts (see 
Fig. 3). The HOMO of 5 shows electron density delocalized on the 2- 
thienyl analogously to what happens with 3-N3. The HOMO-1/HOMO- 
2 are almost degenerate, on 4 the HOMO-1 is delocalized on the mesi
tyl ligand and the HOMO-2 is the Pt dz

2, while in 5 they are reversed. The 
LUMO and LUMO+1 pair of 4 and 5 are similar for energy and character 
to the corresponding orbitals of the azido complexes, indeed all the pairs 
lie in the range 2.16–2.23 eV and are the antibonding combinations of 
the orbitals of Pt(II)-1,3di(2-pyridyl)benzene. In the triazole derivatives 
4 and 5 the ΔEH-L gap is increased due to the stabilization of the HOMO, 
being in 4 (5) 0.5 eV (0.32 eV) larger than in 1-N3 (3-N3). 

We simulated the UV–vis spectra of complexes 1-N3, 2-N3, 3-N3, 4 
and 5 (Fig. S31 in ESI), showing a good agreement with their experi
mental counterparts (Fig. 1). The transitions associated to the lower 
energy bands can be related to the HOMO→LUMO transitions and 
therefore reflect the HOMO-LUMO gaps, with the lowest absorption 
band of 3-N3 being red-shifted with respect to the same spectral feature 
of 1-N3, 2-N3, 4 and 5, and with the lowest absorption band of 5 red- 
shifted with respect to that of 4 because of the 2-thienyl moiety. 

3.2. Luminescence properties of the complexes 

Upon excitation in the 290–425 nm range, the three new azido 

Table 1 
Photophysical parameters of dilute solutions in degassed CH2Cl2 at 298 K for 
complexes 1-Cl, 2-Cl and 3-Cl, and for their derivatives 1-N3, 2-N3, 3-N3, 4 and 
5.  

Complex Monomer emission [excimer or 
aggregate]λmax/nm 

φlum degassed 
(aerated) 

τ/μs 

1-Cla 501, 534, 574(sh) [690]b 0.62 (0.045) 7.90 
1-N3

c 500, 532, 572(sh) [703]d 0.87 (0.059) 7.48 
2-Cla 505, 539, 578(sh) [690]b 0.68 (0.024) 7.80 
2-N3

e 504, 538, 575(sh) [687]d 0.66 (0.040) 8.07 
3-Cla 548, 584, 641(sh) [690]b 0.54 (0.015) 20.5 
3-N3

f 547, 582, 638(sh) [686]d 0.79 (0.022) 17.8 
4g 498, 531, 570(sh) [634]d 0.96 (0.067) 7.44 
5g 543, 582, 632(sh) [684]d 0.94 (0.017) 18.1  

a From Ref. [17]. 
b Excimer. 
c At 3⋅10− 6 M. 
d Aggregate at 2⋅10− 4 M. 
e At 1⋅10− 6 M. 
f At 5⋅10− 6 M. 
g At 4⋅10− 6 M. 

F. Fagnani et al.                                                                                                                                                                                                                                 

https://www.ccdc.cam.ac.uk/structures/
mailto:deposit@ccdc.cam.ac.uk
mailto:deposit@ccdc.cam.ac.uk


Dyes and Pigments 225 (2024) 112064

4

complexes are strongly luminescent at room temperature (Fig. 1 and 
Table 1). Remarkably, the luminescence quantum yields in diluted 
degassed dichloromethane solution of 1-N3 and 3-N3 are very large, 
being higher than that of the related chloride complex (0.87 and 0.79 vs 
0.62 and 0.54, respectively), whereas that of 2-N3 is somewhat lower 
(0.66) and similar to that of 2-Cl (Table 1). The luminescence of 1-N3 is 

of particular interest: the quantum yield is higher and the emission is 
more shifted in the NIR region (703 nm) than that previously reported in 
the same solvent for the related 1-NCS derivative [2c] (φlum: 0.60, 
excimer emission at 670 nm). 

The emission spectra are highly structured (Fig. 1), as expected for 
luminescence from states of primarily 3LC character, and it can be 

Fig. 2. Optimized geometries and main frontier molecular orbitals energies of 1-N3, 2-N3 and 3-N3 complexes along with the isodensity plots of HOMO/HOMO-1 
and LUMO-LUMO+1 (isodensity value = 0.02). 

Fig. 3. Optimized geometries and main frontier molecular orbitals energies of 4 and 5 complexes along with the isodensity plots of HOMO/HOMO-1 and LUMO- 
LUMO+1 (isodensity value = 0.02). 
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attributed to the monomeric complexes. The emission maxima are quite 
similar to those of the parent chloride derivatives (Table 1), being 
increasingly red-shifted by the nature of the substituent in the order 
methyl < mesityl < 2-thienyl. The lifetimes of 1-N3 and 2-N3 are com
parable (7–8 μs), with that of the thienyl-bearing compound 3-N3 being 
much longer (17.8 μs), as previously observed for the parent chloride 
complexes [17]. 

The room temperature emission of the dilute solution is very effi
ciently quenched by oxygen: the luminescence quantum yield is 15–36 
times lower in air-equilibrated dichloromethane, the greatest quenching 
being observed for the compound with the 2-thienyl substituent 
(Table 1). This oxygen quenching efficacy is expected to afford an effi
cient production of singlet oxygen, of particular interest for photody
namic therapy [4]. 

The increase of the concentration of the novel azido complexes up to 
2⋅10− 4 M leads to the appearance of a structureless band around 690 nm 
(Fig. 1). This new band at lower energy, which can change in intensity 
by varying the excitation wavelength, can be reasonably attributed to 
the emission from excited-state aggregates rather than to excimers. In 
fact, by increasing the concentration of the solution, the normalized 
excitation spectra at the emission wavelength of the monomer and 
structureless band around 690 nm are different and change shape when 
compared to those obtained at the more diluted concentration (Fig. S6, 
S11 and S16). The inner filter effect is avoided by using quartz cuvettes 
of 1 mm optical path length for concentrated solutions. 

The emissive low energy band of complexes 1-N3, 2-N3, and 3-N3 at 
2⋅10− 4 M is probably due to the excited state of dimeric species [6], in 
contrast to the behaviour of the parent chloride complexes (forming 
excimers), but in agreement with the behaviour of the related [Pt 
(5-mesityl-dpyb)(1-phenyl-1H-tetrazole-5-thiolate)] complex [2h]. 

As a consequence of the increased concentration of the novel com
plexes (from 1⋅10− 6 M to 2⋅10− 4 M) in deaerated dichloromethane so
lution, the aggregation causes a quenching of the luminescence quantum 
yield (presenting values of 0.27, 0.18, and 0.54 for 1-N3, 2-N3, and 3-N3, 
respectively), the decrease of φlum in the case of the complex bearing the 
2-thienyl group being less pronounced. 

Moving to complexes 4 and 5, their emission maxima are very close 
to the values registered for parent compounds 1-N3 and 3-N3: 498, 531 
and 570 nm for monomeric 4 vs 500, 532 and 572 for 1-N3; 543, 582 and 
632 nm vs 547, 582 and 638 nm for 5 and 3-N3, respectively. The same is 
valid also when considering the lifetimes of the discussed compounds, 
the values being 7.44 and 7.48 μs for the mesityl-bearing complexes, 
while 18.1 and 17.8 μs for the thienyl-substituted ones. Complete data 
are reported in Table 1. 

The major effect brought about by the reaction of the azido complex 
with the electron-poor alkyne is on the emission quantum yield, showing 
a remarkable increase from 0.87 to 0.96 when passing from 1-N3 to 4, 
and from 0.79 to 0.94 in the case of diluted dearated solutions of 3-N3 
and 5. 

As it can be observed from the presented data, the emission maxima 
and the lifetimes values are essentially due to the substituents inserted 
onto the N^C^N scaffold of the molecule, while the effect of the 
replacement of the ancillary ligand on the metal center is on the absolute 
quantum yield, as already shown in previous works about this class of 
compound, where the chloride has been substituted with various thio
lates [2h,21,22]. 

As it can be pointed out, the ancillary ligand plays a key role not only 
to enhance the photophysical properties of this family of Pt(II) com
pounds (reaching a QY exceeding 0.9), but also as precursor for further 
functionalizations or as anchoring point to biomolecules. 

Considering the more concentrated solutions (2⋅10− 4 M in degassed 
CH2Cl2), graphs reported in Fig. 1 clearly show how the presence of the 
more sterically hindered triazole ligand bearing COOEt chains limits the 
aggregation usually observed for complexes having the same N^C^N 
ligand studied at the same concentrations; this feature can be particu
larly useful for applications in which the aggregation-caused quenching 

of the emission represents a limit, since QY values close to unity can be 
retained even at very high concentrations. Fig. S21-26 show the detailed 
luminescence spectra of derivatives 4 and 5 under different experi
mental conditions. 

3.3. Crystal structure description 

The structures of 4 and 5 are shown in Fig. 4, while selected bond 
distances and angles are given in Table 2. Both complexes crystallize in 
the triclinic crystal system, space group P 1, with an asymmetric unit 
containing one molecule for complex 4, and three molecules for complex 
5. In both cases, the metal centre exhibits a square planar coordination 
environment, with three positions occupied by the 1,3-di(2-pyridyl)ben
zene ligand and one by the triazolate anion. The bond lengths and angles 
are in line with those found in known cyclometalated platinum(II) 
complexes. The strongest interaction is with the carbon atom of the aryl 
ring, with a Pt–C distance around 1.9 Å. However, the steric demand of 
the pincer ligand causes a distortion of the coordination geometry. 
Indeed, the bond angles C–Pt–N and N–Pt–N referred to the N^C^N 
scaffold are about 80◦ and 160◦ respectively and deviate from their ideal 
values of 90◦ and 180◦ [23–26]. The X-ray structure determination 
confirms that the triazolate ligand binds symmetrically to Pt through its 
central N atom in a κ1-fashion. Furthermore, the plane of the triazolate 
anion is twisted with respect to the plane of the Pt(N^C^N) unit, with a 
dihedral angle of about 74◦ in the structure of 4 and ranging from 58◦ to 
75◦ in 5. On the other hand, the moiety in position 5 of the 1,3-di(2-pyr
idyl)benzene ligand shows different conformations in the two com
plexes. While the mesityl group in 4 is almost orthogonal the benzene 
ring, the thienyl moiety in 5 is only slightly tilted, with a dihedral angle 
ranging from 5◦ to 25◦. 

The analysis of the crystal packing reveals distinct features in the two 
compounds as well. Considering the unit cell content in the structure of 
4, staggered complexes interact in a head-to-tail arrangement; no 
appreciable π⋅⋅ π interactions can be recognized between the aromatic 
rings, although the overall interplanar separation is around 3.38 Å. The 
Pt⋯Pt interatomic distance within the dimer is 4.93 Å, whereas the 
shortest Pt⋯Pt separation between two pairs of dimers is 5.25 Å. The 
dimers of complex 4 stacks together along the b axis, having the plane of 
the Pt(N^C^N) unit oriented parallel to (110) plane. 

The asymmetric unit in the structure of complex 5 shows three 
molecules offset around a pseudo-3-fold axis (Fig. S32), forming a helix- 
like arrangement. Centroid-centroid distances of 3.50 and 3.72 Å (see 
Fig. S33) between pyridyl rings in the trimeric unit strongly indicate the 
presence of π⋅⋅ π interactions [27]. Two Pt⋯Pt separations of 4.94 and 
4.40 Å are found within the trimer, while the shortest Pt⋯Pt distance 
between two adjacent units is 5.71 Å. The trimers stack with their 
pseudo-3-fold axis roughly parallel to the [100] direction. 

4. Conclusions 

In conclusion, we have synthesized and well characterized three 
novel azido platinum(II) complexes and the 1,2,3-triazole derivatives of 
two of them, particularly we focused our attention on their photo
physical properties. Their intense luminescence, that is quenched by 
oxygen, combined with the presence of an azide as co-ligand, opens an 
appealing route for photoactivated chemotherapy and for the synthesis 
of bioactive molecules. In fact, starting from the azido complexes, via i- 
click reaction, it is possible to obtain even more emissive Pt(II) de
rivatives. The photophysical properties of the new mesityl and 2-thienyl 
cyclometalated N^C^N–Pt(II) 1,2,3 triazolate complexes were deeply 
investigated and here reported for the first time, giving rise to chro
mophores with quantum yields approaching unity. 

As a possible development of the suggested strategy, new moieties 
could be tested on both the benzene and the pyridine rings, to observe 
the effect exerted on the photophysical properties of the resulting 
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complexes. Moreover, substituents able to allow for solubility in 
aqueous media (to be inserted on the aryl rings and/or as alkyls on the 
ester functional groups of the reacting alkyne) would remarkably extend 
the application of such compounds, which can nevertheless be tested as 
dyes in biological environments by starting from a solution containing a 
small amount of DMSO, as often done in such experiments. Various 

cyclometalated platinum(II) complexes have already provided remark
able results in biological applications. In the near future, the novel 
compounds prepared in the present work will be investigated in the dark 
and under irradiation to assess their cito-toxicity and their efficiency as 
chromophores in Photodynamic Therapy. 
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Fig. 4. Molecular structure and crystal packing of (left) complex 4 and (right) complex 5. The molecules are colored by symmetry equivalence in the crystal packing 
diagrams. Hydrogen atoms are omitted for clarity. 

Chart 1. Structure of the investigated complexes.  

Chart 2. Schematic synthetic pathway for the azido and triazole complexes.  
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Università degli Studi di Milano (SEED Project RV_PSR_SEED_2019_A
COLO), and CNR. Fondazione Cariplo and Regione Lombardia are 
acknowledged for the instrumentation bought during the SmartMatLab 
Centre project (2014). 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.dyepig.2024.112064. 

References 

[1] (a) Rossi E, Colombo A, Dragonetti C, Righetto S, Roberto D, Ugo R, Valore A, 
Williams JAG, Lobello MG, De Angelis F, Fantacci S, Ledoux-Rak I, Singh A, Zyss J. 
Tuning the dipolar second-order nonlinear optical properties of cyclometalated 
platinum(II) complexes with tridentate NCN binding ligands. Chem Eur J 2013;19: 
9875–83.(b) Boixel J, Guerchais V, Le Bozec H, Jacquemin D, Amar A, 
Boucekkine A, Colombo A, Dragonetti C, Marinotto D, Roberto D, Righetto S, De 
Angelis R. Second-order NLO switches from molecules to polymer films based on 
photochromic cyclometalated platinum(II) complexes. J Am Chem Soc 2014;136: 
5367–75.(c) Fontani M, Garoni E, Colombo A, Dragonetti C, Fantacci S, Doucet H, 
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