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Abstract

The concepts of labelled transition system, and of observation-equivalence and testing-equivalence
between systems are introduced. These topics are discussed in a number of papers, sparse in the
literature; they are conveniently assembled here in a unique, self-contained presentation. All
proofs have been worked out in detail, and the reader is assumed wunfamiliar with fixpoint theory.
Three algorithms for verifying equivalence between finite transition systems are introduced and
discussed (two for observation-equivalence and one for testing-equivalence). A proof of correctness
for one of them, Sanderson's algorithm, is given (it was not found in the literature). The algorithms
have been implemented in Prolog, and their application to a small example is illustrated.

Riassunto

Vengono introdotti i concetti di sistema di transizioni, e di equivalenze osservazionale e di 'testing'
fra sistemi. Questi argomenti sono discussi in svariati articoli, sparsi nella letteratura; essi sono
convenientemente raccolti qui in una presentazione unica ed introduttiva. Tutte le dimostrazioni sono
state elaborate in dettaglio, e non si assume famigliarita' con la teoria del punto fisso. Vengono
introdotti e discussi tre algoritmi per verificare la equivalenza fra sistemi di transizione finiti (due
per la equivalenza osservazionale, uno per la equivalenza di 'testing’). Viene fornita una prova di
correttezza di uno di essi, l'algoritmo di Sanderson (non essendo stata trovata in letteratura). Gli
algoritmi sono stati implementati in Prolog, e viene illustrata la loro applicazione ad un piccolo
esempio.
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0. INTRODUCTION

Notions of equivalence play an important role in the formal specification of hardware and software
systems. One may wish to replace a formally described subpart of a large design with an equivalent
one, without affecting the overall behaviour of the system. Or a complex, forma!!y specified

implementation may be proved equivalent to a given, more abstract, specification.

Specification languages such as LOTOS [DP8807] are based on the model of labelled transition
systems, which, in the finite case, are represented by directed graphs with labelled edges.
Therefore, the design of sophisticated verification tools for the analysis of complex specifications
(e.g. in LOTOS) almost inevitably requires preliminary experience on equivalence verification

between finite labelled transition systems.

We discuss a few ways to define two notions of equivalence, and three algorithms for solving
corresponding verification problems, which we have implemented in Prolog. Prolog is convenient
for the fast development of software ("rapid prototyping"). The choice of Prolog has been determined
by the need to invistigate the validity and applicabity of these algorithms by experimenting with
actual prototype implementations. The counterpart of rapid prototyping is computational
inefficiency, but this problem is out of the scope of this report. Only when various prototypes have
been experimented with, efficient (possibly non-Prolog) implementations of the selected algorithms

can be searched for.

This report is organized into two main sections. Section 1 presents a collection of definitions and
results on the notions of 'Observation equivalence' and 'testing equivalence' between labelled
transition systems. They provide the necessary theoretical background for the various algorithms
subsequently introduced. These topics are discussed in a number of papers, sparse in the literature,
and are conveniently assembled here in a unique, self-contained presentation. All proofs have been
worked out in detail, and the reader is assumed wunfamiliar with fixpoint theory.

Section 2 deals with the verification of observation equivalence (algorithms "refinements" and
Sanderson's "bisimulation construction") and testing equivalence (algorithm "double subset
construction") between finite labelled transition systems explicitely represented as graphs. A proof
of correctness for Sanderson's algorithm is provided. All the algorithms presented have been

programmed in PROLOG, and their applications to a small example are illustrated.




1. THEORETICAL BACKGROUND

1.1. Labelled transition system

Definition 1.1.1

A labelled transition system is a quadruple (P, 2, T, py), where:

is a countable set of states;

> is a countable set of observable actions;

T is a (X U {t})-indexed family of labelled transition relations on P:
T={-u—> < PxP|pin2 w{t}}

where T is the unobservable (or internal) action;

Po is the initial state. .
An example of a labelled transition system is shown in Figure 1.1.1, where:

P= {pO¥ p‘]’ p21 pSr p41 ps}
Z = {a, b: C}

T={-a—,-b—,-c—, -1}, with
-a—> = {(pg P1): (P4, P5)}

b= = {(py,p2)}

and pg is the initial state.
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Figure 1.1.1 - A labelled transition system

We will drop the attribute "labelled" in the sequel.

Given a set A, let A" denote the set of finite sequences of elements of A, and let € denote the empty

sequence. The following two definitions are relative to a given transition system S(P, X, T, Po)-

Definition 1.1.2

*

The (X U {t}) -indexed family of action sequence relations on P is defined as follows. If s in (3
U {’c})* iS Lqlo...tpy, With n >= 0, then:
-s— = {(p, 9)lp, q in P and there exist pg, Py, ..., pp such that

P=Pg: PoH{1—> P1, P{-Ho=> Pos - PnoqHp= Pp. Pp =9} .

Notice that in the case n=0 this definition reads: -&— = {(p,p) |pin P}.

Definition_1.1.3
The Z*-indexed family of observable action sequence relations on P is defined as follows. If s

in Z* is Wy Wg... O, with n >= 0, then:

=s= = {(p, g)Ip, g in P and there exist nonnegative integers k0, k1, ..., kn such that

p - (K0 o, AL ®, ™) q) .

Notice that in the case n=0 this definition reads:

=g=> = {(p, g) | p, g in P and there exists a nonegative k0 such that p - KO —q}




For example, relative to Figure 1.1.1 we have: Pg "€—Pg: Pg -ab—po, Pp - Ta—ps, pg ==

Po» Pg =€= P4, Pg =a= Py, Pg =a= Pg.

Finally, we will write 'p =s=" to mean that there exists a p' such that p =s=> p'".

1.2. Function F

In this section we introduce a function which is essential for the definitions of observation

equivalence given in Sections 1.3 and 1.4. The reader may also consult [M83] and [HM85].

Let S(P, Z, T, pg) be a transition system, and let R =2 PXP' be the set of relations over P. Function

F: R —R is defined as follows:

Definition _1.2.1

If R is a relation over P, then:
FRY={p. 9 IpginP

and whenever p =s= p' for some s in 2* andp'in P
then q=s= ( for some q'in P, and (p', q) in R;
and whenever g =s=> ¢ for some s in Z* andq'in P

then p=s= p'forsomep'in P, and (p',¢)inR } -

The four examples in Figure 1.2.1 show the effect of applying function F to four relations Rq...Ryg

defined over the states of four transition systems. Notice that we have considered finite transition
systems, and equivalence relations (i.e., relations which are reflexive, symmetric and transitive):

such relations can be depicted by partitioning P into equivalence classes (first column in figure),

with the understanding that p R q iff p and g are in the same class. The relations F(R;) are shown in

the second column. The examples show that F (R) can be strictly smaller, or equal, or strictly

larger than R, and that it may also happen that neither relation include the other (third column).
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Figure 1.2.1 - Applying function F




Function F satisfies the following two properties.

Proposition 1.2.2

F is monotone with respect to the partial order induced by set inclusion, i.e.:
Ry < Ro implies F (R” <F (RQ).

Proof: the proof is simply based on the definition of F. -

The reader may have noticed that, in Figure 1.2.1, we could represent F (Rq)... F(Ry) as partitions

of the state spaces. This is not accidental, as F preserves equivalence:

Proposition 1.2.3

If R is an equivalence, then F (R) is an equivalence.
Proof: the reflexivity, symmetry and transitivity of F (R) easily follow from these same properties
of R. =

1.3. Observation equivalence via bisimulation

In this section the observation equivalence between two transition systems is defined in terms of the
concept of bisimulation, which in turn is based on function F. We shall also prove that observation
equivalence is the maximum fixpoint of F. The interested reader may also consult [M80], [M83]
and [HM85].

Let S(P, X, T, p) be a transition system.

Definition _1.3.1
A relation R < PxP is a bisimulation if R< F (R). -

Proposition 1.3.2

If R is a bisimulation then F (R) is a bisimulation.

Proof: the proof follows from the monotonicity of F (Proposition 1.2.2).




Definition 1.3.3

States p and q of a transition system are observationally equivalent, written p = q, if there

exists a bisimulation R such that p R q. o

Example 1.3.4

In the transition system depicted in Figure 1.3.1 the following is a bisimulation:

R= {(1 ’ 2): (21 3)» (31 3)’ (4: 5): (57 6)! (6r 6)}

QO

5

Figure 1.3.1 - A transition system

Hence, states 1 and 2 are observationally equivalent. Notice that R is neither reflexive, nor

symmetric, nor transitive. .

Proposition 1.3.5

=~ i$ an equivalence.

Proof.

~ s reflexive, because Id = PxP is a bisimulation.

~ is symmetric, because if p= g, then p R g for some bisimulation R, then q R'1p, and R is a
bisimulation (which is different from saying that R is symmetric!).

~ s transitive because the composition of two bisimulations is a bisimulation. -

Definition 1.3.3 amounts to saying that = is the union of all bisimulations:

=~ = U {R<PxP | R<F (R)}.

Proposition 1.3.6

= is a bisimulation (the largest bisimulation).

Proof. If (p, q) in = , then there exists a bisimulation R such that (p, q) is in R. Since R is a

10




bisimulation, (p, q) is in F (R). Also, since R <=, then by the monotonicity of F, F (R)X F (=);
thus (p, q) is in F (=), and we have proved that = < F(=). -

Proposition 1.3.7

~ s a fixpoint of F, thatis: F(=)= = .
Proof. By Proposition 1.3.6 we know that = < F (= ). We only need to prove F (=)< = . Since
= is a bisimulation, by Proposition 1.3.2 F (= ) is also a bisimulation, thus it is included in =,

which is the union of all bisimulations. -

Proposition _1.3.8

= is the maximum fixpoint of F.
Proof. Any fixpoint of F is a bisimulation. By Propositions 1.3.6 and 1.3.7, = is the maximum

bisimulation and is also a fixpoint.

1.4. Observation equivalence via k-equivalences

The purpose of this section is to define X-observational equivalence and show that, for the special
class of image-finite transition systems, it identifies with the observation equivalence defined in
Section 1.3. The X -observational equivalence is defined via a chain of k-equivalences, in turn
defined via function F. The reader may also consult [M80], where the chain of k-equivalences was

first introduced, and [HM85], where the result on image-finiteness was first proved.

Let S be a transition system with state space P, and let F be the function defined in Section 1.2. We

define a sequence of equivalences on P as follows.

Definition 1.4.1
=0 = PxP

=i = F (=y_q) with k natural > 0.

If p =, g then we say that p and g are k-observationally equivalent. -

Proposition 1.4.2

=| IS an equivalence, for any natural k.
Proof: the inductive proof follows from the facts that PxP is an equivalence and that F preserves

equivalence (Proposition 1.2.3). -

11



Proposition 1.4.3

For any natural k we have: =, 1< =; thatis, the chain {=} is non-increasing.

Proof: the inductive proof follows from the facts that =4 < PxP and that F is monotone (Proposition

1.2.2).

Definition 1.4.4

We say that p ad q are w-observationally equivalent, written p = , q, if p=, g for any natural

k. That is:
w
zo): M zk °
k=0
Proposition 1.4.5
= IS an equivalence.
Proof. The reflexivity, symmetry and transitivity of = , directly follow from these same

properties of =, for any k.

Definition 1.4.6

A relation = < PxP is image-finite if for each p in P the set {p' | p = p'} is finite.

Definition 1.4.7

A transition system is image-finite if for any s in Z*, relation =s = is image-finite. -

Theorem 1.4.8

If a transition system is image-finite, then =, is identical to observation equivalence, that is =

is the maximum fixpoint of F.

Proof.

1) We show that =i < F( = ). If(p, g) isin =g and p =s = p' for some s in Z*and p'isin P,

then for any k>=0 it must be possible to find a g such that q =s = g and p' = . Since =s = is

image-finite, there exists a ' such that q' = g, for infinitely many k's, and since {=\} is a

12



non-increasing chain of relations (Proposition 1.5.3), p' = ¢ for all K's. Therefore p' =, ¢; and

(P, @) isin F( =g )

2) We show that F ( =g )s=(, . We have that F (=, )<=q, and that F ( = )<= for any k>=1,
because = <= 4 and F is monotone. Thus F ( =, ) is @ lower bound of {=}}. Since =, is by

definition the largest lower bound of {=}, we conclude that F{ = )< ="

3) We prove that if R = F (R), then R < =,. Induction basis: R < =g Inductive step: since F is

monotone, if R <=, then F (R)=R <F (=))= =. Thus, R <= for any k, hence R is a lower bound

of {=}. =¢, Is the largest lower bound, thus R <=.

For general transition systems the two equivalences =g and = do not coincide, and = is not a

fixpoint of F. In this case, the maximum fixpoint of F is reached by carrying the limit N{ =y } on to

transfinite ordinals.

Usually we are interested in the observation equivalence between ftwo disjoint transition systems,
with initial states p and q, that is, systems where the two state spaces do not intersect. This problem
is solved by defining the union of the two transition systems and by verifying the equivalence

between p and q in the new system.

Definition 1.4.9

Let Sp(P, Zp, Tp, pg) and Sq(Q, Zq, Tq, o) be two transition systems. Their union is defined as:
(PUQ,EpUZ ’TpUTq’x)

where x is an arbitrary state.

Example 1.4.10

The two states p and q in the transition system illustrated in Figure 1.4.1 are such that P=0d, P=19,

but not(p=5q), hence not(p=q). -

13



Figure 1.4.1

1.5. Observation equivalence via function F’

The reason for introducing function F' is of a practical nature: similarly to function F, it can be
used to define observation equivalence; but unlike function F , it provides a basis for efficient

verification algorithms.

Definition 1.5.1

Let 307 denote the set 0 U %7 of strings on 5 not longer than 1. If R is a relation over P, then:
Fr(Ry={p,a|pqinP

and whenever p=s=p' for some s in ¥91 and p'in P
then qg=s= ¢ forsome q in P,and (p, q) in R;
and whenever g =s=> ' for some s in ¥01 and g inP

then p=s=>p'forsomep in P,and (p', q") in R} -

Proposition 1.5.2

A relation R is a bisimulation via F (see Definition 1.3.1) iff it is a bisimulation via F".
Proof.

We will talk about F- or F-bisimulation.

Part a) R is an F -bisimulation implies R is an F-bisimulation.

JAf Ris an F -bisimulation then, when (p, g) in R, we have:

14




Vsiny. H(p, a, s, R),

where H(p, q, s, R) means:
if p =s= p', for some p'
then q =s=> ¢' for some ¢ such thatp'R ¢,

and if g =s= (', fop some ¢'

t

then p =s= p' for some p' such that p' R ¢'.

Hence, when (p, q) in R, we have, in particular:

Vsin3OU S 1. Hep, g, s, R),
which means that (p, g) in F' (R). Thus R £ F'(R), and R is an F'-bisimulation.

Part b) R is an F’' -bisimulation implies R is an F -bisimulation.

We must prove that R < F(R), i.e. that V(p, q)in R. Vsin 3 H(p, . s, R).

This is expanded into: ' Y(p, ) in R. Yn>=0. Vsin XN H(p, g, s, R),
which can be written: Vn>=0. [V(p, q) in R. Vsin 2. H(p, q, s, R)],
or, shortly: ¥Yn>=0. K(n)

We prove K(n) by induction.
Basis. Our hypothesis R <F'(R) can be expressed as:

Y, q)inR Vsinz0 U s 1 Hp, q s, R),
which means K(0) and K(1).
Step. Assume K(n), with n>=1. We want to prove K(n+1), i.e.:

V(p, q)in R. Vs'in 2,". Vain ¥ .H(p, q, s'a, R).
If {p, ) in R then, by the inductive hypothesis we have H{p, q, s', R), the first "half" of which is:

p=s'=>p" for some p" implies

g =s'= (" for some " such that (p", ") in R.
On the other hand, if (p", q") in R, then, by hypothesis we have H(p", q", a, R), the first "half" of

which is:
p" =a= p' for some p' implies
q" =a= ¢ for some q' such that (p', q) in R.

By combining the results on =s'= and =a= we obtain:

15



p =s'a= p' for some p' implies

q =s'a= (' for some ¢ such that (p', ) in R,
which is "half" of H(p, g, s'a, R). The symmetric half is proved analogously, and we conclude that
H(p, q, s'a, R} holds, for any (p,q) in R and any s'a in s+t o

Similarly to Definition 1.3.3 (observation equivalence =), we have

Definition 1.5.3

p =' q iff there exists an F'- bisimulation R such thatp Rq.

Proposition 1.5.4

= 'is identical fo = .

Proof. It follows from Proposition 1.5.2. -

Proposition 1.5.5

= ' (thus =) is the maximum fixpoint of F"

Proof. By arguments completely similar to those which support the analogous Proposition 1.3.8. «

Similarly to what we did in Section 1.4, we can build a non-increasing chain of relations by starting

from PxP and using, now, function F':

Definition 1.5.6

~'o = PxP
=k = F' (=k-1)
w
~'p = N {F KPxP) .
k=0

The chain {='\} of relations over P is non-increasing. A version of Theorem 1.4.8 holds, and we

have:

Theorem 1.5.7

If a transition system is image-finite, then ='(, is the maximum fixpoint of £’ (hence it coincides

16




with = 'and = ).

Proof. See Theorem 1.4.8. -

Notice that (Vs in 2* . =s=> is image-finite) iff ( Vs in 20 U 1 . =s= is image-finite). This
allows fo finally obtain the following characterization of observation equivalence, which is the most

useful from a computational point of view, and will be used in the next Section:

Proposition _1.5.8

If a transition system is image-finite, then:
®

~ = {F Kpxp)} .
k=0

1.6. Observation equivalence for finite transition system

We show in this section that, for finite transition systems, the definition of observation equivalence

given at the end of Section 1.5 directly provides an algorithm for equivalence verification.

Definition 1.6.1

A transition system S(P, X, T, pg) is finite if sets P (states) and % (observable actions) are finite.

A finite transition system is necessarily image-finite, hence for such system we have:

(3]

= =N~}

k=0

Furthermore, since we have a non-increasing chain of relations, and all the elements of the chain

are finite, there exists a k >=0 such that :

17



z'k == z'k+1 b= = .
An algorithm for checking the observation equivalence of two states p and q of a finite transition

system is then:

Algorithm 1.6.2

R = PxP
while R> F'(R) do R = F' (R)
if (p, g in R
then write "p = ("
else write "not(p = q)" .

If we want to check the observation equivalence of two disjoint transition systems it is possible, and
computationally convenient, to assume a starting relation, in Algorithm 1.6.2, smaller than (P U

Q)2. More precisely:

Proposition _1.6.3
Let Sp(P, ED, Tp, pg) and Sq(Q; Zq, Tq, dg) be two transition systems. If Algorithm 1.6.2 is

initialized with R%q == {(p, @) | pin P andgin Q}, and R“”pq is the relation computed by the

algorithm, then pg=~ qq iff (pg, qg) in gfin .

Proof. Any relation R over (P U Q) can be decomposed into four disjoint components:

Rpp={(x, y) in R| xin P, yin P}
qu={(x, y)in R xin P,y in Q}
qu={(x, y)in Rl xin Q,yin P}

qu={(x, y)in Rl xin Q,yin Q}

It then suffices to realize that function F' operates in the well behaved way diagramatically

illustrated in Figure 1.6.1. -

18



k K
fr = R U r® U RF U R
K pp Pq qp qq
\ e N .
. 4 4 k :
= = RH‘U RkHU R +1U R;M
K+ 1 pp pq qp 9
—

Figure 1.6.1 - The way function F' operates on relations.

The generic step included in the rectangle in figure is the one actually computed by the algorithm.

1.7. Testing-equivalence

We consider here another notion of equivalence, called testing-equivalence, denoted " = ", and

compare it with the k-equivalences introduced before. The interested reader will find more on

testing-equivalence in [DeNHB84].

Definition 1.7.1

If pin P is a state, Q<P is a set of states and s in 2,* is a string of observable actions, then

p after s = {p'in P | p=s=p'}

Q after s = U(q after s)
ginQ

tau-closure(Q) = Q after g(the empty word)

Definition 1.7.2

If Q<P is a set of states and L< Y, is a finite set of observable actions, then:

QMUSTL if Vqin tau-closure(Q). Jain L. =a=> .

For the sake of clarity it is convenient to spell out Definition 1.7.2 for the limit case of empty Q

19




and/or L:

1) Q MUST @, with nonempty Q, means  Vq in tau-closure(Q).(3a in @....)=Vq....FALSE =FALSE
2) @ MUST L, with nonempty L, means  Vqin®@...=TRUE

3) @ MUST @ means Vqin@...=TRUE

Definition 1.7.3

Let Q¢ and Qo be two sets of states. We say that Qq is testing-equivalent to Qz’ written Q4 = Qo,
if:
Vs in X* V finite L in X.
(Qq after s) MUST L iff (Qo after s) MUST L. .
Notice that for any set Q of states and any s in 2* we have: tau-closure(Q after s) = Q after s. Hence,

for the purposes of the definition of ' =, taking the tau-closure of Q in Definition 1.7.2 (of MUST) is

unnecessary.

Definition 1.7.4
Let p be a state. Then

traces(p) ={sin % | p=s=}

initials(p) . —{ainXY|p=a=}. .

Notice that traces(p) = traces(q) iff p =¢ q.

For the purpose of comparing = with =4 and =5 we reformulate the definition of the former. p = g

means:

Vsin Y .V finite Lin Y.
(p after s) MUST L iff (g after s) MUST L
that is:

Vp'.(p=s=p' implies (Jain L. p' =a= )) iff Vq'.(q =s= ¢ implies (Jain L. g =a= ))
that is:

dp'.(p =s= p' and initials(p')NL = ©) iff dq'.(q =s= ¢ and initials(g)NL = Q).

20



Proposition 1.7.5

p=pq implies p=q implies p=yq (or,=q2

Proof. Simply compare the three definitions below:

1) p=4q means:
Vsiny'.

dp'. p=s=p' iff

2) p =g means:
Vsiny .V finite L<Y.

dp'.(p =s= p' and initials(p)NL = @) iff

3) p =0 q mMeans:
Vsiny .V Tiny.

dp'.(p =s= p' and traces(p’)= T) iff

n

v

0
NS

Iq.g=s=¢

dq'.(g =s= ¢ and initials(q)NL = ©).

39'.(q =s= ¢ and traces(q")= T).

The ability to find equal sets of traces in (3) implies the ability to find equal sets of initials in (2).

And (2) becomes (1) when L is fixed equal to @. -

Definition 1.7.3 of testing-equivalence implies the consideration of all strings of observable actions

Vs in 2*...), with no bound on their lengths. Similarly to the case of observation equivalence, where

alternative definitions based on bounded-length strings were chosen for deriving actual algorithms,

we provide now an alternative definition of testing-equivalence based on action sequences of length at

most 1.

Definition 1.7.6

Let P and Q be two sets of states.

a) P = OQ is always true;

b) P =, 4Q iff

21



)V finite L <. (P MUST L) iff (Q MUST L), and
i) V ain X. (P after a) =, (Q after a);

c)Pz=QiffVn>=0P=,Q. -

The proof of the equivalence between this definition and Definition 1.7.3 is found in [DeN8§].
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2. VERIFICATION ALGORITHMS AND PROGRAMS

2.1. Observation equivalence

We present here two algorithms for the verification of observation equivalence between finite
labelled transition systems. The first algorithm ("refinements") is directly derived from the
definition, and needs no proof of correctness. The second algorithm ("Sanderson") takes a different

approach, and we provide the proof of its correctness here, since it is not found in the literature.

2.1.1. Algorithm "refinements”

We have developed an implementation of Algorithm 1.6.2., with the initialization suggested in
Proposition 1.6.3, and called it "refinements". The environment chosen is LPA (Logic Programming
Associates, Ltd) MacPROLOG, for the Macintosh personal computer. For an introduction to Prolog
programming using LPA MacPROLOG see [CMcC84]. Figure 2.1.1.1 contains two snapshots of the
Macintosh screen, showing the windows of program "refinements”, the data window describing the
most famous pair of non-observation-equivalent graphs, and the output window after a program

run.

Window "Comment" is singled out: it gives a brief, semi-formal description of the algorithm
(which is essentially Algorithm 1.6.2). The main advantage of using Prolog is that the actual
program is almost a one-to-one translation of this description. In spite of the declarative nature of
logic programming, the program has in part a procedural flavour: it iterates (via tail-recursion)
the refinement of an equivalence (a list of pairs), until the pair of roots is excluded, or until
refinement is no longer possible. A procedural style seems unavoidable in this case. Still, the use of
a typically procedural language (e.g. Pascal) would have also required the implementation and

handling of the data structures involved in the equivalence refinement, a burden completely

eliminated by Prolog. Window "Famous graphs" in Figure 2.1.1.1 declares the nodes g; (there are

four) and hj (five), represented as (g i)and (h j)), of the two graphs. It also provides the list of

labelled edges of the two graphs (three and four, respectively), in the form: t(fromnode, label,
tonode). The "Default Output Window" shows that after the second refinement the roots of the two

graphs are found inequivalent.
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=l Comment
/* Program "refinements” constructs the chain of equivalences R{k+1) =
F'(R{k)) based on function F', which is based in turn on the double arrow
relation '=s=>" (t1), with s observable string and [sl< 1. Input graphs G and H,
vith nodes of type (g —n) and (h _m), may not have tau-cycles. Algorithm:

Bk

refinements
1ist0 <~ {{p, q) | pis astate of G, q is a state of H};
refine(listo, 0).

refine(list, k)
new_list := {{p, g) | {p, q) is in Tist;| Tor any s (Is| i? ¥ an
if p=s=>p’ then there is q' s.t. g=s=>q0 & (p’
& viceversa;
if ((g 03(h 0)) not in new_list then FAIL (¥ inequivalence *);
if length{new_1ist) < length{_list) then refine{new_list, k+1)
else write("Fixpoint equiv. ", list).

id p*
0’y isin list,

QUERY: refinements */

- L
)
File Edit Search Windows Epaluation
refinemenis
tt (double arrow)
Comment
List processing valences R{k+1) =
Famous graphs the double arrow
state({g 1)). state((g 2)). Input graphs G and H,
state({g 3)). state((g 4)). -cycles. Algorithm:
state(th 1)). state{{h 2)).
state{(h 3. state({h 4)).
state(th 5)). Default Output Window SIE
VES ]

t{{g 1) a (g 2.

tlag 2)b (a3 | refinements

tg2) c (g 4)).  |s=x%* Refinements on Famobf: graphg ®##xx
starting a refinement ...

th 10a th 2D\ starting a refinement ..
t((h 1} 8 ‘:h 3)) MO

t{th 2) b (h 4.
t{th 3) c (h 5).

—}:;:;:;

G

Figure 2.1.1.1 - Program "refinements"
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As a slightly larger example, we have checked the observation equivalence of the two trees illustrated
in Figure 2.1.1.2. They are derived from two alternative specifications, given in [BDN86], of a

system that outputs a signal only after having received three input signals in any order.

out out out out out out

Figure 2.1.1.2 - Two observation equivalent trees

The fixpoint equivalence was found at the 2nd refinement. With 512 Kbytes of memory space,

MacProlog took about 12 minutes (l) of Macintosh time to produce the output.
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2.1.2 Algorithm "Sanderson” and its correctness

We have seen that for finite transition systems the definitions of observation.al equivalence via
bisimulation (Section 1.3) and via the chain of k-equivalences (Section 1.4) coinéide. Hence, as an
alternative to the refinements strategy, one could prove the observational equivalence of two finite
transition systems with roots p and ¢ by building a bisimulation including pair (p, g). An algorithm
for doing this is proposed in [San82], where a proof of correctness is unfortunately not provided. We

will provide it here, but before even introducing the algorithm we need to extablish some facts.

Definition _2.1.2.1

State p of a transition system is stable if for any transition p-x—p'itisx= 7T. -

Definition 2.1.2.2

A transition system is deterministic if its transition relation -t— is empty (i.e. no transition is

labelled by T) and if whenever p-x—p' and p-x—p" then p' = p".

Definition _2.1.2.3

Let P be the set of states and X be the alphabet of observable actions of a transition system. A relation

R < PxP is well-constructed if for any pair of states (p, q) in R the following three conditions are

satisfied:
cl) Vq' € P. (gt—q implies (p, q) € R)

c2) Vae X. Vg € P.(ga—q implies dp'e P.(p-a—p' and (p', q)e R)
c3) If q is stable then:

Vae 3.Vp e P.(p-a—p implies 3q'e P. ( g-a—q' and (p', g)e R) «

Proposition _2.1.2.4

Let P and Q be the two state sets of two transition systems, also called, ambiguously, P and Q, and let R

be a relation over PxQ. Assume that transition system P be deterministic, and that system Q be free of

cycles of T's. Then
R is well-constructed implies R is a bisimulation.

Proof
Once Proposition 1.5.2 is recalled, which states that the definition of bisimulation is independent of
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the choice of function For F', we must prove that
Y(p, ) € R.
Vse 30 u21.‘v’p'e P.

p=s=>p' implies 3q'e P. ( g=s=q and (p', q)e R)

and viceversa.

Given the generic pair (p, q) € R, we distinguish two cases.

i) s = € (the empty string). Since P is deterministic, p=e=>p' implies p = p'. Hence the
corresponding transition sequence is g=€=>q, and (p, q) € R.

Viceversa, if g=£=¢', that is q.=q0 -T— 44-T—>...-T> gp= ¢ (n20), then the corresponding
transition sequence is p=e=>p: since R satisfies condition (c1) in Def. 2.1.2.3, then (p, q) € R

implies (p, q4)e R, and, inductively, (p, ) € R.

i) s = aj...a, (n2=1). Suppose p=s=>p'. Since P is deterministic we may write

P=pPg-a4—> Py - Ppq -8 Ppy= P

The corresponding transition sequence g=s=>q', with (p', q') € R, is found by generating a sequence of

state pairs, starting at (p, g), whose elements inductively belong to R. The successor of the generic
element (p;, qj) is obtained as follows: if q is not stable, then 9T Gjyqs and (p;, qj-”) is the

new pair, which is in R by condition (c¢2) in Def. 2.1.2.3. If q is stable then, by condition (¢3)
transition p; -aj, 1— P, is paralleled by a transition % -8jp1> et and the new pair (pj, 1,

qu) is also in R. Notice that the absence of T—cycles in Q guarantees that a stable state in Q is

always found in a finite humber of transitions.

Viceversa, suppose g=s=>q'. Conditions (c1) and (c2) are sufficient to guarantee that the existence

of sequence p-s— p', with (p', d) € R. -

Proposition 2.1.2.5

Let P and Q be two transition systems as in Proposition 2.1.2.4, and consider a relation R between
their states. Then

R is a bisimulation implies R is well constructed.
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Proof
“We must show that any pair (p, q) in R satisfies conditions (c1) to (c3) of Def. 2.1.2.3. The proof is

simple, and we only illustrate the case of (c3): state q is stable, and we must show that whenever

p-a— p', for some a and p', then g-a— ¢, for some ¢, and (p', q) € R. lf p-a— p', then p=a = p',
and since R is a bisimulation, g= a = ¢", for some ¢". State q is stable, hence g-a— g == ", and

also g= a = ('; again, since R is a bisimulation, p = a = p", for some p", and (p", ') € R. But P is

deterministic, thus p” = p'. In conclusion: (p', ') € R.

We are now ready for a presentation of Sanderson's algorithm. Notice that indentation is used in the

the description below bears semantic value.

Algorithm 2.1.2.6

SANDER

checked := empty;

to_be_checked = empty;

APPEND((pg, dg), to_be_checked);

while to_be_checked = empty do
x = FRONT (io_be_ checked);
if not GOOD(x) then FAIL;
for-all y such-that GENERATES (x, y)

ify ¢ checked andy ¢ to_be_checked then

APPEND(y, to_be_checked);
APPEND(x, checked);
REMOVE-FRONT(to_be_checked)
SUCCESS

GOOD((p, q)) is TRUE iff:
Ya, q. (g-a— q implies 3 p'. p-a— p')

and

if g is stable then: Va, p'. (p-a— p' implies 3 . g-a— q').

GENERATES ((p, ), (¢, ) is TRUE iff:
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p-a— p'andg-a— g, forsomea=t

or

p=p,and3d.gT—> q.

Note

Variables "checked" and "to_be_checked" denote first-in-last-out queues. FRONT is a read-only
operation, while operations REMOVE-FRONT and APPEND, respectively, remove the first element
from the top and add a new element to the rear of the queue.

Proposition 2.1.2.7

Algorithm 2.1.2.6 always terminates.

Proof

If the algorithm fails, it terminates. :

Otherwise we must prove that the number of iterations of the while loop is finite (with the number of
steps per iteration being obviously finite too). Let n be the current number of pairs in
"to_be_checked" plus "checked". At each iteration k=0 new pairs are added to "to_be checked", and
one pair (x) is simply moved from it to "checked". Hence, n is increased or left unchanged. It is easy
to realize that the invariant that all pairs in "to_be_checked" plus "checked" are distinct is
preserved by the iterations. Since the number of possible distinct pairs is finite, the adding of pairs
to "to_be_checked" terminates in a finite number of iterations; then the contents of this queue is
moved, element by element, to the other queue, until the former is empty, and the loop successfully

terminates.

Proposition 2,1.2.8

If algorithm 2.1.2.6 terminates with success, then pg = qp -

Proof
We prove that after a successful termination of the algorithm, the relation in queue "checked",

denoted R, contains (pg , dg) and is well-constructed; thus, it is a bisimulation, by Prop. 2.1.2.4.

Every pair which appears in queue "to_be_checked" during execution is eventually moved to queue
“checked"; in particular, pair (pg , qg) is initially in "to_be_checked", and is moved to "checked" at

the end of the first iteration. We prove that R is well-constructed, i.e. that the generic element (p, q)

of R satisfies conditions (¢1) through (€3) of Def.2.1.2.3. Observe that since (p, q) appears in
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"checked", it has played the role of x in some iteration of the while loop. We refer to this iteration.

Proof of (¢1). If g- T ¢, then GENERATES((p, ), (p, q')), hence (p, q') is one of the y's appended
to "to_be_checked" (if not already there) during the iteration, and eventually moved to "checked".
Hence (p, ') € R. ’
Proof of (c2). Since the algorithm did not fail, GOOD((p, q)). Hence, Va, ¢. (g-a— ¢ implies 3 p'.
p-a— p'). Furthermore, GENERATES((p, q), (p', q"), thus (p', q') will also eventually appear in

checked, and (p', q') € R.
Proof of (¢3). Similar to proof of (¢2).

Proposition _2.1.2.9

If algorithm 2.1.2.6 terminates with failure, then not(pg = qp).

Proof

For the purpose of contradiction assume pg = qg. This fact would imply the existence of a
bisimulation R which contains (pg , dg). R would also be well-constructed (Prop. 2.1.2.5). If the
algorithm fails, there must exist a chain (pg , dg), (Py » d1)s - (Pp » 9p) such that GOOD(( p;,

q;)) and GENERATES((p;j, q), (Pj41 » Gj41)) for i = 0, 1, ..., n-1, and not GOOD(( p,, , q,)). On
the other hand, if (pg , dgle R, and GENERATES((pj, o)), (Pj.1 » Q1)) fori =0, 1, .., n-1,

then, inductively, (p, , d,)e R (the requirement that system P be deterministic is essential here).

Finally, by definition of "well-contructed", any state pair that belongs to R, such as (pj, , ), must

be GOOD, a contradiction. -

We have implemented algorithm 2.1.2.6, and called it "Sanderson". Again we provide in Figure
2.1.2.1. two snapshots of the Macintosh screen. Window "Comment" sketches the algorithm.
"Famous graphs" is the same input window used with program “refinements”. Notice that these two
graphs satisfy the requirements for the applicability of the algorithm. The "Default OQutput
Window" shows the tentative to construct a bisimulation relation, which fails after the generation of

two pairs. No bisimulation exists, and the systems are inequivalent.
We have also applied this algorithm to the two trees of Figure 2.1.1.2. While the final refinement

obtained by the previous algorithm on this example, in 12 minutes, contained 152 state pairs, the

bisimulation found by this algorithm contains only 34 pairs, and is obtained in a few seconds.

30



B VVFVF————————————————8Minnk:hi

.

/#*Program Sanderson computes and writes in the Default Output Window a
bisimulation between graphs G and H, if it exists. Graph G must be
deterministic and graph H cannot have tau-cycles.

Algorithmm. .
[tisa breadth—ﬁrst—searc}? of a "comnposed” graph GH. A list of nodes of GH
“tobechecked” is kept, initially containing only the root of GH , i.e.: (root(3),
root(H)). & list of nodes "checked” is also kept, initially empty.

1) with the first node (p, q) in "tobechecked” do:

1.1) Check that g-a->q’ implies p-a->p’; ‘

1.2) If g is stable (no qg-tau-3), then check that p-a->p’ implies g-a-»q’;
2) Mode lists updating:

2.1) For every g-tau->g’, put (p, q) in "tobechecked' , if (*);

2.2) For every p-a-»p' and g-a->q', put (p’, g’} in, "tobechecked' , if {¥);

{ (#) ='it is neither in "tobechecked” nor in "checked")
2.3) Move node (p, q) from "tobechecked" to "checked”, and go to 1.

TYFICAL QUERY: Sanderson */

& File Disk Edit Search Windows Evaluation

state((h 5)).

Default Dutput Window
w#®¥# Sanderson on Famous graphs *###%

t{{g 1) a (g 2)). ., ‘ n on Fs
t{{g 2) b (g 3. {:J(Zd?jpcah“}s))mfwldered ,

ta 2 elg 4 g 2) (h2)
MO

t{h 1) a (h 2)).
t{{h 1} a ¢h 3)).
t{(h 2) b ¢h 4)). |
t{{h 3) c (h 5.

Figure 2.1.2.1 - Program "Sanderson"
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Comment
Famous graphs lites in the Default Output Window a
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state((h 1)). state((h 2)). nsed” graph GH. & list of nodes of GH
state{th 32). state((h 4)). ing only the root of GH , i.e. (root(G)



2.2 Testing-equivalence

2.2.1 Algorithm "double subset construction”

We have based program "testing", for verifying the testing-equivalence of two finite transitiol
systems, on Definition 1.7.6. The algorithm, called "double subset construction", is outlined in Figur
2.2.1.1, window "Comment". The two basic functions of the algorithm are:

iy Transformation of the input graphs G and H, which are labelled and non-deterministic, int
string equivalent deterministic graphs (say dG and dH). Each node of dX (X = G or H) is a subset of th:
nodes of X, and the root of dX is the tau-closure of the root of X. An arc P-a->P' is created for graph d;
if for some p in P and p' in P', p=a=>p' holds. This is the "subset construction" algorithm of [AU79].

iiy Computation of the "MUST-family” of a given node P of graph dX:

MUST-family(P) = {L <%, | P MUST L}.

The algorithm constructs graphs dG and dH "in parallel", which explains the name "double subse
construction”. (In fact this construction can be seen as a breadth-first-search generation/exploratiol
of graph GHX = dGj|dH, where '||' is the LOTOS parallel operator.) For each NODE (P, Q) of GHX, when
P is a node in dG and Q is a node in dH, the MUST-families of P and Q are compared for equalit
(otherwise inequivalence is detected), for testing-equivalence, and the children of (P, Q) ar

computed.

Again, program "testing" is tested on the pair of well known graphs in window "Famous graphs", an
the negative result is reported in the "Default Output Window". Conversely, when the program i
applied to the pair of trees of Figure 2.1.1.2, the answer is positive, as expected, and it is produced i

about 100 seconds.
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=l Comment

|X*Prngram “testing” decides whether or not graphs G and H are
testing*f,quwalent; Both graphs cannot have tau-cycles.

Algorithm (Double subset construction) .
[t 15 a breadth-first-search of a complex graph GHX whose NODEs are pairs of
node subsets of G and H: the root is (tauclosure(root(G)), tauclosure{raat{H))).
A 1ist of MODEs of GHX "tobetested” is kept, initially containing only the root
of GHX. & list of MODEs "known” is also kept, initially empty.

1) with the first MODE (P, Q) in "tobetested" do:
check that (P MUST L) iff (0 MUST L), for any L subset of obsery. alphabet;
2) MODE lists updating:
2.1)1f (P after a)=P' and (0 after a)=0', with 'a’ observable action, and P’
or 0" not empty, then put MODE (P', Q') in list "tobetested”, if it is neither
in it norin list "known";
2.2) Move MODE (P, Q) from "tobetested” to "known”, and go to 1.

QUERY: testing */

& File Disk Edit Search Windows Evaluation

R

Comment

tt (double arrow)

List proc, 2 |
same-MUST-Tamily

testing )

List processing |

tauclosure and aftery
Famous graphs

state((g 1)). state((g 2)). s () _s1)) &
state({g 3)). state((g 4)).

Default Dutput Window
state((h 1)). state 7~
state((h 3)). state . yoqting
state((h 3)). *** Program Testing on Famous graphs *%%
Alphabet is{a b c)
tilg 1 atg 2. |testing NODE (((g 13) ((h 13
tlg2) b (g 30 |testing NODE ({(g 2)) ((h 2) (h 3)))
tilg2)cig4d).  |yg
|
t{(h 1) a (h 2. =

[ 4 [ 4} e 1

Figure 2.2.1.1 - Program "testing”
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4. CONCLUSIONS

Some algorithms for equivalence-verification have been presented; their Prolog implementations
have been briefly introduced, and applications to a small example have been il‘lustrated. Prolog is
convenient for a fast development of equivalence-verification algorithms. No difficulty should arise
in developing Prolog verifiers for other relations between finite transition systems, such as the
implementation relations discussed in [BSS86]. Computational efficiency is a different matter.
Efficient algorithms are available for observational equivalence [KS83][PT86], and their
implementation (not in PROLOG) seems a logical continuation of the work presented here. For
testing-equivalence the picture is more complicated: the associated verification problem is of so

called "intractable" complexity (PSPACE-complete).

An urgent development of this work is the integration of the algorithms discussed above into a more
sophisticated tool which could compare for equivalence processes specified as algebraic
expressions (e.g. in LOTOS), rather than graphs. Such a wider perspective obviously brings into
the scene new difficulties, mainly due to the fact that expressions may or may not represent finite

state processes, and that this problem is generally undecidable.

We wish to express our gratitude to Diego Latella, with whom many of the topics covered in Section 1

were discussed.
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