Consiglio

Improving Reli ning Frameworks

Improving reliability in the database design frameworks

Donatella Castelli and Serena Pisani
Istituto di Elaborazione dell’Informazione
Consiglio Nazionale delle Ricerche
Via S. Maria, 46
Pisa, Italy
e-mail: {castelli,serena}@iei.pi.cnr.it
fax: +39 50 554342

Abstract

This paper extends a database schema transformation languege, called Schema Refinement
Language, with a composition operator and a rule for deriving the conditions under which
¢ composed transformations is guaranteed to produce a correct design. The framework that
results from this extension can be exploited for improving the reliabilily of the database schema
design alse when other design frameworks are used.

Categories and Subject Descriptions: D.2.4 [Software Engineering]: Software/Program
Verification - Correctness proofs; D.2.4 [Software Engineering]: Software/Program Verifica-

k=Y
Tilivivvivi

tion - Reliability; D.2.4 [Software Engineering]: Software/Program Verification - Vaulidation;
H.2.1 [Database Management]: Logical Design - Date models

1 Introduction

The reliability of a schema design is usually obtained by reducing the set of the operators that
can be used to carry out the design to a fixed set [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14]. Only
the given operators can be used to carry out the design. Each operator is provided with the
conditions under which it is guaranteed to produce a correct design. Usually, these are conditions
that can be proved by simply checking the schema structure. A drawback of these proposals
is that the set of given operators are often insufficient to cover the specific needs that occur in
everyday practice. For some applications, the set of chosen transformations may be too low-level,
whereas, for others, this set may be too specialised.

This paper proposes an approach for supporting a correct design which overcomes the above
drawback. In this case, the transformational operators can be built dynamically following the
designers’ needs.

The approach proposed relies upon a design language called Schema Refinement Language
(SRL) [15]. This language consists of a set of primitives for schema transformations. Each
primitive has its applicability conditions associated with it. The proofof these conditions ensures
the correctness of the design step. The paper proposes a composition operator for this language
that can be used to express all the schema transformations. Moreover, it introduces a rule
for deriving the applicability conditions of a composed transformation from the applicability
conditions of the component transformations.

The built framework permits the definition of a personalised set of schema refinement oper-
ators. The conditions that guarantee a safe application of these aperators are derived automat-

ically by applying the given rule.

Because of its generality, the framework presented can also be exploited to derive the cor-
rectness conditions of schema transformations that are specified in other languages. This can
be obtained by first expressing the semantics of the selected transformation as the difference
between the initial and the final schema. Once this difference is given, it is very easy to con-
struct the analogous SRL transformation as a composition of SRL primitives. At this point, the
correctness conditions required are generated automatically.

The SLR framework is described in the next section. Section 3 introduces the composition
operator. Section 4 presents the rule for deriving the applicability conditions of a composed
schema transformation. In particular, it discusses how, by exploiting this rule, it is possible also
to discover situations in which the definition of a transformation is incorrect. Section 5 shows
how the results presented can be exploited to derive the applicability conditions in different
transformational frameworks. To illustrate this point, a few examples are presented, taken from
well known transformational frameworks. Section 6 contains concluding remarks. The algorithm
for the generation of the applicability conditions is given in the Appendix.

2 Schema Refinement Language

The Schema Refinement Language (SRL) assumes that the whole design relies on a single nota-
tion which is sufficiently general to represent semantic and object models. This notation, illus-
trated briefly through the example in Figure 1, allows to model the database structure and behav-
jor into a single module, called Database Schema (DBS) [9]. This module encloses classes (vein,
visual_aspect, material, marble and stone), attributes {name, colour and type), is-a relationships
(marbie is-a material and stone is-a material), integrity constraints (dom{has.aspect;has_vein) =
marble)! and operations (vt — marble_veins_types)(see Figure 4(a) for a pictorial representation
of the structural part of this schema).

The notation of Database Schema is formalized in terms of a formal model introduced within
the B-Method [2]. This formalization allows to exploit the B theory and tools for proving
expected properties of the DBS schemas.

A set of primitive operators that transforms DBS schemas is given. Table 1 shows these op-
erators. Note that each transformation has a further parameter, which has been omitted in the
table for simplicity, that specifies the DBS schema it is applied to. The name of each operator
and parameter gives an intuitive understanding of the operator semantics. The equality condi-
tions that appear as a parameter in the add/rem transformations specify how the new/removed
element can be derived from the already existing/remaining ones. These conditions are required
since only redundant components can be added and removed in a refinement step. The language
does not permit to add or remove schema operations. It only permits to change the way in which
an operation is defined. Note that the operation definitions are also automatically modified as
a side effect of the transformations that add and remove schema components. In particular,
these automatic modifications add appropriate updates for each of the new schema components,
cancel the occurrences of the removed components and apply the proper variable substitutions.

A transformation can be applied when its applicability conditions are verified. These are
sufficient conditions, to be verified before the execution of the transformation, that prevent from
applying meaningless and correctness breaking schema design. The criterion for the correctness
of schema design is based on the following definition:

Definition 1 (DBS schema refinement relation)
A DBS schema 5y refines a DBS schema 5 if:

¢ 57 and S5 have the same signature;

!+ is the relation composition operator.

database schema
Materials

classes
class vein of VEIN
with (type:string)
class visuelaspect of VISUAL_ASPECT
with (colour:string,
has_vein:vein)
class material of MATERIAL
with (name:siring,
has_aspect:visual_aspect)
class marble is-a material
with ()
class stone is-a material

with {)

constraints
dom(has-aspect has_vein) = marble

initialization
material, name, has_aspect, visual.aspect, colour, has_vein, vein,
iype, marble,slone:= empty

operations
vl —marble_veins_types =
vi:={t | 3 mEmarble - has_aspect;has_vein(m}=v A type(v)=i}
end

Figure 1: A Database Schema

s there exists a one to one correspondence between the states modelled by 51 and S3;

e the database B; and Bs, modelled by S; and S3, when initialised and submitted to the
same sequence of updates, are such that each possible query on B; returns ome of the
results expected by evaluating the same query on Bs.

The formal definition of this criterion is given in [15].

The applicability conditions consists of the conjunction of simple conditions, called applica-
bility predicates. Two kinds of applicability predicates can be distinguished:

1. Applicability predicates that prevent from the application of meaningless refinements.
These, can be partitioned into:

add.class (class.name, class.name =ezpr)
rem.class (class.name, class.name =ezpr)
add.attr(atir.name, class.name, alir.neme =ezpr)
rem.attr (attr.name, class. name, aiir.name =ezpr)

add.isa(class.namel, class.name2)

rem.isa (class.namel, class.name?)

mod.op (op.name, body)

Table 1: SRL language

o predicates requiring that an element be/be not in the input schema (these will be
indicated in the rest of the paper with, respectively, x€ § and x ¢ §). For example,
an attribute to be removed has to be in the input schema, a class to be added has
not to be in the input schema;

o predicates requiring that the expression in a transformation call be given in terms of
state variables ({x, --x,} € S, where X1, - "X, are the free variable of the expres-
sion). For example, the expression that defines how a new class can be derived from
the rest of the schema components must contain only state variables of the input
schema.

2. Applicability predicates that prevent from breaking the correctness of the design. These,
can be partitioned into:

e predicates requiring that only redundant elements be removed (Constr = x=E). For
example, a class cannot be removed if the equality condition specified in the call is
not implicit in the schema constraints;

s predicates requiring that the DBS inherent constraints be preserved (Constr = Inh).
This means that each time the input is a DBS schema also the result must be a DBS
schema. For example, it is not possible to remove a class if there is an attribute
that refers this class, or it is not possible to add an is-a relationship if this operation
produces an is-a loop within the schema;

e predicates requiring that the body of an operation be substituted with an algorithmic
refinement of the previous one (Body’ T Body) (see [2] for the definition of).

Let us outline that the main concerns in defining this framework have been simplicity and
generality. These qualities are achieved defining both the model and the schema refinement
language provided with very primitive mechanisms.

SRL, as presented above, however, is not still sufficiently general to be used to interpret other
schema design frameworks. The schema transformations are usually more complex of those listed
above. In order to overcome this limitation, in the next section SRL is extended. The extension
renders it complete, i.e. able to express all the possible DBS schema transformations.

3 Composition operator

This section introduces a composition operator for SRL. Note that, from now on, for notational
convenience, SRL extended with the composition operator will be simply named SRL.

The following preliminary definition is needed before introducing the composition operator.

Definition 2 (Consistent operation modification)
A set of SRL schema transformations ty, {2, .. ., i, specifies consistent operation modifications
if, for each pair of transformations (2, t;), with 1< &7 € n, and k # j, that modify the same
operation op, at last one of the conditions below holds:

bodyi, C body;
body; T body

where body; and body; are the new behaviour of op, specified by, respectively, t; and %;.

Intuitively, this definition means that all the bodies that are specified for the same operations
by different transformations must describe the same general behaviour. They can only differ for

being more or less refined.

Given the above definition, the SRL composition operator can be defined as follows.

Definition 3 (Composition operator “o”)

Let t1, t2, ..., 1 be a set of SRL schema transformations that specify consistent operation mod-
ifications. Let <ClAttr,IsA,Constr,Op> be a DBS schema where: Cl is a set of classes, Atir is
a set of attributes, JsA is a set of is-a relationships, Constr is a set of integrity constraints, and
Op is a set of schema operations. Op always contains an operation Init that specifies the schema
initialisation. The SRL schema transformation composition operator is defined as follows:

t10t30...0t, (<ClAtirIsA,Constr,Op>) =

< Cl U AddedCl - RemovedCl,
Attr U AddedAitr - RemovedAttr,
IsA U AddedIsA - RemovedlsA,
[RemSubst*](Constr A AddedConstr),
{RemSubst¥0p'>

where AddedCl/RemovedCl, AddedAttr/RemovedAttr and AddedIsA /Removed]sA are sets formed,
respectively, by the set of classes, attributes and is-a relationships that are added/removed by #y,
ta, .. .s1n. RemSubst*is the transitive closure of the variable substitutions z:=F dictated by the
conditions that are specified when an element is removed. If we have, for example, rem.class/(c,

c=E) o rem.class(d, d=f(c)) o rem.class(e, e=F) then RemSubst* is the parallel composition
of the substitutions c:=E, d:=f(E) and e:=F. [RemSubst*]X is the expression that is obtained
by applying the substitution RemSubst™ to X. For example, [z:=E|R(z) is R(E). This substi-
tution permits to rephrase integrity constraints and operation definitions in terms of the new
schema components. AddedConsir are the constraints that are associated to the new elements
of the schema. They comprise the conjunction of the inherent constraints associated with the
new schema components and the conditions that specify how an added element relates to the
remaining ones. Finally, Op' is the new set of operation definitions. These result from the modi-
fications that are required explicitly and from the automatic adjustments caused by the addition
and removal of schema components. When more than one of the component transformations

modifies an operation, the more specialised behavior is selected.

SRL has the following property:

Property 1 (Completeness)
SRL is a complete DBS schema refinement language.

This property ensures that the SRL is powerful enough to express every DBS schema trans-
formation. As a consequence of this property, the designer can progressively enrich the set of
schema refinement transformations following his/her needs.

The following example illustrates how the composition operator can be used to build new

transformations.

Ezample

Let us suppose that the transformation illustrated in Figure 2 is required. This transfor-
mation adds a direct relationship between two classes that were related by an indirect link.
Moreover, it removes the relationship as since, in the new situation, it is derivable from the
others.

This transformation can be built as composition of simple SRL transformations in the fol-

lowing way:

Ci 22+ Cy Cy 22+ Cp
0 i ‘_]_
C3 2 CS

Figure 2: path_replacement

path_replacement(Cy, a1, Co, G2, a3) =
add.attr(al, C], 151 =a2;a3) o]
rem.attr{ag, Ca, az=0a;";a1)

The transformation path_replacerent can be used as any other SRL transformation. For
example, it can be applied to the database schema Materials of Figure 1 as follows:

path_replacement(marble, has_vein_marble, visual_aspect, has_aspect, has_vein)(Materials)

Figure 3 presents the DBS schema that is produced by this transformation. Figure 4 illus-
trates graphically the effect of the transformation on the static part of the schema.

database schema
Materials;

classes
class vein of VEIN
with {1ype:string)
class visual_aspect of VISUAL_ASPECT
with (colour:siring)
class material of MATERIAL
with (name:string,
has_aspeci:visual_aspect)
class marble is-a material
with (has_vein_marble:vein)
class stone is-a material
with ()

constraints
dom{has.vein.marble)=marble

initialization
material, name, has_aspect, visual_aspect, colour, has_vein_marble,
vein, type, marble, slone:= empty

operations
vt —~marble_veins_iypes =
vi:={t | 3 mEmarble - has.vein-marble(m}=v A type(v}=t}

end

Figure 3: DBS Materials;

This section has illustrated as the DBS schema refinement transformations can be dynam-
ically built. The next section shows as, in this dynamic context, it is still possible to support
the designer in carrying out a correct design process.

name material has_aspect, visual_aspect colour
has_vein (a)

marble stone vein [ype

name material has.aspect visual_aspect icolour
n (b)

marble stone vein Hype

l $has.vein.marble

Figure 4: path_replacement

4 Applicability conditions

The generation of the applicability conditions of a composed transformation has a double pur-
pose. First, it permits to highlight some mistakes in the definition of the transformation. Second,
it provides a set of sufficient conditions for ensuring that the application of the transformation
results in a correct design. What follows describes how these conditions are generated. Then,
the two uses of the applicability conditions are discussed.

The applicability conditions of a composed transformation are generated constructively [17].
The construction is done by an algorithm, called Applicability Condition Generating Algorithm
{ACGA), given in Appendix. This algorthm takes as input the set of SRL transformations
and their applicability conditions and returns a set of applicability predicates. The algorithm
generates the applicability conditions by considering the schema structure and the modifica-
tions brought by the component transformations. The applicability conditions of the composed
transformation are given by the conjunction of the predicates that are returned by the algorithm.

As far as the applicability conditions of composed transformations, the following property
holds [17]:

Property 2 (SRL is a refinement language)
Let #1, t, ..., I be SRL schema transformations and § be a DBS schema. The application of
the transformation #; 0 t3 0...0%,(5), when its applicability conditions are verified, produces a

refinement of S,

This property ensures the correctness of any SRL database design.

4.1 Applicability of a transformation

As there are no constraints on how the transformations should be composed, it may happen
that a defined transformation results to be never applicable, i.e. its applicability conditions are
never verified. If { is a composed transformation, with n parameters and applicability conditions
apply, the proof of the following condition permits to exclude such wrong definition

A1y Pny S aPPli(py e pa)(S)

where pq, - -, p, are the parameters of ¢ and S is a DBS schema.

The transformation is applicable if at least an instance of the parameters and a schema that
verifies the applicability conditions exist. Otherwise, there is something wrong in the definition
of t.

To illustrate the last point, let us examine the following example?®:

specialisation(Cy, C3, Cs, @, v) =
add.is-a(Cs, Cz) o
rem.is-a(Ca, C1) ©
rem.class(Gy, Co=dom(at> {v}))

The applicability conditions of this transformation are given in Table 2:

Cs e (1

Co e Cl

(s, Ca) € IsA

(Ca, C1) € (IsA U {(Cs, C2)

CZ g {a” 'U}

(Constr A AddedConstr) = —(C; is-a-reach Cj3)

(Constr n (AddedConstr - {Cais-aCs})) = C3 CCy

{ Constr A AddedConstr) = Co=dom(abt>{v})

~Ja € Attr{Cy) T

~3Ce CH((C,Ca)e((IsA-{(Ca, CIDUA(Ca,Ca)}) v
(C2,C)e((F34-{(C2,C1) PDU{(C5,Ca)}))

Table 2: Applicability conditions of “specialisation”

Carrying out the verification of the above applicability conditions we discover that the last
condition will be never verified, since C can be instantiated with “C3”. This discovery gives
us an indication of the problems in the definition of the transformation. The transformation
removes the class C; that is is-a related to Cs. Indipendently from the values that will be given
to Cz and Ca, when the transformation will be instantiated it will always produce a dangling
is-a relationship , as illustrated in Figure 5.

C:[* C B

ﬂ
Cy = %D
Ca Cs

(2) (b)

Figure 5: Specialisation

The proof of the applicability conditions of an SRL transformation permits thus to rule out
wrong definition, as the one given in this example.

2In that follows, t- stands for the range restriction, Cp is-a-reach C) is a predicate that indicates, if verified,
the existence of an is-a path between C; and C2 and Czis-aCz stands for the inherent constraint “Cs is a subclass

of Cp”.

4.2 Correctness of a design step

At the beginning of Section 4, we have seen that the applicability conditions of a composed
transformation are generated dynamically from the definition of the transformation.

The applicability conditions so generated are parametric with respect to the parameters of
the composed transformation. By reasoning on these conditions, it turns out that some of them
can be solved without instantiating the parameters; others can be discharged by simply compar-
ing the values of the parameters. This suggest us to automatically prune these predicates and
associate to the instance of a transformation only the simplified set of applicability predicates.
The pruning is done at different stages. When the transformation is defined, the set of applica-
bility predicates is scanned and, for each predicate P;; of the set, the proofof ¥V py...pn, 5+ B
is attempted. If the proof is successful, P;; is inserted in the set of the applicability predi-
cates that have not to be proved anymore. The second kind of pruning, is executed when the
transformation is instantiated. By reasoning on the structure of the component transformations
and the values of the parameters, several applicability predicates are discharged. The ACGA
algoritm, reported in the Appendix, actually implement a mix between the generation of the
applicability conditions and the second pruning, The result is the set of applicability predicates
that the designer has to prove for a particular application of the transformation. Notice that
this set is often very small. Moreover, since the SRL framework and its application conditions
are formalised, an automatic, or at least guided, discharge of the applicability conditions that
are generated is possible.

For now on, for “applicability conditions” it will be meant the conditions returned by the
application of the ACGA algorithm.

As example of dynamic generation of the applicability conditions of a composed transforma-
tion, let us see which are the applicability conditions of the transformation path_replacement, as
invoked in the example of Section 3. The following abbreviations are used:

NewConstr; = Constr A Inh A has.vein=has.aspect™';has_vein.marble

and
NewConstry = Constr A Ink A has_vein.marble=has_aspect;has_vein

where Constr stands for the constraints of the initial schema and Inh stands for the inherent
constraints that are implicitly added by the transformation.

The applicability conditions of path_replacement are:

o NewConstr, = dom(has.aspect;has.vein) C marble

o NewConstry = has_vein = has_aspect™!;has_vein_marble

The first condition requires that the added relationship, defined as composition of kas_aspect
and has_vein, be defined on the class marble. The second condition requires that the removed
relationship be derivable as the sequential composition of the remaining ones. Those listed above
are the only applicability conditions that are returned to the designer. The others are checked
and discharged by the ACGA algorithm automatically.

As a concluding remark of this section, note that since the SRL framework and its applica-
tion conditions are formalised, an automatic, or at least guided, discharge of the applicability
conditions that are generated is possible.

5 Exploiting SRL in other design frameworks

Having a very primitive level of basic transformations and a powerful mean for composing them
permits to transfer our approach for a more reliable design also to other frameworks.

As a matter of fact, in all the design frameworks that can be interpreted as a special case
of the one that has been described, the applicability conditions of any transformation can be
simply generated. It is sufficient, first, to define the refinement transformation as the difference
between the initial and the final schemas and, then, to express this difference as composition of
SRL primitives. At this point, the applicability conditions foliow automatically.

This approach to the derivation of the applicability conditions of a refinement transformation
can be useful in all those design contexts in which the preconditions for a correct design are not
given. These include also those contexts in which there are no established transformations but
the design is done by writing down the logical schema directly. In this case the transformation
is jmplicit and, of course, there are no preconditions for guaranteeing its correctness. This
approach may be useful also when there are applicability conditions, but they are only given
informally. In these cases, assistance tools for the verification of these preconditions cannot be
built. Using the suggested approach we can take advantage of those provided for SRL.

The approach illustrated above has an inherent limitation: it can be applied only if its
premises agree with those of SRL. In particular, the employed model must be a submodel of
DBS and the DBS schema refinement relation must conform to the one that has been given in
Section 2.

In order to illustrate how the approach proposed can be useful in other frameworks, we
present two examples of derivation of applicability conditions. The examples consider two re-
finement transformations taken from two different well known languages.

Frample 1

The first example considers a schema transformation that belongs to the set proposed in [3].
The transformations within this set do not change the information content of the schema. More-
over, they conform to SRL. The transformation chosen is: elimination of dangling subentities in
generalisation hierarchies. For brevity, below it will be named elimination.

The transformation elimination removes n non overlapping subclasses and reduces them to
a superclass. The elements of the superclass are partitioned in n groups by the value of added
attribute. Figure 6 shows this transformation.

C

(a) (b)

Figure 6: elimination

The schema in Figure 6(b} differs from the schema in Figure 6(a) since in the second one
there is a new attribute a and the classes C, -, C, and their is-a relationships are missing.
This difference can be easily expressed as composition of SRL primitives:

10

elimination(a, C, (v1, -+,), (C1, *+ Cu)) =
add.atir(a, C, a={(z,y) | z6(CLU---UC,) A
(z€Cy — y=uv) Ao A (3€Cx = y=um)}) o
rem.class(Cy,Cy=dom(at-{v})) o« - -0 rem.class(C,, C,=dom(a >{vn})) ©
rem.isa(Cy,C)o - - -0 rem.isa(Cy,C)

The transformation elimination can be applied to the schema Sin Figure 7(a) to obtain the
schema of Figure 7(b}:

elimination(type, Material, (marble, stone), (Marble, Stone))(5)

Material
. 1 Ltype
ﬂ = Material

Marble Stone

(2) (b)

Figure 7: elimination

The applicability conditions associated to the above instantiation of the elimination are the
following;:

o NewConstr = (dom({(m,t) | me(MarbleUStone) A
(meMarble — t=marble A m€Stone — t=stone)}) G Material)

e NewConstr = Marble=dom (typet>{marble})

e NewConstr = Stone=dom (type>{stone})

where NewConstr stands for the conjunction of the constraints of the initial schema and a
subset of those added. This subset consists of all the constraints added by the component
transformations that differ from the transformation that has generated the condition.

Ezample 2

The second example is taken from [11]. Here, a set of ER schema transformations to support
the designer during the schema development is proposed. Among all the given transformations
there is a group of them that are semantics-preserving, i.e. they do not change the information
content of the schema. One of these transformations is disaggregation a compound attribute. For
brevity, it will be called disaggregation.

Let us see how the applicability conditions of this transformation can be derived.
The transformation disaggregation replaces the compound attribute with its component fields
as shown in Figure 8.

The schema in Figure 8(a) differs from the schema in Figure 8(b) since in the second ome
there are n new attributes, a-¢i, - -, @-a@y, and the attribute ¢ is missing.

This difference can be expressed as composition of SRL primitives as follows®:

3In that follows, prji(z) stands for the projection of z on the i-th element.

11

a.aj

C &< a1," " Han > = C

(a) (b)

Figure 8: disaggregation

disaggregation({ay, - +,a,),C,a} =
add.attr(a.a1,Cya.a1 ={(z,y) |2€C A y=pri1(a(z))})o- -0
add.attr{a_ay,,C,a-a, ={(z,y) | z€C A y=prjn(a(z))}) o
rem.attr(a,C,a={(z,y) | z€C A y=<a-a\(z), -, a_a,(x)>})
Let us, for example, apply the transformation disaggregation to the schema S'in Figure 9(a).

disaggregation({colour, vein), Material, aspect}(S)

This instantiation produces the schema in Figure 9(b).

. naspect_colour
Material 25 ect<colour, vein> Material {aspect_vein

=
(a) (b)

Figure 9: disaggregation

The only applicability condition of disaggregation is:
o NewConstr = aspect={(m,a) | m&Material — a=<aspect_colour,aspect.vein>}

where NewConsir are defined as in the previous example.

6 Conclusions

This paper has proposed a solution to the problem of offering a flexible instrument for supporting
a correct database design. Flexibility is achieved by employing a model that can represent both
object and semantic models and by providing a means for defining refinement transformations
dynamically. Flexibility, in this case, does not degrade correctness since the applicability condi-
tions can still be associated to the dynamically built transformations. The paper has shown also
as, by exploiting the flexibility of SRL, it is possible to employ it for generating the applicability
conditions of refinement transformations proposed in other contexts. This use of the illustrated
framework permits to improve the reliability of the database design process also in frameworks
where no specific instrument for such purpose exists.

We have experimented this particular application of the framework proposed in carrying out
the design of two databases. The first is the multimedia database for supporting the MIAOW
system[18]. This database, designed as part of the Marble Industry Advertising over the World
ESPRIT Project (n. 3990), maintains information about stones and stone actors. The sec-
ond is a database that maintains multimedia data about the history of Computer Science in
Ttaly[19]. This database was designed as part of the Italian National Project Museo Virtuale
della Storia dell’Informatica. The design of these two database was carried out by generating a
sequence of OMT-like schemas[16]. Each schema in the sequence was produced by ad-hoc trans-
formations. For each of such transformations, the corresponding applicability conditions were

12

generated. These design experiences, on the one hand, confirmed the utility of the approach
Mustrated in discovering specific design mistakes and, on the other, suggested us improvements
to our framework. In particular, it highlighted situations in. which an automatic discharging was
preferable.

Let us conclude by outlining that the particular type of formalisation that has been chosen for
the presented framework allows to built tools that assist in the generation and discharge of the
applicability conditions. In particular, the same B tools that can be used for proving properties
of DBS schema can also be exploited for supporting the discharge of the SRL applicability
preconditions. Moreover, they can also be used to implement the more sophisticated version of
the ACGA algorithm.

References

[1] Petia Assenova, Paul Johannssen. Improving Quality in Conceptual Modeliing by the Use
of Schema Transformation. In Lecture Notes in Computer Science, n.1157, pp.277-291,

Springer-Verlag, 1996.
(2] J.R.Abrial. The B-Book. Cambridge University Press, 1996.

[3] C. Batini, S. Ceri and Navathe S. B.. Conceptual Database Design. Redwood City, CA, The
Benjamin/Cummings Publishing Company, Inc., 1992.

[4] C.Batini, G.Di Battista and G.Santucci. Structuring Primitives for a Dictionary of Entity
Relationship Data Schemas. IEEE Transactions on Software Engineering, 19(4), April 1993.

15] P.L.Bergstein. Ob ject-Preserving Class Transformations. in Proc. Object-Oriented Program-
ming Systems, Languages and Applications Conference, Phoenix, Arizona, October 1991.
In Special Issue of SIGPLAN Notice, 26(11), pp.299-313, 1991,

(6] P.L.Bergstein and W.L.Hiirsch. Maintaining Behavioral Consistency during Schema Evolu-
tion. In First JSSST International Symposium on Object Technologies for Advanced Soft-
ware, Kanazawa, Japan, Lecture Notes in Computer Science, Springer- Verlag, pp-176-193,
November 1993.

[7] Peter Mc. Brien, Alexandra Poulovassilis. A Formal Framework for ER Schema Transfor-
mation. In Lecture Notes in Computer Science, n.1331, pp.408-421, Springer-Verlag, 1997.

[8] P.van Bommel. Database design by computer-alded schema transformations. Software En-
gineering Journal, pp.125-132, July 1995.

[9] D.Castelli and F.Locuratolo. ASSO: A Formal Database Design Methodology, in Informa-
tion Modelling and Knowledge Bases VI, H. Jaakkaola et al.eds., I0S-Press, 1994.

[10] A.D’Atriand D.Sacca. Equivalence and Mapping of Database Schemas. In Proceedings of the
10" International Conference on Very Large Data Bases, pp.187-195, Singapore, August
1984.

f11] J.L.Hainaut. Transformation-based Database Engineering, Tutorial of the Very Large Data
Bases Conference, Zurigh, Switzerland, September 1995.

[12] J.L.Hainaut, V.Englebert, J. Henrard, J ‘M.Hick and D.Roland. Evolution of Database Ap-
plications: the DB-MAIN Approach. In Proceedings of the 18" International Conference
on ER Approach, Manchester, Springer- Verlag, 1994.

13

[13] 1. Kobayashi. Losslessness and Semantic Correctness of Database Schema Transformations:
Another Look of Schema Equivalence. Information Systems, 11(1), pp.41-59, 1986.

[14] K.J.Lieberherr, W.L.Hiirsch and C.Xiao. Object-Extending Class Transformations.Il For-
mal Aspects of Computing, 6, pp.391-416, 1994.

[15] S.Pisani and R.Occhipinti, Definizione di un insieme di trasformazioni di schemi per la
progettazione di basi di dati, Tesi di Laurea, Computer Science Dept. University of Pisa,

1996.

[16] Rumbaugh J., Blaha M., Premerlani W., Eddy F., and Lorensen W. Object-Oriented Mod-
eling and Design, Prentice Hall, Englewood Cliffs, New Jersey 07632, 1991.

{17] Castelli D. and Pisani S. A Transfermational Approach to Database Design, IEI-CNR Tech-
nical Report, 1998.

(18] MIAOW Multimedia Database: Revised Design and Implementation, MIAOW-CNR-REP-
001-007. 1996.

[19] De Marco G. and Pisani S. Disegno e Realizzazione della Base di Bati Multimediale di
Supporto al Progetio “Museo Virtuale della Storia dell’Informatica in Italia”, IEI-CNR,

Internal Note B4-25, 1997.

14

Appendix: The Applicability Condition Generating Algorithm

The Applicability Condition Generating Algorithm (ACGA) is described below. This algo-
rithm takes as input a set of SRL transformations {1, 3, ..., .}, their applicability conditions,
the set ver_appl, specified below, and a DBS schema < Cl, Atir, IsA, Constr, Op> and it returns
a set of applicability predicates. The description of the algorithm is given using an informal
notation and makes use of the following abbreviations:

o AddedCl/Attr and RemovedCl/Attr indicate, respectively, the set of classes and attributes
that are added and removed;

o Attr(C), AddedAtir(C) and RemovedAttr{C) indicate, respectively, the set of attributes
that are defined on the class C in the initial schema, added to C and removed from C by

the composed transformation;
o AddedConstr are the constraints that are added by the component transformations;
¢ RemSubstare the variable substitutions induced by all the removals of schema components;
o C; is-a C, stands for the inherent constraint “C, is a subclass of C;”;
e a attribute-of C is the inherent constraint “a is an attribute of the class C”;

e ver-appl is the set of applicability conditions that are proved to be verified when the
composed transformation is defined.

Applicability Condition Generating Algorithm

The algorithm consists of four steps. The first step initialises the set appl, which maintains
the applicability predicates returned by the algorithm. The second step generates a first group
of applicability predicates. These require that the component transformations specify consistent
modifications. The third step generates a temporary set of applicability predicates to be proved.
This set is scanned in the fourth step. If a predicated of this set is found to be false, then appl,
is set to “false” and the algorithm is terminated. Each predicate of the set that cannot be
discharged by the checks operated by the algorithm it is inserted in the set appl,.

Step 1
appl, 1= 0

Step 2
% The conditions generated by this step require that multiple additions or removals of a

component with the same name be equivalent.

for all x, F, F- x€AddedC! A x=FEcAddedConstr A x=F¢ AddedConstr A F£F
do appl, := apploU {(Consirn AddedConstr - {x=E, x=F}) = (x=E & x=F)};
% Two component transformations can add the same class only if the expressions that
define the class are equivalent.

for all x, E, F- x€(AddedCl 1 RemovedCl) A x=E€ AddedConsir A x=:F& RemSubst A F£F
do appl, := apploU {(ConstrA AddedConstr) = (x=E & x=F)};
% Two component transformations can add and remove the same class only if the
expressions that define the class are equivalent.

15

for all x, E, F- x€Cl A x=:E€ RemSubst A x=:Fe RemSubst A E£F
do appl, := apploU {(ConstraAddedConsir) = (x=E & x=F)};
% Two component transformations can remove the same class only if the expressions
that define the class are equivalent.

for all x, E, F- x€ AddedAttr A x=Ec AddedConstr A x=F€ AddedConstr A E£F
do appls := apploU {(Constrn AddedConstr - {x=F, x=F}) = (x=E & x=F)};
% Two component transformations can add the same attribute only if the expressions
that define the attribute are equivalent.

for all x, E, F- x€(AddedAttr N RemovedAttr) A x=Ec AddedConstr A x=:F€ RemSubst A E#
do appl, := apploU {(ConstrAAddedConstr) = (x=E & x=F)};
% Two component transformations can add and remove the same attribute only if the
expressions that define the attribute are equivalent

for all x, E, F- x€Attr A x=:E€ RemSubst A x=:F& RemSubst A\ E#F
do appl, := appl,U {(ConstranAddedConstr) = (x=F & x=F)};
% Two component transformations can remove the same attribute only if the expressio
that define the attribute are equivalent.

Step 3
% If the equivalence stated above holds, then the composition of all the additions and removal

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ Af tha annlis Tty pvnﬂirnfo:

of the same component has no effect. As a consequence, many of the applicability predicates
associated to these transformations do not need to be proved. The algorithm, then, adds to the
set appl only the applicability predicates that have necessarily to be proved.

appl := 0;
for all x - x€ AddedCl A x¢ Removed(Cl do
any E where x=F¢ AddedConstr then
appl := appl U {x¢Cl, x¢Free(E), Free(E)C(CIUAtIr)}

for all x - x€ RemovedCl A x¢ AddedCl do
any E where x:=F¢ RemSubst then
appl := appl U {xeCl, x¢Free(E), Constr = x=E,
—~JacAtir{x), 3CeCl - ((Cx)elsA V (x,C)eLlsA)}

for all x - x€ AddedAttr A x¢ RemovedAtir do
any E where x=F¢€ AddedConstr then
if ~3Ce(ClUAddedCl) - x€ AddedAtir{C) then appl, := false
else app! := appl U {Ce(l, x¢Free(E), Free(E)C(ClUAftr), x¢ Attr,
Constr => dom{ E}CC |
3Ce(ClUAddedCl) - x€ AddedAttr(C)}

for all x - x€ RemovedAtir A x¢g AddedAttr do
any E where x:=F€ RemSubst then
if ~3Ce(CAddedCl) - xe AddedAttr(C) then appl, := false
else appl := appl U {CeCl, x¢Free(E), x€ Attr(C),
Constr = x=FE | 3Ce(ClUAddedCl) - x¢ Attr(C)}

for all (x,y) - (x,y)€AddedIsA N x¢g RemovedlsA do
appl 1= appl U {x€Cl, yeCl, (x,y)¢IsA, Consir = =(y is-a-reach x), Constr = xCy}

16

for all (x,y) - (x,y)€ RemovedIsA A xd AddedIsA do
appl := appl U {(x,y)€ls4}

for all x - x€(AddedCin Removed(Cl) do

appl := appl U {-JacAiir(x), ~Iye Cl - ((x,y)€ls4 V (v,x)els4)}
%This is the only case that requires that some applicability predicates be verified for the
component transformations that add and remove the same schema component

Step 4

appl := app!l - ver_appl;
% This assignment removes the applicability conditions that have been verified when the composed

transformation has been defined.

repeat
p = extract(appl);
appl := appl - p;
case type(p) of

xell
then if not(xe(AddedCl U Cl)) then appl, := false
% This predicate is false if x is not in the initial schema and there is no transformation in
the composition that adds the class x. It is true otherwise.

or xZCl
then if not(x¢ Cl) then appl, := false
% This predicate is false if the class x is in the initial schema. It is true otherwise.

or x€A#r{(C)
then if not{x€Atir{C)) then appl, := false
% This predicate is false if the x is not an attribute of C in the initial schema. It is true

otherwise.

or xgAttr
% This condition guarantees that all the names of the schema attributes are distinct.

then if not{x¢Attr) then appl, := false
% This condition is false if the attribute x is in the initial schema. It is true

otherwise.

or xclsA
then if not(x€/sA) then appl, := false
% This predicate is false if the is-a relationship x is not in the initial schema. It is true

otherwise,.

or x¢IsA
then if not(x¢IsA) then appl, := false
% This predicate is false if the is-a relationship x is in the initial schema. It is true

otherwise.

or Free(E)C(Cl U Attr)
then if not(Free(E)-(AddedClU AddedAtir)) C ClU Attr) then appl, := false
% The predicate is false if the free variables in E are not added variables or they do not

belong to the initial schema. It is true otherwise.

17

or x¢Free(E)
then if not(x¢Free(E)) then appl, := false
% The predicate is false if x is a free variable of E. It is true otherwise.

or -3CeCl- (C,Cy)elsA v (C1,C)elsA
then if C; €(CINAddedClnRemovedCl) then do nothing
else if (3Ce(ClUAddedCl) - ((Cy, C)e(AddedIsA - RemovedIsA) v
(C, C1)e(AddedIsA - RemovedIsA))) V
(3CeCl- ((C, C1)€(IsA - RemovedIsA) V
(C1, C)e(IsA - RemovedIsA))) v
(3 CeCl- ((C,C1)e(IsA N AddedIsA 1 RemovedlsA) v
(C1,C)e(IsA N AddedIsA 0 RemovedIsA));
then appl, := false
% The predicate has not to be checked if the class Cy, that is removed, belongs to the
initial schema and it is added by a transformation in the composition. It is false, if there
are not removed is-a relationships that involve Cjy.

or ~Jac Attr{Cq)
then if C; €(CInAddedCInRemovedCl) then do nothing
else if (Jac(AddedAttr(Cy) - RemovedAttr(Cy))) V
(Jac(Attr(Cy) - RemovedAttr{Cy))) V
(Ja(Attr(Cy) N AddedAttr(C1) N RemovedAtir{Cy)))
then appl, := false

% The predicate has not to be checked if the class Cy, that is removed, belongs to the init
schema and it is added by a transformation in the composition. It is false if there are not

removed attributes defined on Cy.

or Constr=C, CCy
then if 3 Ca, - -,Cr €(ClUAddedCl) - (C=C3UC3 U ---UC,)€ AddedConstr

then do nothing
else appl, := applo U {(ConstrA(AddedConstr - {Cg is-a C1})) = Cy CCi }

% The predicate is true if there is a transformation in the composition that adds the clase
and defines it as the union C; and other classes.

or Constr= ={C; is-a-reach Cz)
then appl, := appl, U {(ConstrA AddedConsir} = —(C; is-a-reach Cy)};

or Constr=-x=E
then if x=E€ AddedConstr then do nothing
else appl, := appl, U {(ConstrnAddedConstr) = x=1]

or Constr=-dom(F}CC
then appl, := applo U {(Constr A (AddedConsir - {a attribute-of C |
Ja- a=Fc AddedConstr})) = dom(F)C(

or body; C body;
then applo := appl, U {[RemSubst* body; C [RemSubst*| body2}
% The variable substitutions must be taken into account when evaluating the refinement

relation.

18

until appl = @ V appl, = false;

return appls;

19

