
1.  Introduction
Protecting and managing the waterways are of particular consequence in maintaining the balance between 
nature and human civilization. In this regard, river monitoring is one of the utmost issues in the field of 
river engineering due to (a) decision-making related to the protection of life and property from water-related 
hazards, such as floods, and (b) cost-effective management of freshwater that is safe and available for some 
applications, such as drinking, irrigation, energy, industry, recreation, and ecosystem health. Consequently, 
new technologies and methodologies are of particular importance to monitoring discharge rate considering 
various flow conditions at river gauges to improve the understanding of the surface hydrologic processes at 
the catchment scale (Tauro et  al.,  2014). Noncontact methods have been applied recently to measure flow 
properties, such as Doppler (velocity) radars (Fulton & Ostrowski,  2008; Moramarco et  al.,  2017; Welber 
et al., 2016) and large-scale particle image velocimetry (LSPIV; Fujita et al., 1998; Huang et al., 2018) or 
particle tracking velocimetry (PTV; Tauro & Salvatori, 2017; Tauro et al., 2014), applied to videos captured 
by cameras installed near the river. Nonetheless, these methods could be inefficient in some circumstances, 
for example, radar systems are not applicable during low flow conditions where velocity is less than 0.3 m/s 
or when the backscatter data pose systematic noise and the terrestrial camera systems require sufficient energy 
supply making them less feasible in isolated locations. Furthermore, the camera system relies on sufficient 
tracers at the river surface, good/stable lighting conditions, and in most cases, is not applicable during the 
night, unless extra equipment (NIR-light source) is installed and more specific processing is done. Tauro 
et al. (2018) addressed major image-based techniques that have been lately adopted within the hydrological 
research areas, including flow discharge estimation in riverine environments. The traditional techniques of 
flow characteristic measurements are relatively costly, time-consuming, and dangerous for operators espe-
cially during flood conditions, and further, they are not feasible in remote and inaccessible sections. There-
fore, to overcome these challenges, first, uncrewed aerial vehicle (UAV) image-based methods can be used 
to record the surface velocity, and second, the entropy theory can be applied to turn the surface velocity into 
depth-averaged and cross-sectional velocity to derive the river discharge estimate. The potential of UAVs in 
hydrological sciences is vast (Acharya et al., 2021; Dal Sasso et al., 2021). Due to their flexible and facile 
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usage, they are employed to measure river surface flow velocities (Eltner, Bertalan, et al., 2021) as well as the 
river bathymetry (Woodget et al., 2015), eventually allowing for the retrieval of river discharges by remote 
sensing (Eltner et al., 2020, Eltner, Mader, et al., 2021). UAV was applied for monitoring surface velocity 
through the radar sensor in some Alaska rivers where the surface velocity is assumed the maximum one 
(Fulton et al., 2020). The river surface flow velocities are measured using either LSPIV or PTV. Prior to any 
pattern or particle tracing, the captured images or video frames need to be coregistered to account for the 
movement of the UAV (Ljubičić et al., 2021). The stabilized image sequences are subsequently used to detect 
and track particles at the water surface. However, in many cases, the particles are not evenly distributed across 
the entire cross section, that is, faster flow in the main current and decreasing velocities outside, and therefore, 
hindering a reliable discharge retrieval by the velocity area method relying on depth-averaged velocity estima-
tion if the range of given velocities is not captured.

The entropy concept has been vastly applied to predict the velocity distribution and other relevant parameters 
in open channel flow (Chiu, 1989; Chiu & Said, 1995; Chiu et al., 2005; Ebtehaj et al., 2018; Moramarco & 
Singh, 2010; Singh et al., 2017; Sterling & Knight, 2002; Termini & Moramarco, 2017). In terms of velocity 
estimation, the entropy concept can be applied to present cross-sectional velocity distributions in a given cross 
section of a river (Chiu, 1988; Singh, 2014). Moramarco and Singh (2010) and Moramarco et al. (2011) proposed 
the relations between entropic parameter and geometric and hydraulic characteristics of natural channels that 
affect the velocity profiles. Termini and Moramarco (2020) verified the feedback effect of cross-sectional flow on 
the longitudinal velocity distribution, suggesting that the location of dip represents the location where the maxi-
mum flow velocity occurs below the water surface. Chahrour et al. (2021) applied the entropy-based approach 
to discharge measurements for the gauging of the Isère River at the Grenoble University Campus based on an 
image-based technique. The particle tracking velocimetry (PTV) from video images was used to estimate surface 
velocities, which were considered as an input for the entropy approach. Recently, Bahmanpouri et  al.  (2022) 
applied the entropy approach using all surface velocity measurements collected by ADCP at cross sections in 
Amazon rivers. Their results highlighted that the entropy-based velocity distribution model can be used to predict 
the velocity field at confluences well enough to accurately estimate flow discharge despite the complex hydro-
dynamic settings.

Due to increasing flood disasters in recent years, simple, safe, and efficient procedures for estimating discharge 
and velocity rates are of particular demand. In this context, the combination of image-based technique and the 
entropy theory can be considered as one of the best solutions to meet these requirements. The present research 
aims, as a first attempt, to estimate the velocity and discharge rate in rivers applying the entropy concept relying 
only on a single maximum surface velocity measurement derived by UAV. This methodology is of particular 
benefit for measuring the flow discharge and velocity for rivers where there are difficulties of measurements by 
field devices during extreme flow conditions. In this regard, an inexpensive UAV-based remote sensing meth-
odology was applied to collect the surface velocity distribution along two European rivers, the Sajó and the 
Freiberger Mulde Rivers, where concurrent ADCP measurements are also available. The novel contribution of 
the present work is proposing and testing a procedure to estimate the entropy-based discharge that (a) uses the 
maximum surface velocity as input and (b) considers the velocity dip to identify the possible maximum veloc-
ity below the water surface due to the existence of secondary currents. These two aspects make the difference 
with previous works (e.g., Chahrour et al., 2021; Fulton et al., 2020) where the surface velocity was assumed 
the maximum one without considering the possible presence of dip phenomenon. The entropic parameter Φ(M) 
was calibrated based on an intrusive approach, herein the maximum and mean velocity magnitudes of the ADCP 
data. This magnitude can be used for high flow conditions for the same transect. Next, at each cross section, the 
maximum surface velocity together with bathymetry data estimated from the UAV was considered as the input 
for the entropy approach. It should be mentioned that the bathymetry data derived from the UAV are in agreement 
with the bathymetry data recorded by ADCP with an acceptable accuracy as previously stated by researchers for 
river flow conditions (Bandini et al., 2018; Brasington et al., 2003; Kim et al., 2019; Rossi et al., 2020; Williams 
et al., 2013; Zinke & Flener, 2013) or near-shore shallow water conditions (Matsuba & Sato, 2018; Tsukada 
et  al.,  2020). The structure of the paper is as follows: Section  2 describes the field site and data collection; 
Section 3 presents the theoretical description of the entropy theory; Section 4 describes the results in terms of 
cross-sectional velocity distribution, discharge rate, and error analysis; the comparison of the vertical distribution 
of velocity between the entropy outputs and the available ADCP data is also presented. Section 5 outlines the 
final conclusions.

Writing – review & editing: Silvia 
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2.  Field Site and Data Collection and Pre-Processing
UAV-based image acquisition was applied to collect the surface velocity distribution through two European 
rivers.

The Sajó River is transboundary flowing from the Eastern Carpathian ridges of Slovakia toward Hungary where 
it transforms into an alluvial type with the length of 124 km in Hungary. The basin size is 5,545 km 2 and the aver-
age discharge is around 24 m 3/s. The Sajó River has a mixed gravel-sand channel bed. However, the Hungarian 
section of the river has been engineered in several sub-reaches, but in the free-forming sections, it shows a mean-
dering pattern (Bertalan et al., 2018, 2019). The observed river section exhibits high bank erosion rates revealing 
an unstable river bed and river topography. The Freiberger Mulde is the headstream of the river Mulde with a 
length of 124 km, whose catchment covers an area of 2,981 km 2 in the Czech Republic and Germany in central 
Saxony. It has a discharge rate of 35.3 m 3/s that is greater than that of the other headstream, the Zwickauer Mulde 
with a discharge rate of 26.4 m 3/s. The studied river reach is a natural river section and exhibits nonuniform flow 
conditions. Figure 1 shows the geographic details of these rivers. The Sajó and Freiberger Mulde Rivers have an 
average depth of 0.88 and 0.87 m, respectively, and a transect length of 27.5 and 16.7 m, respectively.

The UAV data were captured on a single day at each site. At the river Sajó in Hungary, the aircraft was slowly 
flown along the river reach continuously capturing a video, whereas the data were captured with the UAV hover-
ing above the area of interest at flying heights of 35 (Sajó) and 30 m (Freiberger Mulde). The video lengths ranged 
between several minutes at Sajó and a few seconds at the Saxon rivers. The frame rate was 50 fps for the former 
study site and 25 fps for the latter site. Table 1 presents the date of measurements for ADCP and UAV.

In all the cases, the UAV video frames needed to be stabilized according to the approach explained in Eltner 
et al. (2020). Thereby, stable areas outside the river were used to orient all frames to the first video frames such 

Figure 1.  Location of the study areas: (a) Freiberger Mulde and (b) Sajó. The white lines represent the Acoustic Doppler Current Profilers reference cross section, 
while the blue arrow shows the main flow directions.
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as they were all captured from the same perspective. Due to the movement along the river at Sajó, a further 
pre-processing step was necessary for selecting head frames in defined intervals and coregistering a specified 
number of subsequent tail frames to the headframe (Eltner, Bertalan, et al., 2021). The video frames were used 
to calculate the river topography and bathymetry as well as the flow velocities. The structure from Motion (SfM) 
photogrammetry (Eltner & Sofia, 2020) was used to retrieve the 3D geometry below and above the water surface. 
Due to the refraction impact that leads to an underestimation of water depth, the underwater points were corrected 
by the multiview refraction correction (Dietrich, 2017).

To estimate the flow velocities, the Good-Feature-To-Track method (Shi & Tomasi, 1994) was first used to detect 
particles at the water surface. Therefore, it was necessary to mask the water area, which was done by projecting 
the underwater 3D points into the image space to delineate the water region. The detected particles were then 
tracked by the Lucas Kanade optical flow algorithm (Lucas & Kanade, 1981), which performs a least squares 
matching by minimizing the pixel gray value differences between a template and the search region to find the new 
location of the particle. The final scaling of the velocity tracks was done by projecting the start and endpoint of 
each track through the projection center of the camera into the object space and intersecting the corresponding 
image ray with the water surface to retrieve the actual location of the track in 3D object space. The distance of 
the track was estimated and multiplied with the frame rate to eventually calculate the flow velocity. The reference 
flow velocity data were acquired with two ADCPs: a SonTek RiverSurveyor S5 in Hungary and a StreamPro from 
RDI in Germany. We have surveyed three cross sections at Freiberger Mulde and four cross sections at Sajó  field 
sites, respectively. The post-processing method of the raw flow velocity data has been already described in Eltner, 
Mader, et al. (2021).

3.  Theoretical Description
The distribution of velocity based on the entropy method along the verticals can be defined as
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�maxv(��)
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where U is the time-averaged velocity, Umaxv(xi) is the maximum value of U along the ith vertical, xi is the distance 
of the ith sampled vertical from the left bank, h(xi) is the dip, that is, the depth of Umaxv(xi) below the water 
surface, D(xi) the flow depth, y is the distance of the velocity point from the bed, and Nv is the number of verti-
cals sampled across the river section. M is the entropic parameter and can be calculated using the linear entropic 
relation (Chiu, 1989; Moramarco et al., 2004):
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Umax surmises the maximum value of Umaxv(xi) sampled in the cross-sectional flow area.

For a gauged river site, Φ(M) has been found to be constant for all flow conditions, while for ungauged sites, 
Φ(M) can be estimated as (Moramarco & Singh, 2010).

Date of measurement

Transect ADCP UAV

Sajó CS1 14.10.2019 14.10.2019

Sajó CS2 14.10.2019 14.10.2019

Sajó CS3 14.10.2019 14.10.2019

Sajó CS4 14.10.2019 14.10.2019

Freiberger Mulde CS1 26.10.2016 7.9.2016 (bathymetry), 26.10.2016 (surface flow velocity)

Freiberger Mulde CS2 26.10.2016 7.9.2016 (bathymetry), 26.10.2016 (surface flow velocity)

Freiberger Mulde CS3 26.10.2016 7.9.2016 (bathymetry), 26.10.2016 (surface flow velocity)

Table 1 
Field Data Measurements by Acoustic Doppler Current Profilers and Uncrewed Aerial Vehicle
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where ymax is the location of Umax from the bottom and yo is the datum where the velocity is equal to zero, k is the 
von Karman constant, R is the hydraulic radius (R = A/P, where A is the cross-sectional area of flow and P is its 
wetted perimeter), and D is the maximum flow depth.

If only surface velocities, Usurf(xi,D(xi)) are available at river site, then Umax(xi) can be estimated as (Fulton & 
Ostrowski, 2008)

Figure 2.  Flowchart of the procedure of applying the entropy method in the current research. The Acoustic Doppler Current 
Profilers data were available for the current research.
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 . Specifically, if h(xi) = 0, it follows δ(xi) = 1, and hence, Umaxv(xi) = Usurf(xi, D(xi)). It is 

worth noting that the value of the maximum velocity is estimated by Equation 4 applying the procedure proposed 
by Moramarco et al. (2017), who, through an iterative approach, inferred the maximum velocity value changing 
the location of maximum velocity below the water surface. The location, known as dip, is identified by minimiz-
ing the error on M estimation. The distribution of the surface velocity in the entropy approach is based on either 
of the two scenarios of parabolic and elliptic that were developed by Corato et al. (2011).

4.  Results and Discussion
This section is organized as follows: first, the calculation of the entropy parameter M for all cross-sections is 
presented; next, the results of the proposed procedure are presented for each cross section. The results comprise 
three parts (a) surface velocity by UAV compared to available near-surface ADCP velocity together with surface 
velocity distribution based on two scenarios of parabolic and elliptic distribution; (b) cross-sectional velocity 
distribution estimated by the entropy approach based on two scenarios of parabolic and elliptic distribution; (c) 
comparison between the estimated mean velocity and discharge by the entropy method and the available ADCP 
data. Figure 2 shows the flowchart of the procedure of applying the entropy method in the current research. Based 

Transect
Observed mean velocity (m/s) 

(ADCP)
Observed maximum velocity 

(m/s) (ADCP)
Estimated maximum velocity 

(m/s) (entropy) Φ(M) M
Aspect ratio 

(width/depth)

Sajó CS1 0.82 1.12 1.11 0.732 3.24 26.4

Sajó CS2 0.69 1.14 1.13 0.605 1.30 33.3

Sajó CS3 0.65 1.06 1.05 0.613 1.40 29.6

Sajó CS4 0.98 1.35 1.25 0.726 3.12 37.5

FreibergerMulde CS1 0.57 0.93 0.88 0.611 1.37 18.4

FreibergerMulde CS2 0.65 0.97 0.82 0.668 2.17 18.6

FreibergerMulde CS3 0.68 1.14 0.98 0.678 1.16 20.2

Table 2 
The Magnitudes of Φ(M) and M for the Selected Cross Sections Based on Acoustic Doppler Current Profilers Data

Figure 3.  The correlation between velocity magnitudes. (a) Between maximum velocity by Entropy and Acoustic Doppler 
Current Profilers (ADCP) (b) Between maximum and average velocities by ADCP.
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on the flowchart in Figure 2, there are two scenarios for calculating the entropic parameter: based on ADCP 
data where they are available and based on the relationship where there are no ADCP measurements. Then, the 
bathymetry data can be extracted based on ADCP or UAV data. Next, based on a single surface velocity collected 
by UAV or any remote sensing data, we can use two different scenarios of parabolic and elliptic distribution of 
surface velocity as input for the Entropy model. Finally, the discharge cross-sectional velocity by considering the 
velocity dip would be estimated using the Entropy approach.

4.1.  Calculation of the Entropy Parameter

For the present data set, the magnitude of Φ(M) and M for the selected transects is listed in Table 2. The 
maximum velocity estimated by the entropy method, as calculated using Equation 4, also is added. A compar-
ison between the observed and estimated maximum velocity magnitudes shows a fine agreement between 
the observed and estimated velocity data for Sajó River. The difference between the observed and estimated 
velocity data through the Freiberger Mulde River is mainly due to the difference between the surface veloc-
ity predicted by UAV (which is considered as the input for the entropy model) and the ADCP data with the 
maximum error percentage of 15% (for more details, see Eltner et al., 2020). Figure 3a shows the correlation 
between the maximum velocity observed by ADCP data and estimated by the entropy approach. Figure 3b 
highlights the correlation between maximum and mean velocity magnitudes as a description of Φ(M) where 
Φ(M) = Um/Umax. Notably, Umax and Um were derived from the ADCP measurements. Although the number of 
measurements in terms of pairs (Um, Umax) is not enough, an overall idea of the dynamic of flow can be inferred. 
The entropic relation has been already tested and evaluated for many rivers and showed that the entropy param-
eter M is constant for gauged river sections (Corato et al., 2014; Xia, 1997). Therefore, M is fundamental to 
addressing velocity measurements during high floods when measurements can be conducted out only in the 
upper region of flow area where the maximum velocity Umax occurs (Moramarco & Singh, 2010). The magni-
tudes of Φ(M) for the present study were in agreement with the data reported for small rivers for example, 
0.66 < Φ(M) < 0.80 for natural channels in the United States (Chiu et al., 2000), 0.6 < Φ(M) < 0.68 for Tiber 
River in Italy (Moramarco et al., 2019), 0.63 < Φ(M) < 0.69 for Godavari and Ulhas Rivers in India (Vyas 
et al., 2021), and for large rivers for example, 0.4 < Φ(M) < 0.61 for Amazon River in Brazil (Bahmanpouri 
et al., 2022). Also, Φ(M) = 0.88 (Hii River data of Shinohara and Tsubaki (1959)) and Φ(M) = 0.91 (Leo-River 
data of Leopold  (1969)) were reported by Choo et  al.  (2011). The entropy parameter depends on both the 
suspended sediment rate and aspect ratio (flow width/flow depth). Greco and Moramarco  (2016) based on 
field data at different river stations demonstrated that the entropic parameter changes with varying the aspect 
ratio but limited to the range of 0.5 < Φ(M) < 0.8. Nezu and Rodi (1986) and Vanoni (1941). Chiu et al. (2000) 
stated that the entropy concept takes a system view in which all factors, such as velocity distribution, discharge, 
sediment concentration, and roughness, slope, and geometrical shape of the channel, interact to maintain a 

Figure 4.  Surface velocity distribution based on Parabolic and Elliptic scenarios, Sajó CS1.
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Figure 5.  Cross-sectional velocity distribution, Sajó CS1 based on uncrewed aerial vehicle bathymetry.

Scenario for the surface 
velocity distribution

Average velocity (m/s)
Velocity 
error (%)

Discharge (m 3/s)
Discharge 
error (%)Transect Measured Calculated Measured Calculated

Sajó CS1 Parabolic 0.82 0.81 1.22 11.21 11.07 1.22

Elliptic 0.87 6.10 11.89 6.10

Table 3 
The Error Percentage for the Velocity and Discharge Rates
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certain state under constraints, and does not explicitly deal with individual factors. In other words, at a given 
cross section, a change in one factor such as sediment concentration leads to self-adjustments of the other 
parameters in order to keep M or Φ(M) unchanged. Nonetheless, the sediment-laden flow tends to decrease 
the magnitude of Φ(M). In addition, the maximum velocity generally occurs in transverse vertical correspond-
ing to the one where the maximum surface velocity is observed (Corato et  al.,  2011; Guo & Julien, 2012; 
Moramarco et al., 2004).

4.2.  Discharge Rate and Velocity Distribution

The entropy theory was applied to seven cross sections from the two rivers.

For the first cross section CS1 on the Sajó river near the city of Nagycsécs, Hungary, the maximum surface veloc-
ity of Vsurf-max = 1.113 m/s was detected at the transverse distance of x = 17 m based on the UAV data (Figure 4). 
In addition, the near-surface velocity data of ADCP at the vertical level of 0.25 m below the surface are added 
to Figure 4, suggesting that the UAV data follow a trend similar to the ADCP data. The difference between UAV 
and ADCP velocity data can be ascribed to the blank zone of the ADCP equipment. Based on the collected data, 
Q = 11.21 m 3/s, A = 13.67 m 2 and Um = 0.82 m/s; consequently, the entropic parameters were Φ(M) = 0.732 
and M = 3.24. Considering the maximum surface velocity as the only velocity input together with the data of 
bathymetry, the magnitudes of average velocity, discharge rate, and cross-sectional velocity were predicted. Two 
scenarios were applied for the distribution of surface velocity in the entropic modeling, parabolic, and elliptic 
scenarios (Figure 4). Differences between ADCP and UAV velocities at water surface may be ascribed to the 
blank zone of ADCP measurements. Note that the results of the simulation for the other three cross sections, that 
is, Sajó CS2, CS3, and CS4, are provided in Supporting Information S1.

Figure 5 depicts the cross-sectional velocity distribution based on both parabolic and elliptic distribution together 
with ADCP data at the station of CS1. Based on both scenarios, the maximum velocity is encountered in the 
transverse distance corresponding to the maximum surface velocity; however, the interesting point is the exist-
ence of dip for the parabolic scenario suggesting the existence of secondary currents in the flow (Termini & 
Moramarco, 2020). As demonstrated by Moramarco et al. (2017), for different aspect ratios of channel flow, that 
is, W/D (where W is the channel width and D is the flow depth), the vertical location of maximum velocity below 
the water surface is mainly associated with the lateral position of the velocity profiles from the sidewalls.

The 2D velocity data are presented based on ADCP bathymetry without the blank zones (Figure  5c). The 
same procedure was applied to the Amazon River data (see Bahmanpouri et al., 2022). In the previous work 
(Bahmanpouri et al., 2022), we presented the results by the entropy approach for considering all surface velocities 

Figure 6.  Surface velocity distribution based on parabolic and elliptic distributions, Freiberger Mulde CS3.
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Figure 7.  Cross-sectional velocity distribution, Freiberger Mulde CS3, based on uncrewed aerial vehicle bathymetry.

Scenario for the surface velocity distribution

Average velocity (m/s)

Velocity error (%)

Discharge (m 3/s)
Discharge 
error (%)Transect Measured Calculated Measured Calculated

Freiberger Mulde CS1 Parabolic 0.57 0.58 1.75 5.60 5.70 1.75

Elliptic 0.63 10.52 6.19 10.52

Table 4 
The Error Percentage for the Velocity and Discharge Rates
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as input. The results for large rivers, such as the Amazon River, showed how the entropy could estimate 2D veloc-
ity with a high accuracy rate.

The entropy modeling based on parabolic and elliptic scenarios resulted in the cross-sectional average velocity 
of Um = 0.81 and 0.87 m/s and discharge Q = 11.07 and 11.89 m 3/s, respectively. The error percentage for the 
velocity and discharge is presented in Table 3.

For the Freiberger Mulde CS1 cross section, the maximum surface velocity is 0.87 m/s at the transverse distance 
of x = 7.2 m. Based on the observed data, Q = 5.6 m 3/s, A = 9.85 m 2, and Um = 0.57 m/s. Therefore, according to 
these data, Φ(M) = 0.610 and M = 1.37. Figure 6 shows the distribution of collected surface velocity by the UAV 
procedure together with the two scenarios implemented by the entropy approach. The maximum velocity based 
on ADCP data is 0.93 m/s, interestingly, in the same transverse location of the maximum velocity (0.87 m/s) by 
the UAV. The error percentage between the ADCP and UAV maximum velocity magnitudes is 6%.

Figure 7 presents the distribution of cross-sectional velocity based on both parabolic and elliptic surface velocity 
distributions together with the measurements by ADCP. The dip phenomenon is found in both scenarios, which 
can be related to the bed topography, the distance from the bank and the aspect ratio as reported by Kundu and 
Ghoshal (2019). Note that the results of simulation for the other two cross sections, that is, FreibergerMulde CS2 
and CS3, are provided in Supporting Information S1. Applying the entropy theory based on parabolic and elliptic 
scenarios resulted in the cross-sectional average velocity of Um = 0.58 and 0.63 m/s and discharge Q = 5.70 and 
6.19 m 3/s, respectively. The error percentage for the velocity and discharge rates is listed in Table 4.

Figure 8 shows the comparison between the vertical entropy velocity data based on UAV measurements and the 
available observed ADCP data for the abovementioned cross sections at the transverse location of the maximum 
velocity (y axis). Table 5 lists the statistical analysis results for the plotted graphs in Figure 8. The coefficient of 
determination 0.55 < R 2 < 0.86 and the standard error 0.047 < SE < 0.063 suggests a high level of accuracy for 

the prediction of the velocity field by using the Entropy approach based on 
the Parabolic scenario.

4.3.  Discussion

The results suggested that the entropy method applied to UAV's velocity data 
can model the discharge rate and velocity distribution with an error percent-
age less than 13%. Regarding the required data for the simulation, first, the 
entropic parameter Φ(M) was calculated based on ADCP data. In this case, 

Figure 8.  Comparison between the observed Acoustic Doppler Current Profilers and predicted entropy magnitudes of the 
vertical velocity based on the parabolic scenario using uncrewed aerial vehicle measurements at the transverse location of the 
maximum velocity (y axis).

River and cross section Distance from the bank (m) R 2
Standard 

error

Sajó River, CS1 16.0 0.86 0.047

Freiberger Mulde CS3 5.0 0.55 0.063

Table 5 
Statistical Analysis for Vertical Velocity Distribution Based on the Parabolic 
Scenario
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the ADCP data were collected concurrently with the UAV data; thus, the entropy parameters for each section 
were calculated for the same flow distribution. It is worth considering how the entropy parameters could be esti-
mated for an ungauged flow. Notably, for gauged sites, Φ(M) can be calculated by leveraging the velocity data 
set considering the set of pairs of mean velocity and max velocity. While, for ungauged sites, the formulation 
proposed by Moramarco and Singh  (2010) can be adopted. This formulation represents a direct relationship 
between the entropic parameter M and the hydraulic and geometric characteristics of the river section. The previ-
ous investigations demonstrated that the magnitude of M based on the formulation would result in a magnitude 
similar to the one derived from the available velocity data set. According to previous investigations through 
different rivers, it has been demonstrated that the entropy parameter M is constant for gauged river sections 
(Corato et al., 2014; Moramarco & Dingman, 2017; Moramarco & Singh, 2010; Xia, 1997). It is worth noting that 
Moramarco and Singh (2010) showed that Φ(M) may represent an intrinsic parameter not only of the equipped 
site but also of the river reach, where sites are located. Regarding the other input data, next, at each cross section, 
the maximum surface velocity was derived from the UAV. For the present research, bathymetry data from UAV 
measurements were considered as the input for the entropy approach. The investigation on how to address the 
same method for high flow conditions, if the bathymetry is not given, would be the scope of the next research 
work. In that case, we will compare the proposed method using bathymetry retrieved by UAV with the one devel-
oped by Moramarco et al. (2019) who estimated the bathymetry from the monitoring of surface velocities across 
the river site.

Further, the transverse location of the maximum surface velocity was assumed to change very little during high 
flow conditions (Vyas et al., 2021). Confirming this, Table 6 presents the effect of changing the transverse loca-
tion of the maximum surface velocity on the estimation of the discharge and mean velocity. The transverse loca-
tion of the Vmax-surf is 5 m and the length of the transect is 18 m. As can be seen, changing the transverse  location 

of the maximum surface velocity up to ±4 m, that is, the middle of the cross 
section resulted in an error percentage of less than 9%.

In future work, the method should also be validated by testing M values 
derived from low flow measurements to predict high flow discharges. 
Tables 7 and 8 present the application of the entropy parameter based on 
the averaged magnitude of M for each river and all rivers, respectively. The 
results based on both parabolic and entropic scenarios demonstrate the error 
percentage for mean flow velocity and discharge less than 25%.

Regarding the dip phenomenon, it is worth noting that the velocity dip is 
of particular importance for specifying the flow pattern and the momentum 
transport processes. Taking into account the velocity dip leads to estimating 
depth-averaged velocity more accurately, therefore, the estimated discharge 
would be more robust. The accuracy of estimating the velocity dip by the 
Entropy approach has been proven in previous works, especially considering 
the recent study by the authors where they applied the entropy approach to 
estimate the velocity and discharge through the confluence of Rio Negro and 
Rio Solimões on the Amazon River as the largest river on the earth in  terms 
of discharge (Bahmanpouri et al., 2022).

Change for transverse location (m) of Vsurf-max

Average velocity (m/s)

Velocity error (%)

Discharge (m 3/s)
Discharge 
error (%)Transect Measured Calculated Measured Calculated

Freiberger Mulde -CS3 0 0.68 0.65 4.41 6.04 5.77 4.41

+2 0.68 0.62 8.77 6.04 5.51 8.77

−2 0.68 0.66 2.81 6.04 5.87 2.81

+4 0.68 0.63 6.79 6.04 5.63 6.79

−4 0.68 0.62 8.11 6.04 5.55 8.11

Table 6 
Percentage Error on Velocity and Discharge Estimate Changing the Transverse Location of the Maximum Surface Velocity-Parabolic Scenario

Transect

Averaged 
Φ(M) 

for each 
river (all 
transects)

Averaged 
M for 
each 

river (all 
transects)

Mean 
velocity and 

discharge 
error (%)−
parabolic 
scenario

Mean 
velocity and 

discharge 
error (%)−

elliptic 
scenario

Sajó CS1 0.68 2.4 3.66 2.42

Sajó CS2 23.10 23.08

Sajó CS3 6.51 21.53

Sajó CS4 7.14 6.52

Freiberger Mulde CS1 0.62 1.5 1.0 8.77

Freiberger Mulde CS2 18.46 12.15

Freiberger Mulde CS3 7.35 2.94

Table 7 
Percentage Error Applying the Averaged M Magnitudes to Estimate the 
Mean Velocity and Discharge Rate
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Overall, the method can be applied for monitoring high flow at river sites, 
especially for inaccessible points, just sampling one single surface veloc-
ity and bathymetry data by UAV. It should be considered that, for the high 
flow conditions, the weather condition, for example, rainy and foggy circum-
stances, especially for high ungauged flows, may affect the surface velocity 
measurements by radar or UAV. This could be a limitation of the presented 
method. Further, the possibility of acquiring the data by UAV is a limit of 
the present method as well as for all noncontact techniques. Nevertheless, 
the results suggested that the method will lend itself to be operational to 
deliver real-time mean velocity and discharge especially during high flow, 
just sampling a singular surface velocity.

5.  Conclusion
The entropy approach was applied to predict the velocity distribution and 
discharge rates in rivers using only one surface velocity measurement as the 
maximum surface velocity. The UAV-based image processing technique was 
implemented to obtain the surface velocity distribution along two rivers: the 
Sajó and the Freiberger Mulde Rivers. Seven cross sections were chosen for 

the assessment of the model application. The entropic parameter Φ(M) was calculated based on the observed 
maximum and mean velocity magnitudes extracted by ADCP suggesting a trend for all cross sections with a range 
of 0.6 < Φ(M) < 0.75. The model outputs explored that for some cross sections the vertical elevation of maximum 
velocity as velocity dip was observed below the water surface mainly due to the existence of secondary flows. 
The results of the simulation, in terms of the vertical and cross-sectional distribution of the velocity, hinted that 
the entropy approach can predict the velocity distribution and discharge rates with acceptable accuracy, that is, 
the error percentage was less than 13% when the parabolic scenario is assumed for the surface velocity distribu-
tion. As the main finding, the present research highlighted the potential of the entropy concept to predict velocity 
and discharge rates, in the presence of a velocity dip, in the rivers based on one surface velocity measurement 
retrieved by UAV and this insight is of considerable interest for high flow discharge monitoring.

Data Availability Statement
The data set used for the Freiberger Mulde River can be found in https://opara.zih.tu-dresden.de/xmlui/
handle/123456789/1405. The ADCP data for Sajó River are available at https://doi.org/10.5281/zenodo.6496919.

References
Acharya, B. S., Bhandari, M., Bandini, F., Pizarro, A., Perks, M., Joshi, D. R., et  al. (2021). Unmanned aerial vehicles in hydrology 

and water management–Applications, challenges and perspectives. Water Resources Research, 57(11), e2021WR029925. https://doi.
org/10.1029/2021WR029925

Bahmanpouri, F., Barbetta, S., Gualtieri, C., Ianniruberto, M., Filizola, N., Termini, D., & Moramarco, T. (2022). Prediction of river discharges 
at confluences based on Entropy theory and surface-velocity measurements. Journal of Hydrology, 606, 127404. https://doi.org/10.1016/j.
jhydrol.2021.127404

Bandini, F., Olesen, D., Jakobsen, J., Kittel, C. M. M., Wang, S., Garcia, M., & Bauer-Gottwein, P. (2018). Bathymetry observations of inland 
water bodies using a tethered single-beam sonar controlled by an unmanned aerial vehicle. Hydrology and Earth System Sciences, 22(8), 
4165–4181. https://doi.org/10.5194/hess-22-4165-2018

Bertalan, L., Novák, T. J., Németh, Z., Rodrigo-Comino, J., Kertész, Á., & Szabó, S. (2018). Issues of meander development: Land degradation 
or ecological value? The example of the Sajó River, Hungary. Water, 10(11), 1613. https://doi.org/10.3390/w10111613

Bertalan, L., Rodrigo-Comino, J., Surian, N., Šulc Michalková, M., Kovács, Z., Szabó, S., et al. (2019). Detailed assessment of spatial and tempo-
ral variations in river channel changes and meander evolution as a preliminary work for effective floodplain management. The example of Sajó 
River, Hungary. Journal of Environmental Management, 248, 109277. https://doi.org/10.1016/j.jenvman.2019.109277

Brasington, J., Langham, J., & Rumsby, B. (2003). Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. 
Geomorphology, 53(3–4), 299–316. https://doi.org/10.1016/s0169-555x(02)00320-3

Chahrour, N., Castaings, W., & Barthélemy, E. (2021). Image-based river discharge estimation by merging heterogeneous data with information 
entropy theory. Flow Measurement and Instrumentation, 81, 102039. https://doi.org/10.1016/j.flowmeasinst.2021.102039

Chiu, C. L. (1988). Entropy and 2-d velocity in open channels. Journal of Hydraulic Engineering, 114(7), 738–756. https://doi.org/10.1061/
(asce)0733-9429(1988)114:7(738)

Chiu, C. L. (1989). Velocity distribution in open channel flow. Journal of Hydraulic Engineering, 115(5), 576–594. https://doi.org/10.1061/
(asce)0733-9429(1989)115:5(576)

Transect

Averaged 
Φ(M) 
for all 

rivers (all 
transects)

Averaged 
M for 
each 

river (all 
transects)

Mean 
velocity and 

discharge 
error (%)−
parabolic 
scenario

Mean 
velocity and 

discharge 
error (%)−

elliptic 
scenario

Sajó CS1 0.67 2.2 3.65 2.44

Sajó CS2 11.59 26.08

Sajó CS3 6.50 21.52

Sajó CS4 18.38 10.43

Freiberger Mulde CS1 3.75 10.52

Freiberger Mulde CS2 22.46 11.81

Freiberger Mulde CS3 5.87 1.0

Table 8 
Percentage Error Applying the Averaged M Magnitude to Estimate the Mean 
Velocity and Discharge Rate

Acknowledgments
This work has been supported by Italian 
National Research Programme PRIN 
2017, https://enterprisingprin.eu/ with 
the project “IntEractions between 
hydrodyNamics flows and bioTic 
communities in fluvial Ecosystems: 
advancement in dischaRge monitoring 
and understanding of Processes Relevant 
for ecosystem sustaInability by the 
development of novel technologies with 
fIeld observatioNs and laboratory testinG 
(ENTERPRISING).” AE and LB were 
supported by the DAAD with funds from 
the Federal Ministry of Education and 
Research (BMBF; project ID: 57448822) 
and the Tempus Public Foundation 
(project ID: 307670). LB was also 
supported by the Thematic Excellence 
Programme (TKP2020-NKA-04) of the 
Ministry for Innovation and Technology 
in Hungary. Furthermore, we would like 
to thank Jens Grundmann for providing 
the ADCP data at the German rivers.

https://opara.zih.tu-dresden.de/xmlui/handle/123456789/1405
https://opara.zih.tu-dresden.de/xmlui/handle/123456789/1405
https://doi.org/10.5281/zenodo.6496919
https://doi.org/10.1029/2021WR029925
https://doi.org/10.1029/2021WR029925
https://doi.org/10.1016/j.jhydrol.2021.127404
https://doi.org/10.1016/j.jhydrol.2021.127404
https://doi.org/10.5194/hess-22-4165-2018
https://doi.org/10.3390/w10111613
https://doi.org/10.1016/j.jenvman.2019.109277
https://doi.org/10.1016/s0169-555x(02)00320-3
https://doi.org/10.1016/j.flowmeasinst.2021.102039
https://doi.org/10.1061/(asce)0733-9429(1988)114:7(738)
https://doi.org/10.1061/(asce)0733-9429(1988)114:7(738)
https://doi.org/10.1061/(asce)0733-9429(1989)115:5(576)
https://doi.org/10.1061/(asce)0733-9429(1989)115:5(576)
https://enterprisingprin.eu/


Water Resources Research

BAHMANPOURI ET AL.

10.1029/2021WR031821

14 of 15

Chiu, C. L., Hsu, S. M., Tung, & N. C. (2005). Efficient methods of discharge measurements in rivers and streams based on the probability 
concept. Hydrological Processes, 19(20), 3935–3946. https://doi.org/10.1002/hyp.5857

Chiu, C. L., Jin, W., & Chen, Y. C. (2000). Mathematical models of distribution of sediment concentration. Journal of Hydraulic Engineering, 
126(1), 16–23. https://doi.org/10.1061/(asce)0733-9429(2000)126:1(16)

Chiu, C. L., Said, & C. A. A. (1995). Maximum and mean velocities and entropy in open-channel flow. Journal of Hydraulic Engineering, 121(1), 
26–35. https://doi.org/10.1061/(asce)0733-9429(1995)121:1(26)

Choo, T. H., Jeong, I. J., Chae, S. K., Yoon, H. C., & Son, H. S. (2011). A study on the derivation of a mean velocity formula from Chiu’s velocity 
formula and bottom shear stress. Hydrology and Earth System Sciences Discussions, 8(4), 6419–6442.

Corato, G., Ammari, A., & Moramarco, T. (2014). Conventional point-velocity records and surface velocity observations for estimating high flow 
discharge. Entropy, 16(10), 5546–5559. https://doi.org/10.3390/e16105546

Corato, G., Moramarco, T., & Tucciarelli, T. (2011). Discharge estimation combining flow routing and occasional measurements of velocity. 
Hydrology and Earth System Sciences, 15(9), 2979–2994. https://doi.org/10.5194/hess-15-2979-2011

Dal Sasso, S. F., Pizarro, A., & Manfreda, S. (2021). Recent advancements and perspectives in UAS-based image velocimetry. Drones, 5(3), 81. 
https://doi.org/10.3390/drones5030081

Dietrich, J. T. (2017). Bathymetric structure-from-motion: Extracting shallow stream bathymetry from multi-view stereo photogrammetry. Earth 
Surface Processes and Landforms, 42(2), 355–364. https://doi.org/10.1002/esp.4060

Ebtehaj, I., Bonakdari, H., Moradi, F., Gharabaghi, B., & Khozani, Z. S. (2018). An integrated framework of extreme learning machines for 
predicting scour at pile groups in clear water condition. Coastal Engineering, 135, 1–15. https://doi.org/10.1016/j.coastaleng.2017.12.012

Eltner, A., Bertalan, L., Perks, M., Grundmann, J., & Lotsari, E. (2021). Hydro-morphological mapping of river reaches using videos captured 
with unoccupied aerial systems. Earth Surface Processes and Landforms, 46(14), 2773–2787. https://doi.org/10.1002/esp.5205

Eltner, A., Mader, D., Szopos, N., Nagy, B., Grundmann, J., & Bertalan, L. (2021). Using thermal and RGB UAV imagery to measure surface 
flow velocities of rivers. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 717–722. 
https://doi.org/10.5194/isprs-archives-xliii-b2-2021-717-2021

Eltner, A., Sardemann, H., & Grundmann, J. (2020). Flow velocity and discharge measurement in rivers using terrestrial and unmanned-aerial-ve-
hicle imagery. Hydrology and Earth System Sciences, 24(3), 1429–1445. https://doi.org/10.5194/hess-24-1429-2020

Eltner, A., & Sofia, G. (2020). Structure from motion photogrammetric technique. Developments in Earth Surface Processes, 23, 1–24. https://
doi.org/10.1016/B978-0-444-64177-9.00001-1

Fujita, I., Muste, M., & Kruger, A. (1998). Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. Journal 
of Hydraulic Research, 36(3), 397–414. https://doi.org/10.1080/00221689809498626

Fulton, J., & Ostrowski, J. (2008). Measuring real-time streamflow using emerging technologies: Radar, hydroacoustics, and the probability 
concept. Journal of Hydrology, 357(1–2), 1–10. https://doi.org/10.1016/j.jhydrol.2008.03.028

Fulton, J. W., Anderson, I. E., Chiu, C. L., Sommer, W., Adams, J. D., Moramarco, T., et al. (2020). QCam: SUAS-based Doppler radar for meas-
uring river discharge. Remote Sensing, 12(20), 3317. https://doi.org/10.3390/rs12203317

Greco, M., & Moramarco, T. (2016). Influence of bed roughness and cross section geometry on medium and maximum velocity ratio in 
open-channel flow. Journal of Hydraulic Engineering, 142(1), 06015015. https://doi.org/10.1061/(asce)hy.1943-7900.0001064

Guo, J., & Julien, P. Y. (2012). Application of the modified log-wake law in open-channels. Journal of Applied Fluid Mechanics, 1(2), 17–23. 
https://doi.org/10.1061/40856(200)200

Huang, W. C., Young, C. C., & Liu, W. C. (2018). Application of an automated discharge imaging system and LSPIV during typhoon events in 
Taiwan. Water, 10(3), 280. https://doi.org/10.3390/w10030280

Kim, J. S., Baek, D., Seo, I. W., & Shin, J. (2019). Retrieving shallow stream bathymetry from UAV-assisted RGB imagery using a geospatial 
regression method. Geomorphology, 341, 102–114. https://doi.org/10.1016/j.geomorph.2019.05.016

Kundu, S., & Ghoshal, K. (2019). An entropy based model for velocity-dip-position. Journal of Environmental Informatics, 33(2), 113–128. 
https://doi.org/10.3808/jei.201600344

Leopold, L. B. (1969). Sediment transport data for various US rivers. Personal Communication.
Ljubičić, R., Strelnikova, D., Perks, M. T., Eltner, A., Peña-Haro, S., Pizarro, A., et  al. (2021). A comparison of tools and techniques for 

stabilising UAS imagery for surface flow observations. Hydrology and Earth System Sciences Discussions, 1–42. https://doi.org/10.5194/
hess-25-5105-2021

Lucas, B. D., & Kanade, T. (1981). An Iterative image registration technique with an application to stereo vision (Vol. 81, pp. 674–679).
Matsuba, Y., & Sato, S. (2018). Nearshore bathymetry estimation using UAV. Coastal Engineering Journal, 60(1), 51–59. https://doi.org/10.10

80/21664250.2018.1436239
Moramarco, T., Barbetta, S., Bjerklie, D. M., Fulton, J. W., & Tarpanelli, A. (2019). River bathymetry estimate and discharge assessment from 

remote sensing. Water Resources Research, 55(8), 6692–6711. https://doi.org/10.1029/2018wr024220
Moramarco, T., Barbetta, S., & Tarpanelli, A. (2017). From surface flow velocity measurements to discharge assessment by the entropy theory. 

Water, 9(2), 120. https://doi.org/10.3390/w9020120
Moramarco, T., & Dingman, S. L. (2017). On the theoretical velocity distribution and flow resistance in natural channels. Journal of Hydrology, 

555, 777–785. https://doi.org/10.1016/j.jhydrol.2017.10.068
Moramarco, T., Saltalippi, C., & Singh, V. P. (2004). Estimation of mean velocity in natural channels based on Chiu’s velocity distribution equa-

tion. Journal of Hydrologic Engineering, 9(1), 42–50. https://doi.org/10.1061/(asce)1084-0699(2004)9:1(42)
Moramarco, T., Saltalippi, C., & Singh, V. P. (2011). Velocity profiles assessment in natural channels during high floods. Hydrology Research, 

42(2–3), 162–170. https://doi.org/10.2166/nh.2011.064
Moramarco, T., & Singh, V. P. (2010). Formulation of the entropy parameter based on hydraulic and geometric characteristics of river cross 

sections. Journal of Hydrologic Engineering, 15(10), 852–858. https://doi.org/10.1061/(asce)he.1943-5584.0000255
Nezu, I., & Rodi, W. (1986). Open-channel flow measurements with a laser Doppler anemometer. Journal of Hydraulic Engineering, 112(5), 

335–355. https://doi.org/10.1061/(asce)0733-9429(1986)112:5(335)
Rossi, L., Mammi, I., & Pelliccia, F. (2020). UAV-derived multispectral bathymetry. Remote Sensing, 12(23), 3897. https://doi.org/10.3390/

rs12233897
Shi, J., & Tomasi, C. (1994). Good features to track. In 1994 Proceedings of the IEEE conference on computer vision and pattern recognition, 

(pp. 593–600). IEEE.
Shinohara, K., & Tsubaki, T. (1959). On the characteristics of sand waves formed upon beds of the open channels and rivers, Research Institute 

of Applied Mechanics, Kyushu University.
Singh, V. P. (2014). Entropy theory in hydraulic engineering: An introduction. American Society of Civil Engineers.

https://doi.org/10.1002/hyp.5857
https://doi.org/10.1061/(asce)0733-9429(2000)126:1(16)
https://doi.org/10.1061/(asce)0733-9429(1995)121:1(26)
https://doi.org/10.3390/e16105546
https://doi.org/10.5194/hess-15-2979-2011
https://doi.org/10.3390/drones5030081
https://doi.org/10.1002/esp.4060
https://doi.org/10.1016/j.coastaleng.2017.12.012
https://doi.org/10.1002/esp.5205
https://doi.org/10.5194/isprs-archives-xliii-b2-2021-717-2021
https://doi.org/10.5194/hess-24-1429-2020
https://doi.org/10.1016/B978-0-444-64177-9.00001-1
https://doi.org/10.1016/B978-0-444-64177-9.00001-1
https://doi.org/10.1080/00221689809498626
https://doi.org/10.1016/j.jhydrol.2008.03.028
https://doi.org/10.3390/rs12203317
https://doi.org/10.1061/(asce)hy.1943-7900.0001064
https://doi.org/10.1061/40856(200)200
https://doi.org/10.3390/w10030280
https://doi.org/10.1016/j.geomorph.2019.05.016
https://doi.org/10.3808/jei.201600344
https://doi.org/10.5194/hess-25-5105-2021
https://doi.org/10.5194/hess-25-5105-2021
https://doi.org/10.1080/21664250.2018.1436239
https://doi.org/10.1080/21664250.2018.1436239
https://doi.org/10.1029/2018wr024220
https://doi.org/10.3390/w9020120
https://doi.org/10.1016/j.jhydrol.2017.10.068
https://doi.org/10.1061/(asce)1084-0699(2004)9:1(42)
https://doi.org/10.2166/nh.2011.064
https://doi.org/10.1061/(asce)he.1943-5584.0000255
https://doi.org/10.1061/(asce)0733-9429(1986)112:5(335)
https://doi.org/10.3390/rs12233897
https://doi.org/10.3390/rs12233897


Water Resources Research

BAHMANPOURI ET AL.

10.1029/2021WR031821

15 of 15

Singh, V. P., Sivakumar, B., & Cui, H. (2017). Tsallis entropy theory for modeling in water engineering: A review. Entropy, 19(12), 641. https://
doi.org/10.3390/e19120641

Sterling, M., & Knight, D. (2002). An attempt at using the entropy approach to predict the transverse distribution of boundary shear stress in open 
channel flow. Stochastic Environmental Research and Risk Assessment, 16(2), 127–142. https://doi.org/10.1007/s00477-002-0088-2

Tauro, F., Petroselli, A., & Grimaldi, S. (2018). Optical sensing for stream flow observations: A review. Journal of Agricultural Engineering, 
49(4), 199–206. https://doi.org/10.4081/jae.2018.836

Tauro, F., Porfiri, M., & Grimaldi, S. (2014). Orienting the camera and firing lasers to enhance large scale particle image velocimetry for stream-
flow monitoring. Water Resources Research, 50(9), 7470–7483. https://doi.org/10.1002/2014wr015952

Tauro, F., & Salvatori, S. (2017). Surface flows from images: Ten days of observations from the Tiber River gauge-cam station. Hydrology 
Research, 48(3), 646–655. https://doi.org/10.2166/nh.2016.302

Termini, D., & Moramarco, T. (2017). Application of entropic approach to estimate the mean flow velocity and manning roughness coefficient 
in a high-curvature flume. Hydrology Research, 48(3), 634–645. https://doi.org/10.2166/nh.2016.106

Termini, D., & Moramarco, T. (2020). Entropic model application to identify cross-sectional flow effect on velocity distribution in a large ampli-
tude meandering channel. Advances in Water Resources, 143, 103678. https://doi.org/10.1016/j.advwatres.2020.103678

Tsukada, F., Shimozono, T., & Matsuba, Y. (2020). UAV-based mapping of nearshore bathymetry over broad areas. Coastal Engineering Journal, 
62(2), 285–298. https://doi.org/10.1080/21664250.2020.1747766

Vanoni, V. A. (1941). Velocity Distribution in Open Channels, Civil Engineering (Vol. 11(6), pp. 356–357). ASCE.
Vyas, J. K., Perumal, M., & Moramarco, T. (2021). Entropy based river discharge estimation using one-point velocity measurement at 0.6 D. 

Water Resources Research, 57(8), e2021WR029825. https://doi.org/10.1029/2021wr029825
Welber, M., Le Coz, J., Laronne, J. B., Zolezzi, G., Zamler, D., Dramais, G., et al. (2016). Field assessment of noncontact stream gauging using 

portable surface velocity radars (SVR). Water Resources Research, 52(2), 1108–1126. https://doi.org/10.1002/2015wr017906
Williams, R. D., Brasington, J., Hicks, M., Measures, R., Rennie, C. D., & Vericat, D. (2013). Hydraulic validation of two-dimensional simu-

lations of braided river flow with spatially continuous aDcp data. Water Resources Research, 49(9), 5183–5205. https://doi.org/10.1002/
wrcr.20391

Woodget, A. S., Carbonneau, P. E., Visser, F., & Maddock, I. P. (2015). Quantifying submerged fluvial topography using hyperspatial resolution 
UAS imagery and structure from motion photogrammetry. Earth Surface Processes and Landforms, 40(1), 47–64. https://doi.org/10.1002/
esp.3613

Xia, R. (1997). Relation between mean and maximum velocities in a natural river. Journal of Hydraulic Engineering, 123(8), 720–723. https://
doi.org/10.1061/(asce)0733-9429(1997)123:8(720)

Zinke, P., & Flener, C. (2013). Experiences from the use of unmanned aerial vehicles (UAV) for river bathymetry modelling in Norway. Vann, 
48, 351–360.

https://doi.org/10.3390/e19120641
https://doi.org/10.3390/e19120641
https://doi.org/10.1007/s00477-002-0088-2
https://doi.org/10.4081/jae.2018.836
https://doi.org/10.1002/2014wr015952
https://doi.org/10.2166/nh.2016.302
https://doi.org/10.2166/nh.2016.106
https://doi.org/10.1016/j.advwatres.2020.103678
https://doi.org/10.1080/21664250.2020.1747766
https://doi.org/10.1029/2021wr029825
https://doi.org/10.1002/2015wr017906
https://doi.org/10.1002/wrcr.20391
https://doi.org/10.1002/wrcr.20391
https://doi.org/10.1002/esp.3613
https://doi.org/10.1002/esp.3613
https://doi.org/10.1061/(asce)0733-9429(1997)123:8(720)
https://doi.org/10.1061/(asce)0733-9429(1997)123:8(720)

	Estimating the Average River Cross-Section Velocity by Observing Only One Surface Velocity Value and Calibrating the Entropic Parameter
	Abstract
	1. Introduction
	2. Field Site and Data Collection and Pre-Processing
	3. Theoretical Description
	4. Results and Discussion
	4.1. Calculation of the Entropy Parameter
	4.2. Discharge Rate and Velocity Distribution
	4.3. Discussion

	5. Conclusion
	Data Availability Statement
	References


