

SEVENTH FRAMEWORK PROGRAMME

CAPACITIES

Research Infrastructures

INFRA-2007-1.2.1 Research Infrastructures

DRIVER II

Grant Agreement 212147

“Digital Repository Infrastructure Vision for European Research II”

Overall Research Design Report
Deliverable Code: D7.2

D7.2 Overall Research Design Report Page 1 of 13

D7.2 Overall Research Design Report Page 2 of 13

Document Description

Project

Title: DRIVER, Digital Repository Infrastructure Vision for
European Research II

Start date: 1st December 2007

Call/Instrument: INFRA-2007-1.2.1

Grant Agreement: 212147

Document

Deliverable number: D7.2

Deliverable title: Overall Research Design Report

Contractual Date of Delivery: 1st of February 2008

Actual Date of Delivery: 1st of May 2008

Editor(s): CNR

Author(s): Paolo Manghi and Marko Mikulicic

Reviewer(s): N.Manola

Participant(s):

Workpackage: WP7

Workpackage title: Enhancing Infrastructure Sustainability and Research
Integration

Workpackage leader: CNR

Workpackage participants: NKUA, ICM, CNR

Distribution: Public

Nature: Deliverable

Version/Revision: 2.0

Draft/Final: Draft

Total number of pages:

(including cover)

File name: D7.2

Key words: Policies, rules, deployment, release, development

D7.2 Overall Research Design Report Page 3 of 13

Disclaimer
This document contains description of the DRIVER II project findings, work and products.
Certain parts of it might be under partner Intellectual Property Right (IPR) rules so, prior to
using its content please contact the consortium head for approval.

In case you believe that this document harms in any way IPR held by you as a person or as
a representative of an entity, please do notify us immediately.

The authors of this document have taken any available measure in order for its content to
be accurate, consistent and lawful. However, neither the project consortium as a whole nor
the individual partners that implicitly or explicitly participated in the creation and publication
of this document hold any sort of responsibility that might occur as a result of using its
content.

This publication has been produced with the assistance of the European Union. The content
of this publication is the sole responsibility of DRIVER consortium and can in no way be
taken to reflect the views of the European Union.

The European Union is established in accordance with the
Treaty on European Union (Maastricht). There are currently
25 Member States of the Union. It is based on the European
Communities and the member states cooperation in the
fields of Common Foreign and Security Policy and Justice
and Home Affairs. The five main institutions of the European
Union are the European Parliament, the Council of Ministers,
the European Commission, the Court of Justice and the
Court of Auditors. (http://europa.eu.int/)

DRIVER is a project funded by the European Union

D7.2 Overall Research Design Report Page 4 of 13

Table of Contents

Document Description...2

Disclaimer ...3

Table of Contents ..4

Table of Figures...5

Summary...6

1 Introduction ..7

2 Deployment of new development infrastructures.................................8

3 Software life-cycle policies..9

3.1 VCS, build system and continuous integration...9

3.2 Issue tracking policies ...9

3.3 API definition: contracts ..10

3.4 Software configuration ..10

3.5 Packaging ..11

4 Service development coordination..12

5 References...13

D7.2 Overall Research Design Report Page 5 of 13

Table of Figures

D7.2 Overall Research Design Report Page 6 of 13

Summary
This document describes policies and rules to be followed by developers in the realization,
release and deployment of the DRIVER Services.

D7.2 Overall Research Design Report Page 7 of 13

1 Introduction

The DRIVER infrastructure consists of a number of Services running at different DRIVER
nodes, i.e. machines connected to the Internet. Such Services have been and are to be
developed by the four technological partners of the DRIVER consortium: ICM, ISTI-CNR,
NKUA and UniBi; nevertheless, others might be developed in the future by non-DRIVER
organizations. Due to the highly distributed scenario, where several organizations might be
developing at the same time Services that are to interact with each other, the overall
development of the Services must be carefully organized and coordinated in order to
respect the release plan produced in WP5. Similarly, the process of deployment of new
infrastructures for development and testing reasons, as well as the process of deployment
of new Services in an infrastructure, must be planned and follow special validation
procedures.

This document contains the policies and rules to be followed in the development process by
all partners involved, in order to end up with a uniform system, where software is packaged
and released in the same way and configured according to the same methodologies.

Finally, the document describes the methodologies applied when relevant changes to the
release plan are required, and explain how these might have an impact on the ongoing
plan.

D7.2 Overall Research Design Report Page 8 of 13

2 Deployment of new development infrastructures

Project partners and those willing to contribute with hardware, should maintain a common
execution environment on the machines they provide as DRIVER nodes. In particular, the
environment must support XEN Dom0 [7] machines capable of running one or more DomU
virtual machines, each with its own static IP address and with all ports opened in the
firewall. Each virtual machine behaves as an independent hardware unit, thus supports an
independent virtual running environment, i.e. a pool of threads on its own running on some
established and configured hardware resources (e.g. CPU, Ram, Disk). Being virtual, DomU
machines can be moved from hardware to hardware, as long as the XEN Dom0 technology
is provided, and be dynamically configured to share a portion of the resources available on
the physical machine. This environment eases the deployment or migration of a pool of
Services from one machine to another and gives flexibility on the usage of the physical
resources.

The virtual machines should obey to the following common configuration:

• execution environment. In order to guarantee the accuracy and coherency of the
machines, these are installed with a common script, which can be found on the
ScrewDRIVER wiki [1]. Although rarely, the script can change due to new requirements;
hardware suppliers should be notified and update their machines accordingly.

• software configuration and directory layout: unless special requirements demand for a
different scenario, all machines should share the same software configuration and
installation. In particular, the specific software configuration instructions is to be found
on the ScrewDRIVER wiki [1]; when references or instructions to some software are not
present (e.g. first time installation), these should be placed on the wiki for others to
use.

Development infrastructures are constituted by a number of DRIVER nodes, i.e. a XEN
virtual machine. Two main rules apply:

• Development infrastructures are named according to the name of the Information
Service machine running in that infrastructure;

• One Service instance shall be registered only with one development infrastructure at
a time; indeed, sharing of Services between different development infrastructures
should be avoided unless there are special requirements.

The allocation of the infrastructure machines to Services for various groups of partners and
different aims is kept up-to-date on the ScrewDRIVER Wiki [1].

D7.2 Overall Research Design Report Page 9 of 13

3 Software life-cycle policies

3.1 VCS, build system and continuous integration
Development activities are carried on at different partner sites. The Service software
releases resulting from such activities are needed by other partners to develop their own
Services, to check the APIs to interact with, internal Service implementations, and deploy
further development infrastructures.

In order to ease the process of handling and reading code as well as reusing it and
installing it, partners must keep their local VCS environments according to a common
internal repository layout and build system. Although the reduced partners freedom may
create some initial problem, the resulting benefits will help overcome most of the
integration problems experienced during DRIVER-I.

We refer to the minimal unit of code (Services and libraries) in the VCS and build system as
module. The repository layout should be constructed in such a way that each module has
its own branches and tags. Each module shall keep explicit dependencies with other
modules and external dependencies. External dependencies links should be explicitly
versioned and handled with Apache Ivy [8]; the tool maintains a clean VCS repository
structure by reduce wasted space1.

A common Ant build system will allow automated periodic full builds (continuous
integration) which will help code maintenance and development. In particular, the trunk of
every service, i.e. the last stable running release, will be continuously built in background
(combination of compilation and unit tests) and every “failed build” will be reported.

The Ant build system will provide a powerful and easy to use set of targets for managing
branching and release operations, by exploiting versioned working copies using the
svn:externals feature.

Developers are strongly discouraged from committing casual changes to trunk, while
encouraged to use branches heavily for their day to day activities2.

3.2 Issue tracking policies
It is crucial, for the collaborative development of the Services between them, for each
partner to keep the others informed about the status of his/her activities and to notify
other partners of bugs or misbehaviors relative to their code. To this aim, the partners
make use of a common Issue Tracking software instance, to be used according to the rules
described in the following.

In the project, each module shall be assigned to one responsible person at the partner site
and all “tickets”, i.e. tasks, associated to a given module will be automatically assigned to
him/her. To complete the organization, each technical partner should have a local technical
coordinator who is responsible for supervising3 all tickets assigned to his group members,
check that the issue tracker tool is used properly and that tasks are being timely handled.

1 Currently 914 Mb in the VCS repository is unnecessary and slows down VCS operations
2 Following the rule of thumb: “Commit early, commit often”
3 The trac timeline provides a powerful tool to follow daily activities.

D7.2 Overall Research Design Report Page 10 of 13

Each developer should use the issue tracker tool to account for tasks being carried on even
if they were not planned in advance. Developers receiving a ticket should not “accept”
preemptively the ticket, but instead only when the underlining activity has started. The
progress status of an activity should be kept up to date. Requests for new features or other
kind of actions to other developers should result in a ticket, either before or shortly after
direct discussions with the interested party.

3.3 API definition: contracts
A further important aspect is that of inter-Service communication APIs. Each Service has
the important responsibility to publish an API with a specific and expected behavior. Such
behavior, i.e. semantics, should be published in the form of a contract and should be
independent from any implementation of such a contract. Consumers of Services, as well
as developers willing to provide a new implementation, must be guaranteed the correctness
of the contracts.

In the project, APIs are formalized by defining Java Interface based contracts, which will
replace WSDL based contracts. Java Interface based contracts will be defined using
common guidelines based on primitive types focusing on guaranteed SOAP framework
portability. The contracts are intended to define the low level transport interface; while
higher level interfaces shall be built on top of them. In particular, the exact semantics of
every interface should be written in JavaDoc comments along with Unit Tests defining
details regarding the input and output.

3.4 Software configuration
In order to ensure uniform installation process of the Services and of the infrastructure,
Services software should follow common configuration methodologies. Software
configuration falls into two categories:

• Service local configuration

• Infrastructure access configuration

During the transition phase, i.e. until Services are ported to the new common libraries
which will be used to provide dynamic and auto-configured infrastructure access (e.g.
Service Locator), each Service will have to maintain local configuration options containing
the entry points of every other service it needs to access.

Java Services from different partners already use the Spring IoC [9] container framework in
order to wire their internal components as well as to provide configuration points for both
local configuration and infrastructure access configuration.

In order to ease the installation and maintenance of multiple instances of the same service
on different machines, Java services should be able to expose their configuration settings
using the Spring “PropertyPlaceholderConfigurer”, which allows to override specific
configuration options without needing to build a web application archive for each Service
deployment, easing thus maintenance, bulk deployment and update, and guaranteed
uniformity of the infrastructure-wide software deployments.1

1 It should be possible to ensure that all instances of a given services are running from exactly
the same code base, in order to be able to exclude that eventual erroneous and asymmetric
behaviour may be ascribed to confusion during build and/or deployment.

D7.2 Overall Research Design Report Page 11 of 13

3.5 Packaging
Packaging is another important aspect of the DRIVER distributed development scenario. It
is important for software packages to agree on the same naming and to be uniquely and
securely associated to the corresponding developer.

Nomenclature

During the first phase of the project, while the software development has not yet been
moved to a common build system, the nomenclature for the software packaging should be:

driver-<partner>-DNet-<version>-<phase>-[<patchlevel>]

For example: driver-cnr-dnet-1.0-alpha1-p2. Here version is the DNet software
version, phase is “alpha”, “beta”, “rc1,rc2,...”, “final”, and patchlevel is “p1,p2,...”.

Patch levels apply only for trivial bug fixes or updates, for example the change of a web
page title, or the correction of a spelling error.

During the second phase of the project, when the software development has been
integrated in a common build system and organization, the nomenclature will be module
based:

DNet-<version>-<modulename>-<moduleversion>-<phase>-[<patchlevel>]

The packaging nomenclature shall maintain the distinction between the module version and
the main software version.

Digital signatures

Every partner should digitally sign (using GPG/PGP) every other partner's release package.
This ensures integrity of the released packages, and avoids future confusions. Private keys
should not be kept on shared project's servers.

D7.2 Overall Research Design Report Page 12 of 13

4 Service development coordination

The main issue of this activity is that of coordinating the work of the different packages so
as to deliver the different system releases (Task T7.3 in the DoW). This activity entails the
following tasks:

1. ensuring that the policies listed above are correctly followed;

2. ensuring that the accepted tickets are respected;

3. ensuring that the delivery of the release plan is respected;

4. when the release plan cannot be respected, due to delay or re-design of the
Services architecture, re-organizing the work and re-formulate it into new tickets to
be distributed to the different partners involved;

5. delivering a monthly Technical Report, to be published on the ScrewDRIVER wiki
[1], on what of such activities have not been respected.

Among such tasks, the number 4 is the most committing. Release plans are normally
expected to fail in some parts. Such scenarios are to be dealt with particular care, so as to
minimize the diversion from the original goals and correctly organize the different partners
for the new cooperation which might be required. This work is carried on by CNR, who is
responsible to follow the development, hence the main issues, all Services in order to
optimize and orchestrate their interaction, thus their development at the different partner
sites.

D7.2 Overall Research Design Report Page 13 of 13

5 References

[1] ScrewDRIVER Wiki, http://technical.wiki.driver.research-infrastructures.eu
[2] DRIVER Annex I - “Description of Work”, Proposal no. 212147.
[3] Munin Project. http://munin.projects.linpro.no
[4] D6.1 Software Release Plan
[5] D6.2 Supporting Tools and Databases
[6] D7.2 Overall Research Design Report
[7] XEN Web Site. http://www.xen.org
[8] Apache Ivy Web Site. http://ant.apache.org/ivy
[9] Spring Framework Web Site. http://www.springframework.org

http://technical.wiki.driver.research-infrastructures.eu/
http://munin.projects.linpro.no/
http://www.xen.org/
http://ant.apache.org/ivy
http://www.springframework.org/

	1 Introduction
	2 Deployment of new development infrastructures
	3 Software life-cycle policies
	3.1 VCS, build system and continuous integration
	3.2 Issue tracking policies
	3.3 API definition: contracts
	3.4 Software configuration
	3.5 Packaging
	Nomenclature
	Digital signatures

	4 Service development coordination
	5 References

