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Abstract 24 

The deep demersal snapper-grouper fishery in Indonesia is a data-poor fisheries resource that 25 

provides food security and a source of income to millions globally. Owing to an ongoing crew-26 

operated data recording system implemented in Indonesia since 2015, the stocks of this fishery 27 

can now be assessed using length-frequency data and updated life-history parameters. Here, 28 

we use two length-based methods, one that is fishery-specific and another that is more 29 

generalized, to assess the status of Indonesian stocks. Specifically, we develop a literature-based 30 

assessment method based on a patchwork of conventional approaches but tailored to the 31 

studied stocks, and compare it with a newly established and broadly applicable length-based 32 

Bayesian biomass estimation method (LBB). The methods were applied to 16 stocks from 4 33 

Indonesian Fisheries Management Areas and were compared based on simulations, as well as 34 

the convergence of the resulting stock status classification and uncertainty of the results. 35 

Analyzing the effect of using the literature-based species/family-specific life-history parameter 36 

values for asymptotic length (Linf) and relative natural mortality (M/K) in LBB showed that 37 

different values do affect the estimated biomass indicator. Nevertheless, in more than half the 38 

cases, the stock status classification did not differ between the two methods, while LBB results 39 

became more reliable with narrower confidence limits. Simulations, as well as similar status 40 

indicators between the two models support the value of the literature-based approach as an 41 

assessment methodology for the Indonesian deep demersal fisheries. Narrower confidence 42 

ranges highlight the importance of using fishery-specific information when applying generalized 43 

stock assessment methods. While most catches had few immature fish, half of the assessed 44 

stocks were consistently shown to have low biomass, indicating that important Indonesian 45 

stocks are at high risk of overfishing. 46 
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1. Introduction 47 

The Indonesian multispecies deep demersal fishery is a highly productive yet data-poor fishery 48 

in the tropics that is characterized by highly diverse catch composition with hundreds of species 49 

being caught (Bailey et al. 1987). This species complex mainly consists of snappers (Lutjanidae) 50 

and groupers (Epinephelidae) which play a key role as predators in the ecosystem. The snappers 51 

and groupers are of high quality with global demand, which support the livelihoods and food 52 

security of numerous local, small-scale fishing communities (Cesar 1996). The multitude of 53 

species in such tropical fisheries, as well as the lack of historical or current species-specific 54 

catches and no information on fishing effort and baseline population abundances, make 55 

assessments quite challenging, often leaving them under-managed, as in this Indonesian case 56 

study (Stobutzki et al. 2006; Fenner 2012). The deep demersal snapper-grouper fishery is 57 

managed based on total allowable catches (TACs) per species, which limit the number of fishing 58 

licenses per fishery management area (FMA). However, the system faces considerable data and 59 

implementation challenges, hence the characterization of the fishery as under-managed 60 

(Wibisono et al. 2021). 61 

The Generic Knowledge Indicator (GKI), that has been developed to evaluate the state 62 

of knowledge of snapper and grouper fisheries around the world, has shown that Indonesia 63 

presents a medium quality of biology/ecology information and fisheries data, while the 64 

knowledge level regarding stock assessments is very low (Amorim et al. 2018). A first step 65 

towards bridging this knowledge gap regarding Indonesian fisheries would be the regular 66 

collection of detailed data that can facilitate the application of stock assessment methods. To 67 

that end, a crew-operated data recording system (CODRS) has been developed and 68 

implemented by Yayasan Konservasi Alam Nusantara Indonesia for the past 6 years for extensive 69 

catch data collection (geo-referenced commercial catch data and length distributions for more 70 

than a hundred species of the snapper-grouper deep demersal fishery) that can support length-71 
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based stock assessments aiming to establish harvest control rules (Wibisono et al. 2019). 72 

Recording length-frequency (LF) data from commercial catches onboard, like in the CODRS, or 73 

at landing sites and markets is a cost-effective and straightforward methodology to attain the 74 

types of data required to estimate stock status, especially in data-poor fisheries (Pilling et al. 75 

2008; Mildenberger et al. 2017). The CODRS datasets have so far been used to update life-76 

history parameters of the top 50 species (Wibisono et al. 2019). Also, to identify factors that 77 

point towards particular locations and combinations of fishing gear and habitat characteristics 78 

linked to catches with immature fishes (Wibisono et al. 2021).  79 

The majority of fish stocks, globally and locally, are data-poor and lack the 80 

comprehensive information required to assess biomass and fishing mortality relative to 81 

reference points (Costello et al. 2012; Osio et al. 2015). Thus, the need to assess the numerous 82 

data-poor stocks around the world has led to the development of various catch-based (Cope 83 

2013; Froese et al. 2017), abundance-based (Froese et al. 2020), and length-based (Rudd & 84 

Thorson 2018) methods depending on the available datasets. In the case of Indonesia, the 85 

CODRS length data can be used in length-based models to assess the status of previously 86 

unassessed Indonesian stocks. The published analytical approaches aim to be simple and 87 

generically parameterized based on certain assumptions (e.g., Hordyk et al. 2015b; Ault et al. 88 

2019). Nevertheless, the use of such generic assessment methods requires caution as their 89 

potential out-of-context blanket application may result in erroneous outputs and misinformed 90 

management advice (Dowling et al. 2019). Since each method has its own assumptions and 91 

limitations, local knowledge and expert guidance is required for the appropriate tailoring to 92 

individual stocks or fisheries based on the literature (Pilling et al. 2008; Carruthers et al. 2014). 93 

Given that the different stock assessment models have varying data demands and levels 94 

of performance, they may produce alternative perspectives on reference points when applied 95 

to the same data (Bouch et al. 2020; Chong et al. 2020; Pons et al. 2020) and, as a result, a 96 
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combination of methods to define a range of possible stock status estimates is encouraged for 97 

fisheries management (Chong et al. 2020). Regardless of whether the applied assessment 98 

methods are fishery-specific or more generalized, evaluating model performance can be 99 

challenging since the “true” stock status needs to be known (Cadrin & Dickey-Collas 2015), which 100 

is usually very rare for data-poor stocks (Froese et al. 2018a). In such cases, simulations show 101 

how well a method can reproduce known reference points. On simulated data, state-of-the-art 102 

models can correctly predict ~70% of mean lengths at infinite age and natural mortality relative 103 

to carrying capacity, within 95% confidence limits. Furthermore, they are over 90% accurate at 104 

predicting current stock biomass relative to unexploited stock biomass (Froese et al. 2018b). 105 

Relative biomass prediction can be accurate also on expert-assessed real-stock data (~76%). 106 

However, these models achieve lower performance at predicting other traits - e.g. fishing 107 

mortality relative to natural mortality (~50% accuracy) - also because of the larger discrepancy 108 

between expert estimations of these traits. 109 

 The present study provides species-specific assessments for 16 previously unassessed 110 

stocks of the Indonesian deep demersal snapper-grouper fishery using length-based life-history 111 

parameters in combination with catch length frequencies from the CODRS dataset. This 112 

particular fishery is used as the base to illustrate the implications of transitioning from 113 

generalized to fishery-specific assessment models. A highly customized length-based approach 114 

using literature studies that each highlight an aspect of the life-history of the studied fish 115 

populations is presented here. This fishery-specific method is then compared to a new more 116 

broadly applicable approach by Froese et al. (2018b) for estimating stock status using LF data 117 

from commercial catches: the length-based Bayesian biomass estimation method (LBB). In the 118 

case of LBB, a parameterization gradient and its effects on the model outcome are also 119 

examined, where we transition from running the model with the generalized default life-history 120 

settings (such as the asymptotic length Linf and relative natural mortality M/K) to incorporating 121 



 

 6 

literature-based knowledge about the specific stocks analyzed. We ultimately aim to investigate 122 

whether these two approaches result in the same conclusions for management, and, if not, 123 

whether we can point to the most suitable approach based on simulations. The methods and 124 

assessment results presented here are expected to stimulate discussion among fisheries 125 

scientists on different modeling approaches, as well as among stakeholders in Indonesia 126 

regarding management options and decision-making.  127 

 128 

2. Materials and methods 129 

2.1 Study area and fisheries 130 

Indonesia’s demersal fishing grounds have high biodiversity, which is reflected in the 131 

multispecies nature of the catches (Pauly 1979; Wibisono et al. 2019). The Indonesian 132 

multispecies deep demersal fisheries operate in all of Indonesia’s 11 fisheries management 133 

areas (FMAs 571, 572, 573, 711, 712, 713, 714, 715, 716, 717, 718) targeting more than a 134 

hundred species of snappers, groupers, emperors and other families at depths from about 50 to 135 

500 m. The most common gear types used by the numerous smaller or larger fishing vessels 136 

(from less than 5 and up to 100 gross tonnage GT; Stobutzki et al. 2006) are droplines, bottom 137 

longlines, or a mix of both gears, while traps and gillnets are far less common and often used in 138 

combination with hook and line gears. 139 

 The Indonesian deep demersal fisheries are being monitored on a continuous basis since 140 

2015 through the CODRS that collects data on species, catches, length composition, and fishing 141 

location of commercial vessels, aiming to address the existing data gap on the basic 142 

characteristics of the fishery (Wibisono et al. 2019). Approximately 4% (400 out of 10,000 boats) 143 

of the fishery is sampled by CODRS which covers all Indonesian FMAs and has produced over 3.5 144 

million fish images so far (Mous et al. 2020). While this may seem like a small sample, in a huge 145 

archipelagic country like Indonesia, it is not realistic to reach a much higher sample through a 146 
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privately funded project. Thus, even though we acknowledge the limitations of generalizing the 147 

results of this study, we maintain that this is an important first step to assess the status of 148 

previously unassessed Indonesian fish stocks. 149 

In this study, commercial catch length frequencies collected through CODRS from 2016 150 

to the end of 2020 for 11 of the most abundant species (16 stocks, 4 different FMAs) were used 151 

to assess stock status by applying and comparing two computational methods, i.e. a highly 152 

customized length-based approach to stock assessment and a new generally applied approach 153 

by Froese et al. (2018b) for estimating stock status using LF data from commercial catches. While 154 

the comparison cannot identify which method is best, convergence of findings may be 155 

interpreted as robustness and perhaps even accuracy of either method, whereas divergence 156 

may shed a light on the reasons why the same data sometimes lead to different interpretations. 157 

Nevertheless, simulations were also performed to test the consistency and potential biases of 158 

both methods. 159 

 160 

2.2 Fishery-specific length-based approach to stock assessment 161 

The customized approach is based on four length-based life-history parameters: maximum size 162 

Lmax (the largest fish observed in the catches of each species measured through the over 3.5 163 

million CODRS images), asymptotic size Linf (the mean length in a cohort of infinite age), optimum 164 

harvest size Lopt (the length class with the highest biomass in an unexploited population) and 165 

size at maturity Lmat (the length class at which 50% of the individuals are mature). As 166 

documented in detail by Wibisono et al. (2019), the validated (checked for accuracy) Lmax values 167 

in the CODRS dataset for each species were used as the starting point to calculate Linf, Lopt, and 168 

Lmat from known relationships. For all families, we used Linf = 0.9 * Lmax based on a recent 169 

simulation approach developed to estimate life-history parameters from a meta-analysis of 170 

published values and relationships between individual parameters (Nadon & Ault 2016). Size at 171 
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maturity was different for each family, with Lmat = 0.59 * Linf for deep water snappers (Lutjanidae) 172 

and Lmat = 0.46 * Linf for deep water groupers (Epinephelidae: Newman et al. 2016). For emperors 173 

(Lethrinidae) and all other families, we used Lmat = 0.5 * Linf based on the review of published 174 

ranges and meta-analyses (Binohlan & Froese 2009; Grandcourt et al. 2011; Younis et al. 2020). 175 

The values of the life-history parameters were compared with available data from other studies 176 

done in Indonesia and at comparable latitudes before being applied in the length-based 177 

assessments of the fisheries (Wibisono et al. 2019). 178 

For the estimation of Lopt, we used the Beverton (1992) estimator: 179 

���� = ��� ( !
!"#

$
) [1] 180 

To obtain family-specific estimates for M and K, we searched the literature for values of M, K, 181 

or M/K (some studies provided M/K as a ratio, without specifying the numerator and the 182 

denominator). We used publications with estimates for M and K values which were based on 183 

ageing studies, or on meta-analyses of such studies (e.g. Aldonov & Druzhinin 1979; Loubens 184 

1980; Matthews & Samuel, 1991; Honebrink 2000; Newman 2002; Newman & Dunk 2003; 185 

Grandcourt et al. 2005; Grandcourt et al. 2006; Fry et al. 2006; Ebisawa & Ozawa 2009; Mehanna 186 

et al. 2012; Newman et al. 2016). The M/K values were compared with the accepted range as 187 

published for Type II Teleosts including tropical snappers (Prince et al. 2015) and with published 188 

values of M/K for specific tropical Indo Pacific species and families (Prince et al. 2019) that are 189 

important in the Indonesian deep demersal fisheries. All the life-history parameter values and 190 

invariants used in this study are presented in Table 1.  191 

Stock status was assessed using an indicator for the Spawning Potential Ratio (SPR: 192 

Quinn & Deriso 1999), i.e. the estimated spawning stock biomass (SSB) as a fraction of the SSB 193 

of the pristine population [ratio between the modeled population biomass at estimated fishing 194 

mortality F and the modeled adult population biomass at F = 0 (pristine biomass)] (Meester et 195 
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al. 2001). A standard, age-based population dynamics model (see Supplement) was applied to 196 

calculate the adult biomass starting from an arbitrary number of recruits. SPR was calculated on 197 

a per-recruit basis from the life-history parameters M (natural mortality), F, K, and Linf, as well 198 

as from gear selectivity parameters. The instantaneous total mortality (Z = M + F) was estimated 199 

with the equilibrium Beverton-Holt estimator from length data using the Ehrhardt & Ault (1992) 200 

bias-correction. For this estimation, we used the length range of the catch length-frequency 201 

distribution starting with the length that is 5% higher than the modal length and ending with the 202 

99th percentile, as it is an accepted practice to disregard the right hand side of the LF that is too 203 

close to Linf (Sparre & Venema 1998). F was calculated as the difference between Z and M, 204 

assuming full selectivity for the size range starting at modal length and ending with the largest 205 

fish in the catch. We assumed an S-shaped (logistic) selectivity curve, with 99% selectivity 206 

achieved at modal length, and with the length at 50% selectivity halfway between the first 207 

percentile and modal length of the catch length-frequency distribution. 208 

To calculate the length-dependent M to be used in the SPR calculation, we used an 209 

empirical formula that relates M to length (from CODRS data) and growth (literature-derived K 210 

and Linf calculated from the CODRS Lmax based on published relationship) characteristics (Gislason 211 

et al. 2010):   212 

% = &.'!!∗+∗,-/.00

,/.1/   [2] 213 

(reworked from its original notation as a log-transformed model)  214 

Comparison with published values of natural mortality for the main families present in 215 

the tropical deep water demersal fisheries of the Indo-Pacific (Newman et al. 2016) showed that 216 

the relationship by Gislason et al. (2010) resulted in unrealistically high estimates of M for most 217 

families targeted here, except for Carangidae (jacks). Tropical deep-water snappers, groupers 218 

and emperors in the Indo-Pacific have low natural mortality rates, usually between 0.1 and 0.2 219 
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per year, and often below 0.15 per year (Newman 2002; Newman & Dunk 2003; Grandcourt et 220 

al. 2006; Newman et al. 2016). Therefore, to correct this, a family-dependent multiplicative 221 

correction factor (CF) was applied to the Gislason et al. (2010) relationship, as follows (Linf and L 222 

are species-specific from CODRS data, while CF and K are family-specific): 223 

% = 23∗&.'!!∗+∗,-/.00

,/.1/   [3] 224 

Most of the studies that we reviewed presented length-independent estimates for M 225 

that were valid for the larger, exploited size range of each species. For the estimation of CF for 226 

each family (Table 1), we assumed that these published estimates for M applied to Lopt. We 227 

support that this simplification is justifiable, since around Lopt, the Gislason et al. (2010) curve 228 

flattens out, meaning that the dependency between length and mortality is less strong in this 229 

size range. Under the assumption that published values of M apply to Lopt, and using published 230 

values for K together with the estimates for Linf resulting from our CODRS data, we calculated 231 

the values for the CF (Table 1). It should be noted that the introduction of the Correction Factor 232 

did not put the modified Gislason et al. (2010) relation outside its original confidence limits. The 233 

CF values we found average 0.69, ranging between 0.5 and 0.97, whereas the lower confidence 234 

limit for the (back-transformed) confidence limit is 0.56.  Hence, with one exception (grunts), 235 

the modified intercept remains within the 95% confidence interval presented by Gislason et al. 236 

(2010). 237 

Another complication is that catch curve analysis assumes a constant total mortality (Z) 238 

over the size range that is used for its estimation, whereas Gislason et al. (2010) demonstrates 239 

that natural mortality varies with size. To work out this inconsistency, we applied the adjusted 240 

Gislason et al. (2010) empirical relationship to the length classes over which we estimated Z, 241 

then we calculated the average M over these size classes, and applied that average to the size 242 
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range over which we estimated Z. Outside this size range, we assumed a varying M following the 243 

modified Gislason et al. (2010) relation.  244 

A set of fishery indicators described below were derived from the literature-based 245 

method to facilitate management advice (Figure 1). Α total population biomass B of half the 246 

pristine population biomass B0 was considered to be the desired reference point for stock size, 247 

minimizing the impact of fishing (Froese et al. 2016). Using the SPR and B/B0 estimates from our 248 

own data set, this target reference point correlates with an SPR of about 40%, agreeing with 249 

Harford et al. (2019) and not far from but slightly more conservative than the Wallace and 250 

Fletcher (2001) reference point. Therefore, we considered that when SPR is lower than the limit 251 

of 25% (0.313 B/B0) then the stock is at high risk indicating overexploitation that may cause 252 

severe decline of the stock if fishing effort is not reduced. If SPR is equal to or greater than 25% 253 

(0.313 B/B0) and lower than 40% (0.5 B/B0) then the stock is considered to be at medium risk, 254 

while if SPR is equal to or greater than 40% (0.5 B/B0) then the risk that the fishery will cause 255 

further stock decline is small. To facilitate comparison of the two methods’ (see section 2.3) 256 

results, we turned SPR to B/B0 assuming that B/B0 = SPR/0.8 (Froese et al. 2019). 257 

Apart from the SPR, the current status of stocks was expressed through the percentage 258 

of immature and a subset of large mature (mega-spawners: fish larger than 1.1 times the Lopt; 259 

Froese 2004) fish in the catch. With 0% immature fish in the catch as an ideal target (Froese 260 

2004), a target of 10% or less is considered a reasonable indicator for sustainable (or safe) 261 

harvesting (Fujita et al. 2012; Vasilakopoulos et al. 2011). Zhang et al. (2009) consider 20% 262 

immature fish in the catch as an indicator for a fishery at risk, in their approach to an ecosystem 263 

based fisheries assessment. Results from meta-analyses of multiple fisheries showed stock 264 

status over a range of stocks to fall below precautionary limits at 30% or more immature fish in 265 

the catch (Vasilakopoulos et al. 2011). The fishery is considered at high risk when more than 266 

50% of the fish in the catch are immature (Froese et al. 2016). Hence, if the percentage of 267 
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immature fish in the catch is equal to or lower than 10%, then the stock is considered here to 268 

be at low risk since at least 90% of the fish in the catch are mature specimens that have spawned 269 

at least once before they were caught. If the immature fish in the catch are greater than 10% 270 

and up to 30%, the risk level is considered to be medium, while more than 30% of immature 271 

individuals indicate that the stock is at high risk of overharvesting of juveniles that have not had 272 

the chance to reproduce before capture. Regarding mega-spawners, if more than 30% of the 273 

catch consists of mega-spawners (and other fisheries do not catch the much smaller fish), it is 274 

indicated that this fish population is in good health (low risk). If more than 20% and less than or 275 

exactly 30% of the population consists of mega-spawners, then the risk level of recruitment 276 

overfishing through over harvesting of the mega spawners is medium, while the risk is high if 277 

20% or less of the population are mega-spawners. 278 

Another status indicator used was the “trade limit” length which was derived from the 279 

general buying behavior of processing companies as the minimum size of the fish accepted by 280 

the trade. Comparing the trade limit with Lmat may indicate incentives from traders for either 281 

unsustainable targeting of juveniles or more sustainable targeting of mature fish that have 282 

spawned at least once. We consider a trade limit at 10% below or above Lmat to be significantly 283 

different from it and we consider trade limits to provide incentives for targeting specific sizes of 284 

fish through price differentiation, as it has been shown that the larger individuals of a species 285 

attain higher market prices and are therefore selectively removed because they may yield higher 286 

profit (Tsikliras & Polymeros 2014). If the trade limit for a species is lower than 0.9 * Lmat it is 287 

indicated that the trade encourages the capture of immature fish impairing sustainability, and 288 

therefore the risk level is considered high. If the trade limit is above 1.1 * Lmat then there seems 289 

to be a low risk for recruitment overfishing. The risk is medium for intermediate values of trade 290 

limit. 291 
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While this literature-based method was specifically tailored to assess the status of 292 

Indonesian stocks of the deep demersal fishery, we do recognize that it may form a framework 293 

that could be customized to different fisheries and followed by other researchers when the only 294 

available data are length frequency distributions and Lmax. The series of steps to be followed to 295 

apply the literature-based assessment framework are presented in Figure 1. 296 

 297 

2.3 Length-based Bayesian biomass estimation method 298 

The Length-based Bayesian biomass estimation method (LBB: Froese et al. 2018b) is an approach 299 

for estimating stock status in data-poor situations using LF data from commercial catches. The 300 

method is outlined below; for a more detailed description, the reader is referred to Froese et al. 301 

(2018b; 2019). The version of the code used (LBB_33a) can be found online at 302 

http://oceanrep.geomar.de/43182/, along with a simple but detailed user guide. 303 

 In LBB, it is assumed that the fish body grows in length according to the von Bertalanffy 304 

(1938) growth equation, as expressed by Beverton and Holt (1957), 305 

�� = �456[1 − 9:+(�:�;)] [4] 306 

with Lt being the length at age t, Linf the asymptotic length, K the growth rate by which Linf is 307 

approached and t0 the theoretical age at zero length.  308 

 The LBB model uses the annual LF data to simultaneously make an inference for four 309 

parameters over the age range represented in the LF sample with a Bayesian Monte Carlo 310 

Markov Chain approach: (i) Linf, (ii) the length at first capture at which 50% of the individuals are 311 

retained by the gear (Lc), (iii) the mean relative natural mortality (M/K), and (iv) fishing mortality 312 

(F/K) over the past years. Priors for Linf, relative total mortality (Z/K), and selectivity (SL) are 313 

derived from the aggregated LF samples across years, while the prior for M/K is assumed to be 314 

around 1.5 (1.2-1.8) which is typical for adults of species that grow throughout their lives 315 

(Hordyk et al. 2015b; Froese et al. 2016). For species that have different life-history strategies 316 
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with M/K ratios that diverge from the assumed range (Thorson et al. 2017), and if an appropriate 317 

Linf estimate is available from an independent study, then these values can be introduced by the 318 

user to decrease uncertainty in the LBB results. To investigate the uncertainty in the output 319 

biomass indicators associated with the initial estimates of the life-history parameters, we ran 320 

the LBB model four times for each stock using: 1) no user-defined prior as input to the model, 321 

2) user-defined prior as input for Linf as presented above in Section 2.2, 3) user-defined prior as 322 

input for M/K that was estimated from the customized length-based approach presented above 323 

in Section 2.2, and 4) both Linf and M/K priors set by the user. 324 

When the above parameters are known, current stock status in the form of current stock 325 

biomass B relative to the unexploited stock size B0 can be estimated from standard fisheries 326 

equations (Beverton & Holt 1957, 1966) and Lc_opt (i.e. the Lc value that would result in Lopt 327 

becoming the mean length in the catch, with the highest catch and biomass for the respective 328 

fishing mortality and a minimized impact on size structure; Froese et al. 2016) can also be 329 

calculated. 330 

 If the fish are fully selected by the gear, the curvature of the right side of the catch 331 

samples is a function of Z/K. This curve is expressed by the following equation (Quinn & Deriso 332 

1999), 333 

<, = <,>�?@�(
,ABC:,

,ABC:,DEFGE
)H/+ [5]  334 

for L > Lstart and L < Linf in which NL is the number of fish that survive to length L, NLstart is the 335 

number of individuals at length Lstart with full selection, above which all individuals entering the 336 

gear are retained by the gear, and Z/K is the ratio of the total mortality rate Z to the somatic 337 

growth rate K. 338 

 The lengths that are partially selected by the gear are a function of gear selectivity (here 339 

assumed to be knife-edged selectivity, i.e. by a trawl or any gear with a trawl-like selection curve) 340 
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for the species in question, as given by the following ogive (i.e., the curve that represents the 341 

proportion of individuals being caught by the gear at length) function, 342 

J, = &
&"KLF(MLMN)  [6] 343 

with SL being the fraction of fish that are caught by the gear at length L, and a describing the 344 

steepness of the ogive (Sparre & Venema 1998; Quinn & Deriso 1999). 345 

 The difference equation below is fitted to the whole catch-in-numbers curve to estimate 346 

Linf, Lc, a, M/K, and F/K at the same time, 347 

<,A = <,AL/(
,ABC:,A

,ABC:,AL/
)
#
$"O

$PMA  [7]  and Q,A = <,AJ,A [8] 348 

with Li being the number of individual fish at length i, Li-1 being the number of fish at the previous 349 

length, and C referring to the number of individuals that are vulnerable to the gear and are 350 

proportionally represented in the catch (Froese et al. 2018b). 351 

 Lopt is calculated using Equation [1] and Lc_opt can be obtained from, 352 

�R_��� = ,ABC(S"!O
#)

T&"O
#U(!"#

$)
 [9] 353 

and finally an index of relative biomass depletion for the exploited part of the population B/B0 354 

is then calculated from the following equation (Beverton & Holt 1966), 355 

V
V;

=
WXYZ\

^
`\;aMN

^
 [10] 356 

in which CPUE’/R is an index of catch per unit of effort that results from an index of yield-per-357 

recruit expressed as a function of Lc/Linf, F/K, M/K, and relative fishing mortality F/M and B’0 > 358 

Lc/R denotes the relative biomass in the exploited phase of the population if no fishing takes 359 

place (Froese et al. 2018b). B/B0 from LBB was used as an indicator of stock status where, in line 360 

with SPR limits from the fishery-specific method, the stock is considered to be at high risk of 361 

overexploitation when B/B0 < 0.313, at medium risk when 0.313 ≤ B/B0 < 0.5, and at small risk 362 

when B/B0 > 0.5 (see also section 2.2). 363 
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 364 

2.4 Simulations 365 

For verification purposes in the absence of knowing “true” stock status, simulated LF data with 366 

known underlying parameter values were used to run both models and compare the results. 367 

Simulated data were used to assess model performance and validate the consistency between 368 

the two methods, following the practice reported in Froese et al. (2018b). These data were 369 

produced using equation [5] and assuming that the number of survivors per length followed a 370 

standard dynamic for full net selectivity (Quinn & Deriso 1999). Parameter values were set to 371 

simulate 3 hypothetical stocks representing full exploitation, with length at first capture ranging 372 

from 18 to 35 cm and with similar life histories to the Indonesian deep demersal stocks (Linf from 373 

35 to 120 cm and M/K from 1.33 to 1.6). The two stock assessment methods analyzed here, 374 

were checked to produce comparable results for the estimates of B/B0 and SPR turned to B/B0 375 

(Table S1). 376 

 377 

3. Results 378 

In total, 16 stocks of the Indonesian deep demersal fisheries were analyzed with two different 379 

length-based assessment methods. The stocks belonged to 11 snapper, grouper, and croaker 380 

species of 4 fisheries management areas (FMAs) of the Indonesian waters: 573 Savu and Timor 381 

Sea, 712 Java Sea, 713 Makassar Strait, and 718 Arafura Sea. Figures 2-3 show the catch length 382 

frequency distributions for the CODRS samples collected in 2020 and life-history parameters 383 

(Lmat, Lopt, Linf, Lmax) as estimated with the customized length-based approach for the 16 analyzed 384 

Indonesian stocks. Table 2 shows the literature-based species/family-specific Linf and M/K values 385 

that were used as input (priors) to the LBB model, as well as the resulting parameter values 386 

(median and ~95% confidence limits). 387 
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 Based on the fishery-specific length-based approach presented here (Table 3), 9/16 388 

(56%) stocks were in a poor state with spawning potential ratio (SPR) values below 0.25, while 389 

4/16 (25%) stocks were in a medium state with SPR values between 0.25 and 0.39, and only 3/16 390 

(19%) stocks were in a good state with SPR values at or over 0.40. A low percentage (≤10%) of 391 

immature individuals was found in the catch of 10/16 (63%) stocks, while for 3/16 (19%) stocks 392 

the percentage of immatures was 11-30% or over 30%. Most of the stocks (14/16, 88%) had a 393 

very low number of mega-spawners (≤20%), while the catches of only two stocks consisted of 394 

over 20 and 30% of very large mature fish. Based on the species-specific trade limit results, 5/11 395 

(45%) species seemed to run a high risk of unsustainable exploitation of immature individuals, 396 

while 2/11 (18%) and 4/11 (36%) species ran a medium and low risk, respectively. 397 

 According to the LBB model run without user-defined priors (LBB B/B0, Table 3), 10/16 398 

(63%) stocks had poor relative biomass status with B/B0 values below 0.313, 3/16 (19%) stocks 399 

were in moderate biomass state (between 0.313 and 0.49), and another 3/16 (19%) could be 400 

considered healthy with B/B0 values at or over 0.5. Running the LBB model using a prior for Linf 401 

as estimated from the customized length-based approach gave different results in some cases, 402 

with 8/16 (50%) stocks being in a poor state, 3/16 (19%) as medium status, and 5/16 (31%) in a 403 

healthy state. Informing the LBB model with an M/K prior that was estimated with the tailored 404 

length-based approach resulted in all of the analyzed stocks (100%) shown to have very low 405 

biomass levels compared to the pristine population biomass. Finally, when running LBB with 406 

both the Linf and M/K priors from the customized length-based approach (Table 3; Figure 4), 407 

12/16 (75%) stocks were shown to have unhealthy biomass levels, while 2/16 (13%) seemed to 408 

be in a medium (the snappers Lutjanus russelli and Paracaesio gonzalesi) and good (the grouper 409 

Epinephelus areolatus and the snapper Lutjanus vitta) biomass status. Based on the range of the 410 

confidence limits (Table 3), it was evident that the uncertainty in the LBB B/B0 estimates was by 411 

far the highest when the model was run using the Linf from the customized length-based 412 
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approach as a user-defined prior, followed by running LBB with no set priors and then by using 413 

both Linf and M/K priors. Uncertainty was reduced the most when running LBB with an M/K prior 414 

derived from the highly customized length-based approach. All results of the LBB analyses are 415 

given in the supplement (Figures S1-S136). 416 

 The four independent LBB runs resulted in the same poor status categorization for 7 out 417 

of the 16 (44%) analyzed stocks (LBB B/B0, Table 3). For the remaining 9 stocks, the LBB runs 418 

resulted in two (4/16 stocks, 25%) or three (5/16 stocks, 31%) different status classifications for 419 

each stock. The highest agreement (but with quite high uncertainty) of the current method and 420 

the LBB model regarding biomass status, SPR, and B/B0 respectively, was when LBB was run 421 

without any user-defined priors (11/16 stocks, 69%). Out of these 11 stocks whose biomass 422 

status were in agreement with both methods, 8/11 (73%) were shown to have low biomass, 423 

2/11 (18%) had medium biomass levels, and only 1/11 (9% - the snapper Paracaesio gonzalesi) 424 

seemed to be healthy. Using the M/K prior and both Linf and M/K resulted in the same status 425 

categorization for 9/16 (56%) stocks (with low and moderate uncertainty, respectively), while 426 

using only the Linf prior showed an agreement of the two methods in 7/16 (44%) stocks (with the 427 

highest uncertainty). 428 

 Half of the studied stocks (8/16) were consistently categorized as having a poor biomass 429 

status, meaning that the current method and at least 3 out of the 4 LBB runs resulted in a low 430 

biomass indicators. These stocks were the orange croaker Atrobucca brevis, banded grouper 431 

Epinephelus amblycephalus, Malabar blood snapper Lutjanus malabaricus (in all three studied 432 

FMAs), emperor red snapper L. sebae, brownstripe, red snapper L. vitta, and pinjalo Pinjalo 433 

pinjalo. No stocks were consistently shown to have healthy biomass levels using the assessment 434 

methods tested here. 435 

 436 

4. Discussion 437 
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In multispecies fisheries, like the deep demersal snapper-grouper fishery in Indonesia, the high 438 

diversity of species that share common morphological characteristics and life-history traits 439 

makes the identification and reporting at the species level challenging. This results in poor 440 

resolution of official catch statistics, hindering the application of stock assessment methods. 441 

Using the species-specific data collected through the CODRS over the past five years, as well as 442 

the estimated life-history characteristics for the main target species (Wibisono et al. 2019), it is 443 

now possible to apply length-based stock assessment methods to this fishery. This study 444 

explored the stock status results derived from two methods, a simple customized literature-445 

based assessment framework based on conventional approaches (Figure 1), and a more 446 

generally applicable model (LBB: Froese et al. 2018b) for the analysis of length frequency 447 

distributions from commercial catches. The transition from a fishery-specific to a generalized 448 

method was examined and different parameterization levels of the latter method were tested, 449 

ranging from running LBB with the generalized default life-history settings to using literature-450 

based values tailored to the analyzed stocks. The performance of both methods was tested with 451 

simulated stocks, showing that LBB gave biomass estimates close to the “true” simulation values 452 

and within the 95% confidence limits in all three simulated stocks (100%), while the fishery-453 

specific method was accurate in two stocks (67%). In two out of the three simulated stocks, LBB 454 

overestimated biomass, whereas the fishery-specific method underestimated biomass in all 455 

three stocks which makes it a more precautionary approach. The results are expected to 456 

stimulate a focused discussion among stakeholders on the different methodologies, as well as 457 

the status of the fisheries. 458 

The highly customized length-based assessment approach described here is the product 459 

of working with Indonesian species-specific CODRS datasets, cross-checking references to obtain 460 

family-specific life-history parameters that apply to Indo-Pacific species, and tweaking published 461 

methods (e.g., Gislason et al. 2010) to incorporate insights of others. The aim has been to 462 
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develop a literature-based model that can be used specifically to assess the stock status of 463 

Indonesian deep demersal fisheries. Ultimately, as illustrated in Figure 1, this assessment 464 

framework can be followed by other researchers when the only available information is length 465 

data and Lmax. For comparison and to discuss the transition from a fishery-specific to a 466 

generalized method and vice versa, we decided to also include LBB, i.e. the Length-based 467 

Bayesian biomass estimation method of Froese et al. (2018b). LBB is a more broadly applicable 468 

model that can nevertheless be tailored to the studied stocks when the user chooses to specify 469 

priors for known parameters, such as the asymptotic length Linf and relative natural mortality 470 

M/K. It has been suggested, and it is confirmed here, that carefully tuning generic assessment 471 

approaches to the examined stocks using species-specific parameters may enhance their 472 

reliability (Dowling et al. 2019). LBB has been increasingly applied to Asian fisheries (Ju et al. 473 

2020; Liang et al. 2020; Wang et al. 2020; Zhang et al. 2020; Kindong et al. 2020; Yue et al. 2021) 474 

and it has been gaining consideration as a plausible method in international commissions like 475 

the International Commission for the Conservation of Atlantic Tunas ICCAT. However, as it is a 476 

recently developed assessment method, this is among the first published comparisons of LBB 477 

with other length-based methods (Pons et al. 2020). 478 

As observed in this study, it is to be anticipated that the performance of various 479 

compared methods may be different and often result in opposing status estimations based on 480 

the tested fishing intensity trends, depletion levels, data availability and resolution, and life-481 

histories (Rosenberg et al. 2018; Pons et al. 2020; Bouch et al. 2020). The snapper and grouper 482 

stocks that are mostly included here (as well as a croaker species), cover a broad spectrum of 483 

depletion, and generally have small differences in their life-histories. As it has been previously 484 

shown, the biggest source of uncertainty in stock status estimates is the uncertainty in life-485 

history parameters (Babcock et al. 2013; Mannini et al. 2020). Fundamental linkages between 486 

life-history parameters have long been identified in fishes (Beverton & Holt 1959; Beverton 487 
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1963). The ratio of natural mortality over growth rate (M/K) is one of these so called Beverton-488 

Holt invariants (Charnov 1993). In species whose LF distributions contain only few individuals 489 

that survive to approximate Linf, M/K is typically close to 1.5 as assumed by default for the M/K 490 

prior in the LBB model (Froese et al. 2018b; Froese et al. 2019). Nevertheless, this invariant, that 491 

has probably been conserved through natural selection (Beverton & Holt 1959), may in fact be 492 

quite different among taxonomic groups based on their life-history strategies and would be 493 

better defined on a taxon level as we have outlined here in the customized length-based 494 

approach (Prince et al. 2015; Thornson et al. 2017). 495 

Users of the LBB approach are encouraged to replace the default setting of M/K with 496 

their own informed values when they have strong evidence that M/K lies outside the assumed 497 

default range of 1.2-1.8 for the analyzed stock (Froese et al. 2018b; Froese et al. 2019). Using 498 

default priors is understandable in truly data-poor situations when available data cannot 499 

support the implementation of data-rich assessment methods, but when some parameters 500 

specific to the analyzed stocks are known, then their use is highly encouraged (Bouch et al. 501 

2020). In the present study, we followed this advice to use informed family-specific M/K values 502 

(~0.8) that were based on M and K information from various sources and reflected the low 503 

natural mortality and slow/modest growth rates of the deep-water tropical demersal snappers 504 

and groupers (e.g. Prince et al. 2015; Newman et al. 2016). We then tested the effect of this 505 

tweak on the results of the model and particularly the estimated relative biomass, which is the 506 

main target output of LBB (Table 1). Natural mortality (M) may affect stock assessment derived 507 

reference points and consequently management advice. Biased M values impact the 508 

information contained in the biomass index, since higher M for the same total mortality (Z) will 509 

correspond to lower fishing mortality (F) given the catch, and ultimately higher biomass (Punt 510 

et al. 2021). Indeed, based on model sensitivity, when the lower M/K values were used as priors, 511 

LBB estimated a higher relative fishing mortality and a lower stock status, albeit with 512 
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considerably lower uncertainty, hence more reliable results, which is the goal of using informed 513 

user-defined priors. In more than half of the cases in our study that did not cause a change in 514 

the stock status classification. Thus, the use of literature-based species/family-specific life-515 

history parameters is encouraged, as it is shown that when setting M/K within this range of 516 

values, the influence on the estimation of relative biomass, which is the main target output of 517 

LBB, is minor (Froese et al. 2018b), while the reliability of the results is greatly increased.  518 

Asymptotic length is also a critical parameter for reliable estimates of fishing mortality 519 

and SPR (Hordyk et al. 2016), with higher values of it leading to an overestimation of exploitation 520 

rate and a subsequent underestimation of stock status, and vice versa. Indeed, based on model 521 

sensitivity, using lower Linf priors from the customized length-based approach as an input to LBB 522 

consistently resulted in higher relative biomass for all stocks. The same pattern was also found 523 

by Nadon & Ault (2016). However, although Linf is estimated from Lmax, which is the most 524 

observable parameter in the set of life-history parameters, the LBB results with a literature-525 

based Linf prior were highly uncertain, mostly owing to the Malabar red snapper Lutjanus 526 

malabaricus (FMA 718), Russell’s snapper L. russelli (FMA 718), and Vanuatu snapper Paracaesio 527 

gonzalesi (FMA 573). In these three cases, the literature-based Linf prior that was inserted in LBB 528 

was so much lower than what LBB would have calculated using the default prior settings (Table 529 

2), that the right hand side of the length distribution was truncated (Figures S58, S67, S113). This 530 

seems to be causing the high uncertainty or in some cases completely stopping the LBB 531 

calculations. Linf is derived from Lmax in both methods compared here as Lmax has been shown to 532 

be a reasonable predictor of Linf (Froese et al. 2019). However, the customized length-based 533 

approach calculates asymptotic length as Linf = 0.9 * Lmax, while LBB estimates Linf from the 534 

available data, while considering a prior that, if not provided by the user, is derived from 535 

aggregated LF data within the range of 0.9 * median Lmax – 1.2 * median Lmax (Froese et al. 2018b; 536 

Froese et al. 2019). This might explain why running LBB with Linf priors results in the lowest 537 
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agreement between the two methods, as well as high uncertainty. For example, for the Malabar 538 

blood snapper L. malabaricus in FMA 712, the median Lmax was 89 cm, so LBB picked a prior of 539 

80.1-106.8 (that is 103; Figures S47, S48) when no user-defined prior was provided to the model, 540 

while for L. malabaricus in FMA 713, the median Lmax was 90.5 cm, so LBB picked a prior of 81.45-541 

108.6 (that is 104; Figures S56, S57). However, the literature-based Linf value for this species was 542 

85 cm, i.e. 0.9 * Lmax (Lmax=94 cm), and when this was inserted as a prior to LBB, the resulting 543 

B/B0 estimates were more uncertain. Both lower (≤85 cm) and higher (up to 105.4 cm) Linf 544 

estimates have been reported for this species in the west Pacific Ocean (Martinez-Andrade 545 

2003). 546 

On the other hand, running LBB with an M/K prior alone, or both Linf and M/K priors 547 

estimated with the customized length-based approach, provided more reliable results with 548 

higher agreement between the two methods and low uncertainty. Inserting no priors into LBB 549 

had the highest agreement across assessment scores, but with quite high uncertainty, and 550 

therefore it would better be avoided when fishery-specific information is available like in this 551 

study. Consequently, when both agreement of the two methods and uncertainty of indicators 552 

are to be considered as performance criteria, and when species/family/stock-specific values are 553 

available, then the best approach is to run LBB using as priors the tailored and customized M/K 554 

values, or both Linf and M/K. Communicating to managers the uncertainty in fisheries scientific 555 

advice that stems from uncertainty in the estimated parameters owing to measurement, 556 

process, or model errors, may allow them to evaluate trade-offs between different management 557 

strategies (Rosenberg & Restrepo 1994). 558 

LBB simulation testing highlighted that the uncertainty in estimated B/B0 values that are 559 

compatible with the LF pattern was considerably higher in lightly exploited stocks (Froese et al. 560 

2018b), which was also the case with the Russell’s snapper Lutjanus russelli, and brownstripe 561 

red snapper L. vitta (FMAs 712 and 718) in the present study (see Supplement). The biomass 562 
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estimates of these stocks, along with the Vanuatu snapper Paracaesio gonzalesi and areolate 563 

grouper Epinephelus areolatus, were highly uncertain and thus presented the most 564 

contradicting results between the two methods and the different LBB runs. The observed 565 

discrepancies between the two methods could also be linked to the fact that B/B0 was estimated 566 

for the exploited length range, while SPR used SSB. As pointed out by Froese et al. (2018b), “…if 567 

Lc is significantly larger than mean length at first maturity, the depletion of biomass in the 568 

exploited length range may be much stronger than the depletion of spawning biomass…”. In any 569 

case, these stocks would benefit from further assessment possibly with longer time-series data 570 

and/or species- and area-specific life-history studies. Although longer time-series do not 571 

necessarily guarantee better estimates, it has been shown that ten years of length data may 572 

result in greater accuracy and precision of biomass estimates by length-based methods, 573 

especially for species that are medium or longer-lived (Rudd & Thorson 2018). The highest 574 

consensus between the methods and among LBB runs was reached in stocks that had low 575 

relative biomass. This could be related to the finding of Pons et al. (2020) who demonstrated 576 

that LBB performed better in cases of stocks that have relatively low to medium stock sizes. 577 

Regarding stock status, various studies have investigated the levels of SPR to be used as 578 

target reference points, and it is generally accepted that an SPR value of approximately 40% is 579 

sustainable for most species (Hordyk et al. 2015a and references therein). Based on the biomass 580 

indicators (B/B0 and SPR), half of the examined stocks were consistently shown to be fished at 581 

unsustainable levels, while none of the 16 stocks could be unanimously considered as healthy 582 

using both methods. Only the Vanuatu snapper Paracaesio gonzalesi was found to have a 583 

healthy biomass by the customized length-based approach and two of the four LBB runs. 584 

Babcock et al. (2013) also tested the sensitivity of length-based indicator results for the spear 585 

gun fishery of groupers and snappers in Belize and suggested that when stocks are shown to be 586 

overfished or experiencing overfishing across a range of plausible life-history parameters, then 587 
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improved management with enforced size or catch limits would be recommended. This finding 588 

is worrying about the future of the most abundant stocks of the deep demersal fisheries in 589 

Indonesia and highlights the need for effective management, with potential enforcement of 590 

science-based harvest control rules that determine how much fishing can take place, based on 591 

indicators of the targeted stock status (Bellido et al. 2020). Such actions may contribute to 592 

ensuring the long-term sustainability of these vital resources of high commercial value which 593 

support the livelihoods and food security of numerous local communities. Although much like 594 

biomass estimations, the trade limit and mega-spawners indicators were not encouraging for 595 

the Indonesian deep demersal fisheries, the percentage of immature individuals in the catch 596 

was overall low, indicating that from this aspect the fishery seemed to be at lower risk (Froese 597 

et al. 2016). Nevertheless, attention should be paid to FMAs 712 and 713 where a high 598 

proportion of immature Malabar red snapper and pinjalo individuals seem to be getting caught. 599 

These areas, i.e. the Java Sea – Makassar Strait, have been identified by Wibisono et al. (2021) 600 

as juvenile hotspots and were therefore suggested to be prioritized in fisheries management 601 

plans as they overlap with common fishing grounds. 602 

Tailoring assessment methods to the specific life-histories of the analyzed stocks and 603 

taking into account data quality and model assumptions is expected to increase the reliability of 604 

the results. To that end, a length-based approach to stock assessment that is especially tailored 605 

to the Indonesian deep demersal snapper-grouper fishery but can also be modified for other 606 

fisheries was presented here, along with the more broadly applicable LBB method of Froese et 607 

al. (2018b) for comparison. The results of the customized method agreed in most cases with 608 

LBB, while using the literature-based species/family-specific Linf and M/K values in LBB improved 609 

the certainty of the stock status estimates, thus supporting the value of the customized method 610 

presented here as a tailored assessment framework especially for Indonesian fisheries. Both 611 

methods told the same story for at least half of the examined stocks pointing out that, in terms 612 
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of biomass, important stocks of this fishery are at high risk and would need to be managed at 613 

more sustainable levels. It is important to continue collecting data through the CODRS to be able 614 

to monitor status and trends over time. After all, “[m]anaging a stock without knowing its 615 

condition might be like driving with a windshield blacked out; crashes can be expected” (Fenner 616 

2012). 617 
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Figure legends 839 

Figure 1. Schematic of the different steps to be followed to apply the literature-based method 840 

to assess stock status with only available information the maximum length (Lmax) and length-841 

frequency distribution. Linf: asymptotic size, Lopt: optimum harvest size, Lmat: size at maturity, 842 

SPR: spawning potential ratio. 843 

Figure 2. Catch length frequency distributions, life-history parameters and reference points as 844 

estimated with the highly customized length-based approach presented here for orange 845 

croaker Atrobucca brevis (FMA 718), banded grouper Epinephelus amblycephalus (FMA 718), 846 

areolate grouper E. areolatus (FMAs 712 and 718), crimson snapper Lutjanus erythropterus 847 

(FMA 573), and Malabar red snapper L. malabaricus (FMAs 712, 713, 718). Fish photos are 848 

from the crew-operated data recording system (CODRS; Wibisono et al. 2019). SPR: spawning 849 

potential ratio. Lx-codrs = Lmax, i.e. the largest specimen in the CODRS database. 850 

Figure 3. Catch length frequency distributions, life-history parameters and reference points as 851 

estimated with the highly customized length-based approach presented here for Russell’s 852 

snapper Lutjanus russelli (FMA 718), emperor red snapper L. sebae (FMA 718), brownstripe red 853 

snapper L. vitta (FMAs 712, 713, 718), Vanuatu snapper Paracaesio gonzalesi (FMA 573), 854 

slender pinjalo Pinjalo lewisi (FMA 573), and pinjalo Pinjalo pinjalo (FMA 712). Fish photos are 855 

from the crew-operated data recording system (CODRS; Wibisono et al. 2019). SPR: spawning 856 

potential ratio. Lx-codrs = Lmax, i.e. the largest specimen in the CODRS database. 857 

Figure 4. The relative biomass B/B0 (black curve) with approximate 95% confidence limits 858 

(shaded grey area) for each of the 16 analyzed stocks (LBB runs using literature-based Linf and 859 

M/K priors), with indication of a proxy for the biomass that can deliver the maximum 860 

sustainable yield Bmsy (green dashed line) and a proxy for 0.5 Bmsy (red dotted line). The 861 

number in the parenthesis indicates the Fisheries Management Area of the stock. 862 
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 863 

Figure 1. Dimarchopoulou et al.864 
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Figure 2. Dimarchopoulou et al. 866 
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Figure 3. Dimarchopoulou et al. 868 
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870 

Figure 4. Dimarchopoulou et al. 871 
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Table 1. Life-history parameter values and invariables, and a correction factor (CF) to adjust 874 

length-dependent natural mortality M (Gislason et al. 2010) to estimated M at optimum harvest 875 

size Lopt. 876 

Deep Demersal  Mortality Growth  Life-history Invariant values 

Target Families Linf/Lmax M (Lopt) CF K (M/K)opt Lopt/Linf Lmat/Lopt Lmat/Linf 

Snappers 0.90 0.18 0.67 0.23 0.79 0.79 0.75 0.59 

Groupers 0.90 0.12 0.71 0.16 0.75 0.80 0.58 0.46 

Emperors 0.90 0.15 0.60 0.21 0.70 0.81 0.62 0.50 

Grunts 0.90 0.13 0.50 0.24 0.54 0.85 0.59 0.50 

Jacks 0.90 0.35 0.97 0.22 1.61 0.65 0.77 0.50 

Others 0.90 0.18 0.69 0.21 0.88 0.77 0.66 0.50 

877 
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Table 2. Input and output life-history parameters for 16 species of the Indonesian deep demersal fisheries, analyzed with a highly customized length-878 

based approach presented in this study (current method) and also with the LBB model (four independent runs: a. no user-defined priors set, b. an Linf 879 

prior as estimated with the customized length-based approach was inserted into the model, c. an M/K prior as estimated with the customized length-880 

based approach was inserted into the model, d. both informed priors were inserted into the model: Froese et al. 2018b). The literature-based Linf and 881 

M/K values of the customized length-based approach were used an input (priors) to LBB runs b, c, and d. The resulting median estimated parameter 882 

values of the LBB model are presented along with their ~95% confidence limits of the Monte Carlo estimates in parentheses. FMA: Fisheries 883 

Management Area. Linf: asymptotic length. M/K: natural mortality over growth rate.  884 

      
Customized length-

based approach 
LBB Linf LBB M/K 

Species Family FMA Linf M/K 

No user-

defined 

priors 

Linf prior M/K prior 
Linf & M/K 

priors 

No user-

defined 

priors 

Linf prior M/K prior 
Linf & M/K 

priors 

Atrobucca brevis croaker 718 68 0.88 
69.5 68.7 69.6 68.8 1.48 1.51 0.903 0.898 

(68.5-70.6) (67.6-69.8) (68.6-70.7) (67.9-70) (1.2-1.73) (1.26-1.72) (0.73-1.02) (0.75-1.02) 

Epinephelus amblycephalus grouper 718 76 

0.75 

73.5 75.6 72.7 74.4 1.41 1.85 0.772 0.778 

(72.4-74.7) (74.5-76.3) (71.4-74) (72.9-76.1) (1.22-1.64) (1.67-2.03) (0.62-0.92) (0.64-0.91) 

Epinephelus areolatus grouper 718 

48 

49.4 48.6 49.5 48.6 1.45 1.4 0.739 0.757 

(48.9-50.1) (48-49.3) (49-50.2) (48-49.3) (1.18-1.72) (1.11-1.69) (0.6-0.89) (0.6-0.89) 

    712 
48.7 47.7 48.7 47.7 1.18 1.13 0.682 0.686 

(48.2-49.1) (47.2-48.2) (48.1-49.4) (47.2-48.3) (0.98-1.43) (0.88-1.38) (0.55-0.81) (0.55-0.81) 

Lutjanus erythropterus snapper 573 70 

0.79 

65.6 68 65.4 68.6 1.61 1.76 0.877 0.855 

(65.2-66) (67.3-69.4) (65.1-65.9) (67.2-70.1) (1.4-1.86) (1.55-2.03) (0.76-1) (0.71-1.01) 

Lutjanus malabaricus snapper 712 

85 

103 86.4 103 86.4 1.07 0.71 0.704 0.613 

(101-105) (85.4-87.1) (101-105) (85.2-87.4) (0.85-1.35) (0.49-0.1) (0.56-0.82) (0.49-0.75) 

    713 
104 86.8 104 87 1.32 1.28 0.747 0.731 

(102-106) (85.8-87.8) (102-106) (85.8-88) (1.05-1.63) (1.1-1.47) (0.62-0.91) (0.6-0.86) 
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    718 
95.2 88.2 95.9 88.2 1.18 1.39 0.734 0.695 

(93.4-96.8) *(87.3-89.3) (94.3-97.4) (87-89.1) (0.83-1.4) *(1.12-1.72) (0.6-0.87) (0.55-0.86) 

Lutjanus russelli snapper 718 48 
52 48.8 52.3 48.7 1.33 1 0.626 0.592 

(51.6-52.5) (48.3-49.3) (51.8-52.8) (48.3-49.3) (1.16-1.46) (0.88-1.14) (0.48-0.76) (0.45-0.73) 

Lutjanus sebae snapper 718 86 
87.7 87.6 87.9 88.3 1.75 1.75 0.842 0.852 

(86.1-89.2) (86.4-89.2) (86.6-89.3) (86.7-89.5) (1.44-2.01) (1.49-1.98) (0.69-0.98) (0.71-1.01) 

Lutjanus vitta snapper 712 

39 

42.7 40.2 42.7 40.1 1.59 1.48 0.811 0.814 

(42.1-43.1) (39.7-40.6) (42.1-43.5) (39.6-40.7) (1.42-1.86) (1.31-1.69) (0.65-0.91) (0.69-0.97) 

    713 
44.1 40.2 44.2 40.3 1.65 1.69 0.84 0.856 

(43.4-44.8) (39.7-40.8) (43.5-44.9) (39.7-40.8) (1.44-1.96) (1.42-1.93) (0.71-0.79) (0.72-0.99) 

    718 
45.9 40.3 45.9 40 1.61 1.45 0.804 0.841 

(44.9-46.7) (39.8-40.8) (44.9-46.9) (39.7-40.5) (1.35-1.81) (1.25-1.63) (0.68-0.96) (0.68-0.96) 

Paracaesio gonzalesi snapper 573 49 
51.6 48 51.7 48.3 1.11 0.979 0.706 0.652 

(50.9-52.3) (47-48.6) (50.8-52.6) (47.4-49.1) (0.87-1.37) (0.7-1.11) (0.58-0.87) (0.5-0.76) 

Pinjalo lewisi snapper 573 52 
59.9 53 60 52.7 1.68 1.6 0.802 0.719 

(58.9-61.3) (52.2-53.9) (58.8-61.1) (52-53.6) (1.41-1.93) (1.29-1.85) (0.67-0.95) (0.58-0.82) 

Pinjalo pinjalo snapper 712 70 
70.9 71 71.1 71.1 1.52 1.4 0.76 0.756 

(70.2-72.2) (70.1-71.9) (70.1-72) (70.1-72) (1.2-1.79) (1.13-1.67) (0.62-0.87) (0.64-0.89) 

  885 
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Table 3. Results of the length-based assessments for 16 species of the Indonesian deep demersal fisheries. The data were analyzed with a highly 886 

customized length-based approach presented in this study (current method) and also with the LBB model (four independent runs: a. no user-defined 887 

priors set, b. an Linf prior as estimated with the customized length-based approach was inserted into the model, c. an M/K prior as estimated with the 888 

customized length-based approach was inserted into the model, d. both informed priors were inserted into the model: Froese et al. 2018b). Presented 889 

values refer to the year 2020 (exceptions in which values are for 2019 are shown with an asterisk). Median estimated parameter values of the LBB 890 

model are presented along with their ~95% confidence limits of the Monte Carlo estimates in parentheses. FMA: Fisheries Management Area. B/B0: 891 

current stock biomass relative to pristine population biomass. Lmax: maximum recorded length in the dataset (cm). Linf: asymptotic length. M/K: natural 892 

mortality over growth rate. SPR: Spawning Potential Ratio. Red values indicate poor stock status, orange values show medium status and green values 893 

represent good status. For details see the Materials and Methods section. 894 

   Customized length-based approach LBB B/B0 

Species Family FMA 

Immatures 

(%) 

Mega-

spawners (%) 

Trade 

limit (cm) Lmax SPR 

SPR to 

B/B0 

No user-

defined priors Linf prior M/K prior 

Linf & M/K 

priors 

Atrobucca brevis croaker 718 10 0 46 75 0.04 0.05 0.06 

(0.04-0.08) 

0.06 

(0.05-0.08) 

0.02 

(0.01-0.03) 

0.02 

(0.02-0.03) 

Epinephelus amblycephalus grouper 718 7 2 46 84 0.16 0.2 0.53 

(0.1-1) 

0.13 

(0.02-0.51) 

0.26 

(0.12-0.4) 

0.21 

(0.13-0.35) 

Epinephelus areolatus grouper 718 0 3 

29 53 

0.18 0.23 0.28 

(0.13-0.43) 

0.49 

(0.2-1.14) 

0.19 

(0.09-0.31) 

0.53 

(0.14-1.24) 

  712 1 2 0.28 0.35 0.18 

(0.14-0.24) 

0.19 

(0.12-0.29) 

0.09 

(0.06-0.13) 

0.1 

(0.07-0.13) 

Lutjanus erythropterus snapper 573 0 34 32 70 0.53 0.66 0.45 

(0.25-0.71) 

0.35 

(0.22-0.5) 

0.18 

(0.11-0.24) 

0.14 

(0.1-0.19) 

Lutjanus malabaricus snapper 712 74 2 

33 94 

0.06 0.08 0.11 

(0.06-0.19) 

0.25 

(0.12-0.41) 

0.05 

(0.03-0.07) 

0.12 

(0.07-0.18) 

  713 57 3 0.11 0.14 0.13 0.39 0.06 0.18 
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(0.07-0.24) (0.1-0.8) (0.04-0.1) (0.1-0.26) 

  718 25 3 0.07 0.09 0.01 

(0-0.3) 

  0.9 

*(0.09-3.1) 

0.04 

(0.02-0.08) 

0.05 

(0.03-0.09) 

Lutjanus russelli snapper 718 4 10 28 53 0.26 0.33 0.82 

(0.23-1.72) 

0.86 

(0.24-2.28) 

0.23 

(0.15-0.34) 

0.38 

(0.19-0.65) 

Lutjanus sebae snapper 718 22 1 31 96 0.03 0.04 0.31 

(0.19-0.44) 

0.31 

(0.21-0.42) 

0.08 

(0.06-0.11) 

0.09 

(0.06-0.12) 

Lutjanus vitta snapper 712 10 7 

28 43 

0.28 0.35 0.48 

(0.23-0.78) 

0.74 

(0.1-1.75) 

0.19 

(0.14-0.27) 

0.29 

(0.17-0.45) 

  713 26 2 0.13 0.16 0.17 

(0.12-0.23) 

0.3 

(0.17-0.5) 

0.07 

(0.05-0.09) 

0.12 

(0.08-0.16) 

  718 2 11 0.38 0.48 0.43 

(0.21-0.63) 

0.88 

(0.29-1.88) 

0.16 

(0.11-0.23) 

0.62 

(0.27-1.19) 

Paracaesio gonzalesi snapper 573 1 23 25 54 ~1 1.25 0.53 

(0.16-1) 

0.82 

(0.002-4) 

0.29 

(0.18-0.49) 

0.43 

(0.2-0.72) 

Pinjalo lewisi snapper 573 3 15 30 58 0.55 0.69 0.12 

(0.08-0.16) 

0.26 

(0.18-0.37) 

0.04 

(0.03-0.05) 

0.11 

(0.08-0.15) 

Pinjalo pinjalo snapper 712 80 4 31 78 0.04 0.05 0.09 

(0.06-0.14) 

0.09 

(0.06-0.13) 

0.03 

(0.02-0.04) 

0.03 

(0.02-0.04) 
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