FlyFast: A Scalable Approach to
Probabilistic Model-checking based on
Mean-field Approximation

Diego Latella!, Michele Loreti?, and Mieke Massink!

! CNR-ISTI, Pisa, Italy, {D.Latella, M.Massink}@cnr.it
2 Universita di Firenze, Firenze, Italy michele.loreti@unifi.it

Abstract. Model-checking is an effective formal verification technique
that has also been extended to quantitative logics and models such as
PCTL and DTMCs as well as CSL and CTMCs/CTMDPs. Unfortu-
nately, the state-space explosion problem of classical model-checking al-
gorithms affects also quantitative extensions. Mean-field techniques pro-
vide approximations of the mean behaviour of large population models.
These approximations are deterministic: a unique value of the fractions
of agents in each state is computed for each time instant. A drastic re-
duction of the size of the model is obtained enabling the definition of
an efficient model-checking algorithm. This paper is a survey of work
we have done in the last few years in the area of mean-field approxi-
mated probabilistic model-checking. We start with a brief description
of FlyFast, an on-the-fly model checker we have developed for approxi-
mated bounded PCTL model-checking, based on mean-field population
DTMC approximation. Then we show an example of use of FlyFast in
the context of Collective Adaptive Systems. We also discuss two addi-
tional interesting front-ends for FlyFast; the first one is a translation from
CTMC-based population models and (a fragment of) CSL that allows
for approximate probabilistic model-checking in the continuous stochas-
tic time setting; the second one is a translation from a predicate-based
process interaction language that allows for probabilistic model-checking
of models based on components equipped both with behaviour and with
attributes, on which predicates are defined that can be used in compo-
nent interaction primitives.

Keywords: Probabilistic On-the-fly Model-Checking - Mean-Field Approxima-
tion - Discrete Time Markov Chains - Time Bounded Probabilistic Computation
Tree Logic - Collective Adaptive Systems

1 Introduction and Related Work

Model-checking is an effective, powerful, and successful formal verification tech-
nique for concurrent and distributed systems that has also been extended to
quantitative logics and models. It consists of an efficient procedure that, given a



model M of the system, typically composed of system states and related tran-
sitions, decides whether M satisfies a logical formula @, typically drawn from
a temporal logic. Traditionally, model-checking approaches are divided into two
broad categories: global approaches and local approaches.

In global model-checking approaches, the procedure determines the set of
all states in M that satisfy @. Global model-checking algorithms are popular
because of their computational efficiency and can be found in many model-
checkers, both in a qualitative and in a probabilistic setting (see e.g. [17,3, 2,
37,11]). The set of states that satisfy a formula is constructed recursively in a
bottom-up fashion following the syntactic structure of the formula. Moreover, for
stochastic model-checking, the global model-checking algorithm relies on exist-
ing and well-known algorithms for Markov Chains, such as those for transient
and steady-state analysis (see e.g. [2]). Despite their success, the scalability of
model-checking algorithms has always remained a concern due to the potential
combinatorial explosion of the state space that needs to be searched.

This is unfortunate since current trends in information technology, like the
Internet of Things (IoT), include specifically systems composed of a large number
of components, often acting collectively and adapting to changing conditions, the
so called Collective Adaptive Systems® (CAS), like, for instance gossip protocols,
self-organised collective decision making, computer epidemic and smart urban
transportation systems and decentralised control strategies for smart grids [12,
50, 10,4]. Given that large portions of the IoT are intrinsically (part of) critical
infrastructures, with safety, security, and, in general, high dependability require-
ments, it is of great importance that system designers have the possibility to
perform formal analysis before developing and deploying them.

In order to mitigate the state space explosion problem, in the qualitative anal-
ysis domain, local model-checking algorithms have been proposed that, given a
state s in M, determine whether s satisfies ®@. Local model-checking approaches
use the so called ‘on-the-fly’ paradigm (see e.g. [18,5,33,27]) and follow a top-
down approach that does not require global knowledge of the complete state
space. For each state that is encountered, starting from a given state, the out-
going transitions are followed to adjacent states, constructing step by step local
knowledge of the state space until it is possible to decide whether the given
state satisfies the formula. For qualitative model-checking, local model-checking
algorithms have been shown to have the same worst-case complexity as the best
existing global procedures for the above mentioned logics. However, in practice,
they have better performance when only a subset of the system states need to be
analysed to determine whether a system satisfies a formula. Furthermore, local
model-checking may still provide some results in case of systems with a very
large or even infinite state space where global model-checking approaches would
be impossible to use.

In the context of probabilistic model-checking several on-the-fly approaches
have been proposed, among which [22], [41] and [30]. In [22], a probabilistic
model-checker is shown for the time bounded fragment of the Probabilistic Com-

3 See, e.g. www.focas.eu/adaptive-collective-systems



putation Tree Logic (PCTL) [31]. An on-the-fly approach for full PCTL model-
checking is proposed in [41] where, actually, a specific instantiation is presented
of an algorithm which is parametric with respect to the specific probabilistic
processes modelling language and logic, and their specific semantics. Finally,
in [30] an on-the-fly approach is used for detecting a maximal relevant search
depth in an infinite state space and then a global model-checking approach is
used for verifying bounded Continuous Stochastic Logic (CSL) [1, 2] formulas in
a continuous time setting on the selected subset of states.

An on-the-fly approach by itself however, does not solve the challenging scal-
ability problems that arise in truly large parallel systems, such as CAS. To
address this type of scalability challenges in probabilistic model-checking, re-
cently, several approaches have been proposed. In [32,29] approximate proba-
bilistic model-checking is introduced. This is a form of statistical model-checking
that consists in the generation of random executions of an a priori established
maximal length [38]. On each execution the property of interest is checked and
statistics are performed over the outcomes. The number of executions required
for a reliable result depends on the maximal error-margin of interest. The ap-
proach relies on the analysis of individual execution traces rather than a full
state space exploration and is therefore memory-efficient. However, the number
of execution traces that may be required to reach a desired accuracy may be
large and therefore time-consuming. The approach works for general models,
i.e. models where stochastic behaviour can also be non Markovian and that do
not necessarily model populations of similar objects. On the other hand, the
approach is not independent from the number of objects involved.

In [39], we presented a scalable model-checking algorithm, based on mean-
field approximation, for the verification of time bounded PCTL properties of an
individual® in the context of a system consisting of a large number of interacting
objects. Also this algorithm is actually an instantiation of the above mentioned
parametric algorithm for (exact) probabilistic model-checking [41]. In this case,
the parametric algorithm is instantiated on (time bounded PCTL and) the ap-
proximate, mean-field, semantics of a population process modelling language.
The approach is based on the idea of fast simulation, as introduced in [47]. More
specifically, the behaviour of a generic agent with S states in a clock-synchronous
system with a large number N of instances of the agent at given step (i.e. time)
t is approximated by K(pu(t)) where K(m) is the S x S probability transition
matrix of a (inhomogeneous) DTMC and p(t) is a vector of size S approximating
the mean behaviour of the global system at t; each element of u(t) is associated
with a distinct state of the agent, say C, and gives an approximation of (the
average of ) the fraction of the instances of the agent that are in state C' in the
global system, at step t. Note that such an approximation is deterministic, i.e.

4 The technique can be applied also to a finite selection of individuals; in addition,
systems with several distinct types of individuals can be dealt with. For the sake of
simplicity, in the present paper we consider systems with many instances of a single
individual only and we focus in the model-checking a single individual in such a
context.



p is a function of the step t, computed iteratively, using (again) matrix K(m);
the exact behaviour of the rest of the system would instead be a large DTMC
in turn. Note furthermore, that K(m) does not depend on N; in other words,
the cost of the analysis is independent from the number of objects involved, but
only depends on the number of states of the single individual object. Our work
is based on mean-field approximation in the discrete time setting; approximated
mean-field model-checking in the continuous time setting has been presented in
the literature as well. In the latter case, the deterministic approximation of the
global system behaviour is formalised as an initial value problem using a set of
differential equations. Preliminary ideas on the exploitation of mean-field con-
vergence in continuous time for model-checking were informally sketched in a
presentation at QAPL 2012° [35], but no model-checking algorithms were pre-
sented. Follow-up work on the above mentioned approach can be found in [34]
which relies on earlier results on fluid model-checking by Bortolussi and Hill-
ston [7], later published in [8]. Bortolussi and Hillston propose a global CSL
model-checking procedure for the verification of properties of a selection of indi-
viduals in a population. The procedure relies on mean-field convergence and fast
simulation results in a continuous time setting (see also [19, 26, 9] and references
therein). The approach in [7, 8] is based on an interleaving model of computa-
tion, rather than a clock-synchronous one. Furthermore, a global model-checking
approach, rather than an on-the-fly approach is adopted; it is also worth not-
ing that the treatment of nested formulas, whose truth value may change over
time, turns out to be much more difficult in the interleaving, continuous time,
global model-checking approach than in the clock-synchronous, discrete time,
on-the-fly one.

We conclude this brief overview on related work by mentioning the approach
of using techniques and tools developed for continuous signal monitoring as
means for performing approximated global model checking of probabilistic mod-
els. In this approach, a deterministic, continuous, approximation of a population
system model is first computed [9], and then monitoring techniques are applied
on the resulting function of continuous time [25, 24]. Recently, this approach has
been extended in order to include also spatial features [51], as originally proposed
in [16].

We finally note that one should keep in mind that mean-field /fluid procedures
are based on approzimations of the global behaviour of a system. Consequently,
the techniques should be considered as complementary to other, more accurate
analysis techniques for CAS, primarily those based on stochastic simulation, like
for example statistical model-checking. In practice, given the high computational
cost of simulation based techniques, especially when compared with the very low
cost of the mean-field based techniques, the latter are more suitable for getting
first ideas on the main features of the models at hand and a first screening
thereof. Then, when only a few options are left, more detailed analyses could be
performed and more accurate techniques would be recommended.

5 Tenth Workshop on Quantitative Aspects of Programming Languages, March 31 -
April 1, 2012, Tallinn, Estonia.



In this paper, we present a survey of work we have carried out recently
within the context of the EU project QUANTICOLS in the area of mean-field
approximated probabilistic model-checking. We start with a brief description,
in Section 2, of FlyFast, the on-the-fly model checker which implements the
procedure we proposed in [39,43,44]. Then, in Section 3 we show a complete
example of use of FlyFast in the context of Collective Adaptive Systems, taken
from [40]. In Section 4 we discuss two additional interesting front-ends for Fly-
Fast; the first one, originally presented in [42], is a translation to FlyFast from
CTMC-based population models and (a fragment of) CSL that allows for ap-
proximate probabilistic model-checking in the continuous stochastic time setting;
the second one, originally presented in [15], is a translation to FlyFast from a
predicate-based process interaction language that allows for probabilistic model-
checking of bounded PCTL formulas on models based on components equipped
both with behaviour and with attributes; component interaction takes place via
communication primitives using predicates over attributes for expressing the set
of partners in multi-cast communication. We finally draw some conclusions in
Section 5.

2 A Brief Overview of FlyFast

In this section we recall the main features of FlyFast.” The reader interested in
details is referred to [39, 43, 44]. A FlyFast model specification characterises a sys-
tem consisting of the clock-synchronous product of a (large) number of instances
of a probabilistic process. Systems with several distinct types of processes can
be specified as well; here we consider only the the case of a single process type
for the sake of simplicity. The size of the system is assumed constant during
system evolution; FlyFast does not support explicit dynamic creation/deletion
of processes. The behaviour of the probabilistic process is specified by a set A
of state and action probability definitions. A state definition has the following
syntax: state C {a;.C; + ...+ a,.C,} where a; € A—the set of FlyFast actions—
C,C; € S—the set of FlyFast states—and, for i, = 1,...,r a; # a; if i # j;
note that C; = C; with ¢ # j is allowed instead. The informal meaning of the
above definition is that, when in state C, the process can jump to state Ci, by
executing (atomic) action aj, or to state Cy, by executing (atomic) action as,
and so on. Each action has a probability assigned by means of an action proba-
bility definition of the form action a : exp where exp is an expression involving
constants and frc (C) terms. Constants are floating point values or names associ-
ated to such values using the construct const name = value—we let A denote
the set of such auxiliary definitions; frc (C) denotes the element associated to
state C in the current occupancy measure vector—o.m.v. in the sequel—that is a
vector with as many elements as the number of states of the individual process;

5 http://www.quanticol.eu

" FlyFast (https://quanticol.github.io/jSAM/flyfast.html) is provided within the
JSAM (java StochAstic Model Checker) framework which is an open source Eclipse
plugin (https://quanticol.github.io/jSAM/).



the element associated to a specific state gives the fraction of the subpopula-
tion currently in that state over the size of the overall population; the o.m.v.
is a compact abstract representation of the system global state, where process
identity is lost. Thus, the probability of executing a transition of a process in
the system may depend on the global distribution of the processes in their local
states within the system; process interaction is thus probabilistic and indirect,
via transition probabilities, i.e. functions of the o.m.v.. Note that, whenever the
exit probability p of a state is smaller than 1, FlyFast implicitly inserts a self-
loop in the state, associated with the residual probability 1 — p. The initial state
of the system is specified by means of the system construct, followed by the
name of the system model, and the vector Cg of the names of the initial state of
all other instances, which implicitly specifies also the size N of the system. By
convention, the first element Cg[1] of vector Cg refers to the individual process
to analyse. In general more then one process can be specified for analysis; here
we consider only the the case of the single process for the sake of simplicity.

const N = 2000 state S {inf_ext.E + inf_int.E}
const alpha_e = 0.1 state E {activate.I}

const alpha_i = 0.2 state I {recover.R}

const alpha_r = 0.2 state R {loss.S}

const alpha_a = 0.4

const alpha 1l = 0.1

action inf_ext : alpha_e

action inf_int : alpha_i * frec (I) system SEIR = (S[N], E[0], I[0], R[0])
action activate : alpha_a

action recover : alpha_r

action loss : alpha_l

Fig. 1. A FlyFast specification of an epidemic model

Ezample 1 (An epidemic system model). In Fig. 1 the FlyFast specification of
the epidemic model discussed in [39] is shown. The system is composed of 2000
instances of a process with four states; when in state S (susceptible) the process
can become exposed (state E) either via an external infection, with probability
alpha_e, or via internal infection, with a probability that is proportional to the
fraction of processes in the system that are already infected, i.e. alpha_ixfrc (I).
The infection activates in an exposed process with probability alpha_a, leading
to state I. An infected process may recover with probability alpha r and then
loose immunity with probability alpha_1. Initially, all 2000 instances are in state
s®.

Given specification (A, A, Cg) for a system model of size N, FlyFast gener-
ates a transition probability matrix K(m) such that K(m). . is the probability
for the (individual) probabilistic process to jump from state C to C’, given the
current o.m.v. m. Thus, K(m) is a function of the o.m.v. m; strictly speaking,
A characterises an inhomogeneous DTMC. In [39,43] the details of the formal

8 In FlyFast, the notation C[n] is used for indicating n copies of state C.



operational semantics definition for the model specification language are pro-
vided as well as the procedure for generating K(m); in the sequel we recall
only the main steps. Let Sa be the set of states defined in A, with |Sa| = S,
Us = {(m,...,mg) € [0,1]%mq + ... + mg = 1} denote the unit simplex
of dimension S, and Z : Sao — {1,...,S5} be a bijection. For state C € Sa,
with Z(C) = ¢, the interpretation [frc (C)]m of frc(C) in the current o.m.v.
m = (my,...,mg) is defined as expected: [frc (C)|m = m., i.e. frc(C) is the
fraction of the subpopulation currently in state C over the size of the overall
population, which, by definition of the o.m.v., is exactly the element m. of
m. The probability associated with an action a by action probability definition
action a : F is a function m,(m) of the o.m.v. m, defined as m,(m) = [E]m,
where the interpretation function [-] is defined recursively on arithmetic expres-
sions F involving frc and constants, in the obvious way. More precisely, letting
c represent an a-labelled transition in the operational semantics of the
FlyFast modelling language and assuming ¢ = Z(C) # ¢ = Z(C’), the proba-
bility matrix function K : &° x {1,...,8} x {1,...,8} — [0,1] is defined as
follows: K(m), o = Za:ci»c/ ma(m) and K(m), . =1— Zje{l,...75‘}\{c} K(m).;.
In other words, K(m), s is the cumulative probability of jumping from C to C’,
abstracting from the specific action performed by the process in the jump; this
abstraction choice is typical of probabilistic, PCTL/DTMC-based approaches.
Finally, note that, by construction, K(m) does not depend on N.

Ezxample 2. Tt is easy to see that, for the model of Example 1, the resulting
matrix is the following one, with m = (ms, me, m;, m,) where m is the fraction
of processes in state S, m. is the fraction in state E, m; is the fraction in state
I, and m, is the fraction in state R:

1—(0.140.2m;)0.14+02m; 0 0

0 0.6 04 0
K(msame:miva) = 0 0 0.8 0.2
0.1 0 0 0.9

The exact probabilistic semantics of the complete system model is easily
given as product of N instances of K with appropriate o.m.v. parameter and ar-
gument states. In other words, the transitions of different processes are intended
as stochastically independent®. More precisely, for global system state C € S%,
let the associated o.m.v. M(C) be defined as M(C) = (M,...,Mg) with
M; = % Zgzl L, =1-1(i)} where 1¢,—gy is 1, if & = 3, and 0 otherwise. The
probabilistic semantics of the system is the DTMC X (V) (¢) with one-step transi-
tion probability SN x SN matrix P with Pcc = Hr]val K<M(C))I(C[n])l(cf71])
and initial probability mass all in Cg. FlyFast provides a standard stochastic sim-
ulation functionality based on the exact probabilistic semantics, namely matrix

9 Tt is worth stressing here that in the model of process interaction presented in [47],
which FlyFast is based on, processes do not synchronize on actions explicitly (i.e.
there is no notion of randez-vous here). Process interaction is only indirect, by means
of the impact of the 0.m.v. on individual transition probabilities.



P. In particular one can execute single runs or get averages of a user-specified
number of runs. The output is given in the form of traces of the o.m.v. DTMC
M) (t) = M(XN)(t)). In addition, the tool can perform ezact, on-the-fly (full)
PCTL model checking using P. FlyFast accepts state formulas built out of atomic
propositions, negations, disjunctions and probabilistic quantification over path-
formulas; the latter are next and until formulas. Of course, as opposed to ap-
proximate model-checking, exact PCTL model-checking of a formula can be used
only if the portion of the state-space which needs to be generated and analysed
for deciding satisfaction of the formula is not too large.

FEzample 3. For the epidemic model of Example 1, but with constant N set to 8,
for a system with only 8 processes, we consider the following properties, where
tt stands for true, LowInf is defined, using the formula construct of FlyFast,
as follows: formula LowInf : (frcI) < 0.25, and I (E, respectively) labels all
system states the first element of which is process state I (E, respectively):

P1 the worm will be active in the first component within k steps with a proba-
bility that is at most p: P<,( tt USK T);

P2 the probability that the first component is infected, but latent, in the next
k steps while the worm is active on less then 25% of the components is at
most p: P<,(LowInf UK E );

P3 the probability to reach, within & steps, a configuration where the first com-
ponent is not infected but the worm will be activated with probability greater
than 0.3 within 5 steps is at most p:

Pop(tt USF(IEAITAPsos( tt US® 1))).

In Fig. 2 the result of exact PCTL model-checking of Example 1 is reported. On
the left the probability of the set of paths that satisfy the path-formulae used
in the three formulae above is shown for k£ from 0 to 70. On the right the time
needed to perform the analysis using PRISM [37] and using FlyFast exact PCTL
model checking are presented'®.

More interestingly, FlyFast can compute the deterministic limit of the o.m.v.
DTMC, for N — oo, and execute time bounded PCTL model-checking using
such a deterministic approximation. The approach has been inspired by Fast
Simulation, proposed in [47] and is based on Theorem 4.1 of [47], actually on a
simplified version of the theorem, thanks to the specific syntax of the expressions
used in FlyFast action probability definitions. Informally, let Co™) be the initial
state of the FlyFast specification of a system with N processes and assume there
exists po € U such that almost surely limy_, oo M(CO(N)) = po. Let function
w(t) be defined as follows: p(0) = po and p(t + 1) = p(t)? - K(u(t)), where,
as usual, m” is the transpose of vector m. Then, for any fixed time 7, almost

10 We used a 1.86GHz Intel Core 2 Duo with 4 GB. State space generation time
of PRISM is not counted. The experiments are available in the FlyFast web site,
showing that the latter has comparable performance. Worst-case complexity of both
algorithms are also comparable.



L | PRISM | Exact on-the-fly

o
©

< P1| 108.479s 20.587s
Sosf| " P2| 51.816s 3.409s
= o P3| 216.952s 85.579s
Qo4

% g P1

o2 P2 Model parameter values:

P3
a.=0.1, a; =02, a, =0.2
Qg = 04, o] = 0.1

o

0 20 60

40
Time bound (k)

Fig. 2. Exact model-checking results (left) and verification time (right).

surely limy oo MV)(7) = pu(7)—cfr. Theorem 4.1 of [47]. So, the matrix K(m)
generated by FlyFast can be conveniently (re)used also for approzimating the
o.m.v., which, we recall, is an abstract representation of the global system state;
it is important to stress here that the o.m.v. M(V)(t) is a stochastic process,
whereas the approximation we use, u(t), is deterministic, i.e. just a function
of the step (time) t. We consider now the stochastic process H(¢) the generic
state of which, at time ¢, is a pair (C, u(¢)). The first component C is the current
state of the selected process in the system we are interested in, and the second
component pu(t) represents the current global system state. It is easy to see
that H(t) is a DTMC and that the probability of a jump from state (C, (¢)) to
(¢, m(t+1)) is K(ue(t))z(c),z(cr)- H(2) is the approzimated probabilistic semantics
of the system model. By performing on-the-fly model-checking on #(t)—where
state labels of the selected process are exported to pair states (C, u)—FlyFast
provides an approximated, mean-field based, efficient time bounded PCTL model-
checking functionality. In other words, for any fixed time 7, sample C of X(t)
at time 7 and safe formulal! @ the following holds: C = x@) @ if and only
if (C[1], (7)) Fp) @. In the case of mean-field model-checking, the set of
atomic propositions is the set of states of the single agent or assertions on the
components of the o.m.v.; in addition one can assign a name to a formula and
use it in larger formulas. Finally, note that FlyFast can provide, as a by-product,
the plot of u(7) for 7 ranging in a user-specified range.

Ezample 4. Fig. 3 shows the result of mean-field, approximated model-checking
by FlyFast on the model of Example 1 with formulas as in Example 3, for the first
object of a large population of 2000 objects, each initially in state S. In Fig. 3
(left) the same properties are considered as in Example 3. The analysis takes
less than a second and is insensitive to the total population size. Fig. 3 (right)
shows how the probability measure of the set of paths satisfying the formula
tt USF(IE AT A Psos( tt US® 1)) of property P3 on page 8, (for k = 3),
changes for initial time t0 varying from 0 to 10.

' We refer to [39, 43] for the characterisation of safe formulas and a related discussion.



N

o
©

o
o
\\‘

o
o

o
IS

P1

Path set probability
Satisfaction Probability

o o
N IS
—

o
>

P3

o
o

60 0 2 4

0 20 40 6
Time bound (k) Starting time (t0)

Fig. 3. Mean-field model-checking results.

We close this section by stressing that the exact full PCTL model-checker
and the approximated mean-field time bounded PCTL model-checker are both
instances of the same parametric implementation of an on-the-fly model-checking
algorithm. Furthermore, the computation of the set of states to be analysed
at the next step is a key operation of the on-the-fly procedure and, for exact
model-checking, in the worst case the step returns SV states, whereas for mean-
field model-checking, the number of states returned in the worst case drops
dramatically to S.

3 Predator-prey Model of Lotka-Volterra in FlyFast

The next example we consider is a widely studied model for ecological compe-
tition, first independently investigated by the biophysicist Alfred Lotka and the
Italian mathematician and physicist Vito Volterra in the twenties of the 19th
century [49, 52]. Since then, the model has been studied extensively by numerous
other scientists and some of its elements are still at the basis of many popula-
tion models that have been developed in the course of time, both in continuous
time, e.g. [28,20] and references therein, and in discrete time settings, e.g. [23].
In its simplest form the model can be interpreted as a simplified and idealised
description of two species in an ecosystem, often indicated as predator and prey,
or foxes and rabbits for a concrete example.

In the variant we consider here we assume that each element of the two
species can be in one of two states; it is either alive, or it is somehow ‘dormant’
waiting to get born again. We do this because the language we use does not
provide explicit constructs for the dynamic creation of objects and is implicitly
assuming that the total population size of all species remains constant. If we
choose the size of the ‘dormant’ part of the population of each species large
enough, this should not have any effect on the part of the population that is
alive, since there are always enough dormant rabbits and foxes to get born.

As in the original version, we assume that the model depends on four param-
eters:



The net probability ‘a’ of an increase in the size of the rabbit population
which is the difference between the natural birth and death probabilities.

— The probability ‘b’ of rabbits that die because they are eaten by foxes

— The probability ‘e’ of extra foxes being born and surviving because they eat
rabbits (efficiency).

The net probability ‘c’ of the natural decrease in the population of foxes.
Since the life of a fox depends on the availability of rabbits, there is a natural
tendency of foxes to die when there a few or no rabbits

A model in terms of difference equations of the populations of foxes and
rabbits can then be given by:

RD(t+1) = RD(t) +b-h- RL(t) - FL(t) —a - h - RL(t)
RL(t+1) = RL(t)+a-h-RL(t) —b-h- RL(t) - FL(t) W
FD(t+1)=FD(t)—e-h-RL(t)- FL(t) + ¢ h- FL(t)
FL(t+1) = FL(t)+e-h- RL(t) - FL(t) — ¢ - h - FL(t)

where t ranges over the set of the natural numbers, RD and RL are the fractions
of ‘dormant’ and ‘alive’ rabbits, respectively, and F'D and F'L the fractions of
‘dormant’ and ‘alive’ foxes, respectively. The factor h is a rescaling factor for
the duration of steps and 0 < h < 1. The smaller the value of h the smaller
the relative probabilities of the different events and the more accurate the re-
sults, but at the cost of an increase of the number of steps per time-unit in
the model-checking procedure, which takes more time. For the model in this
section we chose h = 0.125. Note that when this discrete model is interpreted
as an approximation of the well-known continuous time model, i.e. in terms of
differential equations, this approximation is not perfect, in the sense that the
solution of the differential equations would give a perfect oscillating behaviour,
whereas the solution of the difference equations will result in a small error in
each step. This error has a cumulative effect resulting in oscillations with ever
higher peaks, as can easily be observed in the results. A better approximation of
the continuous model could be reached by using a more sophisticated integration
method instead of the Euler method that is used implicitly in this case study.

const a = 0.04 state RD {rborn.RL}

const b = 0.5 state RL {rdies.RD}

const ¢ = 0.05 state FD {fborn.FL}

const e = 0.2 state FL {fdies.FD}

const h = 0.125

action rborn : a * h x frc (RL) /frc (RD) system LoVo = (RD[5000], RL[1000], FD[3000], FL[1000])

action rdies : b h * frc (FL)
action fborn : e * h * frc (RL) * frc (FL) /frc (FD)
action fdies:c*h

Fig. 4. A FlyFast specification of the Lotka-Volterra model

The FlyFast specification of the Lotka-Volterra model is shown in Fig. 4.
Assuming Z(RD) = 1, Z(RL) = 2, Z(FD) = 3, Z(FL) = 4, the 4 x 4 matrix



K:u*x{1,...,4} x {1,...,4} — [0,1] generated by FlyFast is shown below,
noting that the matrix is stochastic for the time interval of interest (and in
particular my # 0 # mg):

1—a~h~% a-h-% 0 0
b-h-mgy 1—0b-h-my 0 0
K(m17m27m3,m4) = 0 0 1—ehmo 24 ehomoDs
ms ms
0 0 c-h 1—ch

It is easy to see that by computing p(t+1) as u(t+1) = u(t)? - K(u(t)), where
p(t) = (p1(t), ua(t), (), pa(t)), one obtains again the difference equations (1)
of page 11, where, of course, pi(t) stands for RD(t), ua(t) for RL(t), ps(t) for
FD(t), and p4(t) for FL(t).

As it is well known, the global behaviour of the (idealised) model shows
oscillations in the populations of rabbits and foxes for certain values of the model
parameters. In fact, the model has very interesting behaviour and is therefore
widely studied, but in this paper we focus mainly on the illustration of the
application of fast mean field model checking of an individual rabbit or fox in
the context of the overall oscillating behaviour. For example, for the values of the
parameters and initial state as in Fig. 4, we obtain the results for the occupancy
measure varying over time shown in Fig. 5, which is the plot of the limit o.m.v.
(1) produded by FlyFast.

0'7: — Foxes
A B Bt Rabblts
06 f
[0 [
o
Bos| 2
m0.57 R
I
S04 Ff
2t
c | . . . .
203f ! P I :
3 [ H A H s H H
8 [ 1 h 3 § i A i
NI VYAV VN
041 \_/ \ J X
07 PR PR PR

0 1000 2000 3000 4000 5000
Time steps

Fig. 5. Fraction of rabbit and fox populations.

In the predator-prey model one could furthermore be interested to know what
is the probability that a rabbit survives for a certain amount of time, and how
this probability changes over time with the oscillation of the population of foxes.
Fig. 6 shows the probability that a fox gets born or dies within time bound ¢



ranging from 0 to 3000 time steps. It also shows the results for a rabbit getting
born or dying. The formula for the probability that a rabbit gets born within ¢
time steps is P—7( RD U=! RL ). The other formulas are similar. Fig. 6 shows
that both foxes and rabbits eventually get born and die when given enough time
and starting from the initial state of the overall system. The curves also reflect
the oscillations in the populations over time and consequently the change in

probability to get born or die.

L oo ———e ren—ss
.__.- o 'll //’ —//
F 5 14
[ }/, /—
08 H i /
v vl

i S0

| P00
> 3 / ! X is born
=06 i/ X dies
% [ ! bbit is born
o) | / ! bbit dies
Qoat i
el N B

i/
II
] ,
0.2 s
- ,I
| L)
0
0 500 1000 1500 2000 2500 3000

Time bound in steps

Fig. 6. Probability that a fox (rabbit) gets born or dies within time bound ¢ ranging
from 0 to 3000 time steps.

Fig. 7 shows the time-dependent probability of a fox and a rabbit to get
born or die in the next 10 time steps, starting from initial times ranging from
0 to 5000. The probability that a rabbit dies within 10 time units is obtained
by evaluating the property P—,( RL U=!0 RD ), for different initial times. The
other formulas are similar. In this oscillating system the time-dependence of these
probabilities can be observed very well. The probabilities of a rabbit getting born
(dying respectively) within 10 time units and a fox getting born follow closely
the oscillations in the respective population sizes. The probability that a fox dies
in this model is constant. The amplitude of the oscillations is slowly increasing.
This is likely due to the accumulation of small errors in the computation due
to the constant step size used in the computations. In fact it is well-known
that a mean-field approximation may become less accurate on the longer run,
in a discrete time setting. See e.g. [20] for a study of this aspect of the Lotka-
Volterra model in the continuous time setting. We will come back to these issues
in Section 4.1.

Finally, Fig. 8 shows the time dependent probability of reaching a state,
within 100 time steps, in which the probability of an individual rabbit to die



04 L Fox is born within 10 time units
R Fox dies within [10 time units

e Rabbit is born within 10 time units ]
------ Rabbit dies within 10 time units ; i
0.3 3 i '
1 " [}
A i i !
- i ! " !
— " ] [Nl ]
= i : i :
Lo2 H i H |
g i I | Y 1
() 1 [ ]
o [ 1 [ ]

= A I . i

o [ [N [ )

[ [ [} [

0.1 i ey 0 AN
. ! \ ) \ \ ! \
AN A BN [N
, ‘\ I/ R \
i L
0 1000 2000 3000 4000 5000
Time

Fig. 7. Time dependent probability to get born or die in the next 10 time steps for

different initial times from 0 to 5000.

within 10 time steps is higher than 0.2. This probability is shown for different
initial times ranging from 0 to 5000. This is a typical example of a ‘nested’
formula involving two occurrences of the until operator. The formula is:

P_r( tt UST0 (RL A Poga( RL US'0 RD)))

The figure shows that there are indeed relatively short periods in which such
states can be reached within 100 time steps. Nested formulas are relatively easy
to handle due to the iterative and recursive way in which the FlyFast model-

checker works.

4 Extending the Applicability of FlyFast

In the previous sections we have shown examples of the expected use of FlyFast,

namely the development of a probabilistic, discrete time, population model of the

system of interest and its analysis, mainly via bounded PCTL model-checking
based on mean-field semantics. In this section we briefly describe two exten-
sions of the applicability of the tool, both designed as additional front-ends for
FlyFast, so that no modifications are required of the tool itself. The first exten-
sion concerns on-the-fly fluid CSL model-checking of continuous time population
models; the second extends the FlyFast modelling language, and its underlying
agent interaction paradigm, by adding predicate based communication primi-
tives. Details on the first extension can be found in [42] while the second front

end is described in detail in [15,45].



; P=%{ tt U{<=100} (RL and P>0.2{{ RL U{<=10} RD})}

05} \

04 f
z | \
503
© |
o L
2ol \ ‘
n 02 N ‘ ‘

01f \ \

of
0 1000 2000 3000 4000 5000

Time

Fig. 8. Time dependent probability of reaching a state, within 100 time steps, in which
the probability of an individual rabbit to die within 10 time steps is less than 0.2 for
different initial times ranging from 0 to 5000.

4.1 FlyFast Front-end for Fluid Model-checking of Continuous Time
Population Models

Fluid model checking [7,8,34] relies on a global model checking approach for
time-inhomogeneous Continuous Time Markov Chains (ICTMC) representing
an individual object in the context of a large CTMC population model. The
rates of the individual may depend on the fraction of the population that is in
a particular state. The algorithm relies on the deterministic approximation of
the average stochastic behaviour of the system in continuous time, i.e. a fluid
approximation [36,9]. Although the technical and mathematical foundations of
the continuous time case are obviously different from those in the discrete case,
at the intuitive/conceptual level, the two cases are similar.

Suppose you have system of N agents, each modelled by a ICTMC with
states in {1,...,S}, and S x S infinitesimal generator matrix Q) (zx) that
may depend on the current o.m.v. € U°; the o.m.v. process is a CTMC on
the space [0,1]° with initial state ac(()N) equal to the fraction of agents in each
local state, in the initial global state. The average infinitesimal variation of the
0.m.v. process, given that it is in state & is F(N)(x) = =7 - QW) (x). If, for
N — oo, Q™) (x) converges uniformly to the Lipschitz continuous generator
matrix Q(x), and w(()N) to @, and, furthermore, if x(¢) is the solution of the
ODE % = F(z) = 27 - Q(z) for initial condition x(0) = =g, then, almost
surely, in the limit, the o.m.v. process behaves the same as x(t), for any finite
time horizon T [19, 36].

This fundamental result has given rise to a fast simulation approach also in
the continuous case. Assuming, again by convention and without loss of gen-



erality, that we are interested in the first of the N agents, let Z(")(t) be the
ICTMC on space {1,...,S} modelling the behaviour of such an agent. Let us
furthermore consider the ICTMC on {1,...,S} z(t) such that Pr{z(t + dt) =
Jlz(t) =i} = ¢; j(x(t))dt, and let Q. (x(t)) = (gi,;(x(t))). We then have that for
any finite horizon T and t < T' the behaviour of the single object Z(V)(t) tends
to the behaviour of the object that senses the rest of the system only through
its limit behaviour given by @, i.e. z(t). On the basis of these results, in [7,8] a
model-checking algorithm has been proposed for CSL robust!? formulas.

In [42] we took an alternative approach, showing that, under suitable con-
vergence and scaling assumptions'®, and for models that are not too stiff'4,
fluid model checking can be performed exploiting on-the-fly mean field model
checking. In particular, in [42] a mechanical translation is defined which de-
rives a time-inhomogeneous DTMC and a bounded PCTL formula from the
input ICTMC model and bounded CSL formula. FlyFast can then be used for
performing on-the-fly mean-field model-checking of the derived formula on the
derived IDTMC.

Our approach starts from the idea that we can interpret the difference equa-
tions obtained from a discrete time population model as an instance of the
Euler forward method for approximating the solution of a set of ODEs. The
set of ODEs we are interested in solving are those of a corresponding contin-
uous population model. This, in turn, means that we need to derive suitable
values for the probabilities from the rates in the continuous model. What we
are actually interested in is to transform an ICTMC model of an individual
(from which the ODEs can be derived) into an IDTMC model, with the same
local states and jump structure as the ICTMC; from this IDTMC we get the
set of difference equations that can be used to approximate the solution of the
ODE:s. Intuitively, the IDTMC is obtained from the ICTMC using an approach
which is similar to CTMC uniformisation'®; we define a probability matrix K
such that K = T+ % - Q, where Q is the infinitesimal rate matrix—which is
a function of x(t)—and ¢ must not only satisfy the standard requirements for
uniformisation, but also be such that absolute stability of the method as well as
acceptable accuracy are guaranteed [48]. This procedure produces a discretisa-
tion of the continuous-time model; of course, also the logical formulas must be
translated by consistently discretising them—and in particular the time bound
of the bounded until operator.

We refer to [42] for the detailed definition of the translations and their correct-
ness proof. Here we point out that such global fluid model checking algorithms,
as described in [7, 8], require the a priori calculation of discontinuity points, i.e.
points in time in which the truth values of time-dependent (sub)-formulas of an

12 We refer to [7,8] for the definition of formula robustness

13 See Theorem 5 of [7].

14 Stiff models are those whose rates differ several orders of magnitude.

15 More specifically, we use only the discretisation phase of uniformisation, and not
the transient analysis part, that would require a further composition with a Poisson
process.



until formula change. This is a non-trivial task and consists in finding all zeros of
an analytic function. In the on-the-fly setting, instead, such points are detected
automatically during the computation of the probabilities, up to a difference that
is in the order of a small discrete step size; moreover, on-the-fly approaches are
particularly efficient when verifying conditional reachability properties because
in that case much fewer states need to be generated.

On the other hand, our approach is ultimately based on an Euler forward
method to solve differential equations. This poses certain limitations on the
continuous time models that can be analysed efficiently this way, in particular
they should not be too stiff. For non stiff models the results are promising as
shown in [42] for the available benchmark models for which also some results for
global fluid model checking and statistical model checking are available in the
literature.

4.2 FlyFast Front-end for Predicate-based Coordination

Recent proposals for CAS modelling and programming languages, like [21, 6],
typically assume any such a system be composed of a set of independent com-
ponents where a component is a process equipped also with a set of attributes
describing features of the component. Attributes can be used in predicates ap-
pearing in the language input/output primitives. Predicate-based output/input
multicast, originally proposed in [46], forms the basis of interaction schemes in
languages like SCEL [21] and CARMA [6]. In [15] we proposed PiFF—Predicate-
based Interaction for FlyFast—a front-end modelling language for FlyFast in-
spired by CARMA, that provides predicate-based input/output multicast actions.

In PiFF, each component consists of a behaviour—modelled, like in FlyFast,
as a DTMC-like agent—and a set of attributes. The attribute name-value corre-
spondence is kept in the current store of the component. Associated to each
action there is also an (atomic) probabilistic store-update. For instance, as-
sume components have an attribute named loc which takes values in the set
of points of a space, thus recording the current location of the component. The
following action models a multi-cast via channel o to all components in the
same location as the sender, making the latter change its location randomly:
a*[loc = my.loc]()Jump. Here Jump is assumed to randomly update the store
and, in particular attribute loc. The computational model of PiFF is clock-
synchronous, as in FlyFast, but at the component level. In addition, each compo-
nent is equipped with a local outboz. The effect of an output action o*[r,]()o is
to deliver output label a() to the local outbox, together with the predicate .,
which (the store of) the receiver components will be required to satisfy, as well
as the current store of the component executing the action; the current store is
then updated according to update o. Note that output actions are non-blocking
and that successive output actions of the same component overwrite its outbox.
An input action a*[rs]()o by a component will be executed with a probability
which is proportional to the fraction of all those components whose outboxes
currently contain the label «(), a predicate 7, which is satisfied by the compo-
nent, and a store which satisfies predicate 7, in turn. If such a fraction is zero,



then the input action will not take place (input is blocking), otherwise the action
takes place, the store of the component is updated via o, and its outbox cleared.

A PiFF model specification is compiled into a FlyFast model specification by
means of a (purely mechanical) translation and related bounded PCTL formulas
are mechanically translated as well. For the sake of simplicity, we do not describe
the translation here; the interested reader can find its definition in [15], where
the formal stochastic semantics of PiFF are also given and the translation is
shown correct with respect to such semantics; optimisation of the translation
is dealt with in [45]. In particular, in [45], a bisimilarity based state-reduction
strategy for the target model specification is proposed.

5 Conclusions

Model-checking has proven to be an effective and successful formal verification
technique. Initially developed for qualitative models and logics, it has been ex-
tended also to quantitative models and logics such as DTMCs and PCTL as
well as CTMCs and CSL. It is well known that model-checking suffers from
the state-space explosion problem, which makes the technique non-scalable and
thus poorly applicable to large scale systems. On the other hand, current trends
in information technology, like the Internet of Things, include systems com-
posed of a large number of components, often acting collectively and adapting
to changing conditions, the so called Collective Adaptive Systems. In this paper
we have briefly described the work we have been carrying out in the area of
approximated bounded PCTL model-checking of Population DTMC models. In
particular we have given an introductory description of FlyFast, a mean-field,
on-the-fly bounded PCTL model-checker, including an overview of its theoret-
ical foundation, its main functionalities and a detailed example of application.
A couple of extensions of the applicability of the tool have been shown as well,
in the form of specific additional front-ends to the original tool; thus, the tool
applicability is extended without actually modifying the tool.

There are several lines of future work of our interest. First of all, following
approaches similar to those presented in [47], we plan to investigate the extension
of the model-checking technique to systems with memory/rewards. Space and
the spatial distribution of agents play a major role in CAS and, consequently, it
should be a “first class” component of the modelling language and the underlying
framework. For this reason, we have investigated Closure Spaces, a generalisation
of Topological Spaces that includes discrete, graph-like, space structures, for
which we have developed the Spatial Logic for Closure Spaces, SLCS and a
specific model-checking algorithm [13, 14]. A subject for future research is thus to
incorporate a notion of space in the FlyFast modelling language and to integrate
FlyFast and topochecker, the spatial model-checker for SLCS and its extensions.
The investigation of different classes of interaction probability specifications in
the FlyFast modelling language and of their implications on issues like model-
reduction (see e.g. [45]) is also a promising subject for future research.



6 Acknowledgments

In the late 80’s of the previous century, Diego met Ed, who was chairing a
Work Package of the EU Lotosphere project, in which Diego participated as
well. At that time, Diego was fascinated by the early work on probabilistic
process algebras by Scott Smolka, Kim Larsen and others and he was applying
similar ideas to LOTOS, together with Paola Quaglia. At the same time, he was
loving the work of Rom, supervised by Ed, on Bundle Event Structures as a
mathematical model underlying a truly concurrent semantics for LOTOS. The
obvious step was to start thinking of probabilistic extensions of Bundle Event
Structures. Accidentally, Diego and Mieke had met at a Lotosphere workshop in
The Hague and they found themselves nicely synchronised in their professional
interests, and beyond ...

Not surprisingly, Diego moved to Twente where he spent 12 months, from july
1992 to june 1993, and together with Ed, Rom and Joost-Pieter, started inves-
tigating probabilistic, deterministically timed and stochastically timed Bundle
Event Structures. This was the start of a lively friendship of the four of them
as well as of a series of headaches when trying to find finite graph-like rep-
resentations of such structures suitable for analysis. They have been struggling
together for years, searching for cut-off events in those slippery structures. Even-
tually, Mieke moved to Italy and joined the group of cut-off events hunters. It was
fun! Maybe we did not manage to completely master the analysis of quantitative
Bundle Event Structures, but we are aware of a couple of things: our current
work on probabilistic systems is rooted back to those days (and headaches .. .)
and our friendship too. All this thanks to Ed, who accepted having Diego around
in Twente in 1992-93.

References

1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking Continuous Time
Markov Chains. ACM Transactions on Computational Logic 1(1), 162-170 (2000)

2. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-Checking Algorithms

for Continuous-Time Markov Chains. IEEE Transactions on Software Engineering.

IEEE CS 29(6), 524-541 (2003)

Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)

4. Bernardo, M., De Nicola, R., Hillston, J. (eds.): Formal Methods for the Quantita-
tive Evaluation of Collective Adaptive Systems, LNCS, vol. 9700. Springer-Verlag
(2016), iSBN 978-3-319-34095-1 (print), 978-3-319-34096-8 (online), ISSN' 0302-
9743

5. Bhat, G., Cleaveland, R., Grumberg, O.: Efficient on-the-fly model checking for
CTL*. In: LICS. pp. 388-397. IEEE Computer Society (1995)

6. Bortolussi, L., De Nicola, R., Galpin, V., Gilmore, S., Hillston, J., Latella, D.,
Loreti, M., Massink, M.: CARMA: collective adaptive resource-sharing marko-
vian agents. In: Bertrand, N., Tribastone, M. (eds.) Proceedings Thirteenth Work-
shop on Quantitative Aspects of Programming Languages and Systems, QAPL
2015, London, UK, 11th-12th April 2015. EPTCS, vol. 194, pp. 16-31 (2015),
http://dx.doi.org/10.4204/EPTCS.194.2

w



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I.
(eds.) CONCUR. LNCS, vol. 7454, pp. 333-347. Springer-Verlag (2012)
Bortolussi, L., Hillston, J.: Model checking single agent behaviours by fluid ap-
proximation. Inf. Comput. 242, 183-226 (2015)

Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of
collective system behaviour: A tutorial. Performance Evaluation 70(5), 317 — 349
(2013), http://www.sciencedirect.com/science/article/pii/S0166531613000023
Bradley, J.T., Gilmore, S.T., Hillston, J.: Analysing distributed internet worm
attacks using continuous state-space approximation of process algebra models. J.
Comput. Syst. Sci. 74(6), 1013-1032 (2008)

Buchholz, P., Hahn, E.M., Hermanns, H., Zhang, L.: Model checking algorithms
for ctmdps. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification
- 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings. Lecture Notes in Computer Science, vol. 6806, pp. 225-242. Springer
(2011)

Chaintreau, A., Le Boudec, J.Y., Ristanovic, N.: The age of gossip: spatial mean
field regime. In: Douceur, J.R., Greenberg, A.G., Bonald, T., Nieh, J. (eds.) SIG-
METRICS/Performance. pp. 109-120. ACM (2009)

Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and Verifying Prop-
erties of Space. In: Diaz, J., Lanese, 1., Sangiorgi, D. (eds.) Theoretical Com-
puter Science (T'CS 2014). LNCS, vol. 8705, pp. 222-235. Springer-Verlag (2014),
iSBN: 978-3-662-44601-0 (print), 978-3-662-44602-7 (online), ISSN: 0302-9743,
DOLI: 10.1007/978-3-662-44602-7_18

Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model Checking Spatial Logics
for Closure Spaces. Logical Methods in Computer Science 12(4), 1-51 (2016), DOI
10.2168 /LM CS-12(4:2)2016. Published on line: 11 Oct. 2016. ISSN: 1860-5974
Ciancia, V., Latella, D., Massink, M.: On-the-Fly Mean-field Model-checking for
Attribute-based Coordination. In: Lluch Lafuente, A., Proenga, J. (eds.) Coor-
dination Models and Languages. LNCS, vol. 9686, pp. 67-83. Springer-Verlag
(2016), DOI: 10.1007/978-3-319-39519-7_5, ISSN: 0302-9743, ISBN: 978-3-319-
39518-0 (print), 978-3-319-39519-7 (on line)

Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying prop-
erties of space. In: Dfaz, J., Lanese, 1., Sangiorgi, D. (eds.) Theoretical Computer
Science - 8th IFIP TC 1/WG 2.2 International Conference, TCS 2014, Rome, Italy,
September 1-3, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8705,
pp. 222-235. Springer (2014)

Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244-263 (1986)

Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Form. Methods Syst. Des. 1(2-3),
275-288 (1992)

Darling, R., Norris, J.: Differential equation approximations for Markov chains.
Probability Surveys 5, 37-79 (2008)

Dayar, T., Mikeev, L., Wolf, V.: On the numerical analysis of stochastic lotka-
volterra models. In: IMCSIT. pp. 289-296 (2010)

De Nicola, R., Latella, D., Lluch Lafuente, A., Loreti, M., Margheri, A., Massink,
M., Morichetta, A., Pugliese, R., Tiezzi, F., Vandin, A.: The SCEL Language: De-
sign, Implementation, Verification. In: Wirsing, M., Hélzl, M., Koch, N., Mayer, P.
(eds.) Software Engineering for Collective Autonomic Systems, LNCS, vol. 8998,



22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

chap. 1.1, pp. 3-71. Springer-Verlag (2015), dOI: 10.1007/978-3-319-16310-9_1,
ISBN 978-3-319-16309-3 (print), 978-3-319-16310-9 (online), ISSN 0302-9743
Della Penna, G., Intrigila, B., Melatti, 1., Tronci, E., Zilli, M.V.: Bounded proba-
bilistic model checking with the muralpha verifier. In: Hu, A.J., Martin, A.K. (eds.)
FMCAD 2004. LNCS, vol. 3312, pp. 214-229. Springer (2004)

Din, Q.: Dynamics of a discrete lotka-volterra model. Advances in Difference Equa-
tions 95, 1-13 (2013)

Donzé, A., Ferrere, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) Computer Aided Verification - 25th International Confer-
ence, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings. Lecture
Notes in Computer Science, vol. 8044, pp. 264-279. Springer (2013)

Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) Formal Modeling and Analysis of Timed
Systems - 8th International Conference, FORMATS 2010, Klosterneuburg, Austria,
September 8-10, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6246,
pp. 92-106. Springer (2010)

Gast, N., Gaujal, B.: A mean field model of work stealing in large-scale systems.
In: Misra, V., Barford, P., Squillante, M.S. (eds.) SSIGMETRICS. pp. 13-24. ACM
(2010)

Gnesi, S., Mazzanti, F.: An abstract, on the fly framework for the verification
of service-oriented systems. In: Wirsing, M., Holzl, M.M. (eds.) Results of the
SENSORIA Project, LNCS, vol. 6582, pp. 390-407. Springer (2011)

Goel, N.S., Maitra, S.C., Montroll, E.W.: On the volterra and other nonlinear
models of interacting populations. Rev. Mod. Phys. 43, 231-276 (Apr 1971),
http://link.aps.org/doi/10.1103/RevModPhys.43.231

Guirado, G., Hérault, T., Lassaigne, R., Peyronnet, S.: Distribution, approximation
and probabilistic model checking. In: PDMC 2005. LNCS, vol. 135. pp. 19-30.
Springer (2006)

Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: INFAMY: An infinite-state
markov model checker. In: CAV09, LNCS, vol. 5643. pp. 641-64. Springer (2009)
Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6, 512-535 (1994)

Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: VMCAIO4. LNCS, vol. 2937. pp. 73-84. Springer (2004)
Holzmann, G.J.: The SPIN Model Checker - primer and reference manual. Addison-
Wesley (2004)

Kolesnichenko, A., de Boer, P.T., Remke, A., Haverkort, B.R.: A logic for model-
checking mean-field models. In: DSN13 (2013)

Kolesnichenko, A.V., Remke, A.K.I.,, de Boer, P.T., Haverkort, B.R.H.M.: A
logic for model-checking of mean-field models. Technical Report TR-CTIT-12-11,
http://doc.utwente.nl/80267/ (2012)

Kurtz, T.: Solutions of ordinary differential equations as limits of pure jump
Markov processes. Journal of Applied Probability 7, 49-58 (1970)

Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic Symbolic Model Checking
using PRISM: A Hybrid Approach. STTT 6(2), 128-142 (2004)

Larsen, K.G., Legay, A.: Statistical model checking: Past, present, and future. In:
Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Veri-
fication and Validation: Foundational Techniques - 7th International Symposium,
ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 9952, pp. 3-15 (2016)



39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Latella, D., Loreti, M., Massink, M.: On-the-fly fast mean-field model-checking.
In: Abadi, M., Lluch-Lafuente, A. (eds.) Trustworthy Global Computing - 8th In-
ternational Symposium, TGC 2013, Buenos Aires, Argentina, August 30-31, 2013,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 8358, pp. 297—
314. Springer (2013), http://dx.doi.org/10.1007/978-3-319-05119-2_17
Latella, D., Loreti, M., Massink, M.: On-the-fly PCTL Fast Mean-Field Model-
Checking for Self-organising Coordination - Preliminary Version. Technical Report
TR-QC-01-2013, QUANTICOL (2013)
Latella, D., Loreti, M., Massink, M.: On-the-fly Probabilistic Model Checking. In:
Lanese, 1., Sokolova, A. (eds.) Proceedings of the 7th Interaction and Concurrency
Experience (ICE 2014), June 6, 2014, Berlin, Germany. EPTCS, ISSN: 2075-2180,
http://cgi.cse.unsw.edu.au/ rvg/eptcs/, vol. 166, pp. 45-59 (2014), ISSN:
2075-2180, DOI:10.4204/EPTCS.166.6
Latella, D., Loreti, M., Massink, M.: On-the-fly Fluid Model Checking via Discrete
Time Population Models. In: Beltrdn, M., Knottenbelt, W., Bradley, J. (eds.) Com-
puter Performance Engineering. LNCS, vol. 9272, pp. 193-207. Springer-Verlag
(2015), ISSN: 0302-9743, DOI: 10.1007/978-3-319-23267-6_13
Latella, D., Loreti, M., Massink, M.: On-the-fly PCTL fast mean-field approxi-
mated model-checking for self-organising coordination. Science of Computer Pro-
gramming 110, 23-50 (2015), dOI: 10.1016/j.scico.2015.06.009; ISSN: 0167-6423
Latella, D., Loreti, M., Massink, M.: FlyFast: A Mean Field Model Checker. In:
Legay, A., Margaria, T. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems. pp. 303-309. LNCS, Springer-Verlag (2017), ISSN 0302-9743,
DOLI: 10.1007/978-3-662-54580-5_18
Latella, D., Massink, M.: Design and optimisation of the flyfast front-end for
attribute-based coordination. In: de Vink, E.P., Wiklicky, H. (eds.) Proceedings
of the Fifteenth Workshop on Quantitative Aspects of Programming Languages
(QAPL 2017). Electronic Proceedings in Theoretical Computer Science, EPTCS
(2017), to appear. Available also as QUANTICOL Tech. Rep. TR-QC-01-2017
Latella, D.: Comunicazione basata su proprieta nei sistemi decentralizzati
[property-based inter-process communication in decentralized systems| (december
1983), graduation Thesis. Istituto di Scienze dell’Informazione. Univ. of Pisa (in
italian)
Le Boudec, J.Y., McDonald, D., Mundinger, J.: A generic mean field convergence
result for systems of interacting objects. In: QESTO07. pp. 3-18. IEEE Computer
Society Press (2007), iSBN 978-0-7695-2883-0
LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential
Equations. STAM (2007)
Lotka, A.J.: Elements of Mathematical Biology. Williams and Wilkins Company
1924
1(\/Iont235 de Oca, M.A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M.,
Dorigo, M.: Majority-rule opinion dynamics with differential latency: A mechanism
for self-organized collective decision-making. Swarm Intelligence 5(3-4), 305-327
2011
1(\Tenzi), L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and
quantitative monitoring of spatio-temporal properties. In: Bartocci, E., Majumdar,
R. (eds.) Runtime Verification - 6th International Conference, RV 2015 Vienna,
Austria, September 22-25, 2015. Proceedings. Lecture Notes in Computer Science,
vol. 9333, pp. 21-37. Springer (2015)
Volterra, V.: Fluctuations in the abundance of a species considered mathematically.
Nature 118, 558 — 560 (1926)



