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Velocity distribution in active 
particles systems
Umberto Marini Bettolo Marconi1, Nicoletta Gnan2, Matteo Paoluzzi3, Claudio Maggi4 & 
Roberto Di Leonardo4,5

We derive an analytic expression for the distribution of velocities of multiple interacting active particles 
which we test by numerical simulations. In clear contrast with equilibrium we find that the velocities are 
coupled to positions. Our model shows that, even for two particles only, the individual velocities display 
a variance depending on the interparticle separation and the emergence of correlations between the 
velocities of the particles. When considering systems composed of many particles we find an analytic 
expression connecting the overall velocity variance to density, at the mean-field level, and to the pair 
distribution function valid in the limit of small noise correlation times. Finally we discuss the intriguing 
analogies and main differences between our effective free energy functional and the theoretical 
scenario proposed so far for phase-separating active particles.

The velocities of particles in any equilibrium classical system behave in a particularly simple way following the 
Maxwell-Boltzmann distribution1,2. However, when a system is driven out of equilibrium, the situation may 
change dramatically. In these systems we do not know generally what is the actual distribution of the velocities 
and strong deviations from the Maxwell-Boltzmann distribution may be observed. In granular systems, for exam-
ple, non-Gaussian velocity distributions and cross correlations between the fluctuations of kinetic temperature 
and density have been found both in theoretical models3,4 and experiments5. The non-equilibrium behaviour of 
particle velocities is also a fundamental issue in a completely different type of far from equilibrium systems that is 
“active matter”6,7. This novel class of systems may be generally considered as composed by biological or synthetic 
“particles” that are capable of converting available energy into different kinds of persistent motion. This is the 
case for example of self-propelled bacteria such as E. coli, swimming along straight runs interrupted by random 
reorientations which can be modelled by the “run and tumble” (RT) dynamics8–11. Similarly, Janus-type colloids 
are propelled by chemical reactions and gradually reorient by rotational Brownian motion which is accounted for 
by the “active Brownian” (AB) model12–16. These systems show a ubiquitous tendency to accumulate near repul-
sive obstacles17–19 and often display clustering and/or phase separation even in the absence of attractive interac-
tions14,20–24. In ref. 11 a very general mechanism accounting for these phenomena was proposed, inspired by the 
RT dynamics. The basic idea is that the velocities of the particles decrease rapidly where the local density increases 
and conversely the density becomes higher where the local velocity of the particles decreases. This feedback 
mechanism generates dense regions composed by slow particles and may eventually lead to the so-called “motil-
ity induced phase separation”. Although this elegant scenario was proposed some years ago several fundamental 
questions still remain unanswered: how do particles velocities depend on density? How do velocities depend on 
the interaction between particles and on the interparticle distance? To tackle these issues from a theoretical point 
of view, we consider the Gaussian colored noise (GCN) model25–28 which embodies the persistency of the active 
motion at the simplest level. Supplementing this model with the multidimensional unified colored noise approx-
imation (MUCNA)29–32 we derive an explicit expression for the distribution of velocities of interacting active 
particles. We show that this distribution captures well the results of numerical simulation of the GCN model. This 
distribution shows explicitly that the velocities are coupled to positions via the Hessian matrix associated with 
the interaction potential. For two interacting particles only the individual velocities have a variance that depends 
on their distance. Moreover, the model predicts correlations between the velocities of the particles. For an active 
many-body system we derive an analytic expression connecting the overall velocity variance to the density by a 
mean-field approximation. We also find an expression connecting the velocity variance to the pair distribution 
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function valid in the limit of small persistence time. We conclude by deriving an effective free energy functional 
and by comparing it to the one proposed in ref. 11 discussing the motility induced phase separation scenario for 
our model at the mean-field level.

Results
Main result.  The GCN model is defined by the set of stochastic differential equations:
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driven by the velocities −∇ φ (generated by the conservative potential φ(x)). The vector η is a set of 
Ornstein-Uhlenbeck processes having η =α 0i  and η η δ δ〈 〉 =α β
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α β = … d, 1, , ). Here D is the diffusion coefficient of the particles in absence of interactions and τ is the relaxa-
tion time of the “propulsion” random forces. By using the MUCNA in ref. 25 we have found the approximated 
stationary probability for the GCN model:
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where  is a normalization factor obtained by integrating over x,I is the dN ×  dN identity matrix, ∇ ∇ φ is the 
Hessian of φ and ||… || represents the absolute value of the determinant of a matrix. The new and central result of 
the present work is the derivation, within the MUCNA, of the conditional probability Π


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where   is a normalization factor, obtained by integrating over x, which depends parametrically on the x. To 
understand the basic principle of our derivation leading to Eq. (3) we briefly outline it here for a single degree of 
freedom. We rewrite Eq. (1) as the set of equations φ η= − ′ +x x( )  and η τ η τ ζ= − +− −


D1 1/2 1  (where 

ζ ζ δ〈 〉 =t t(0) ( ) 2 ( )). We proceed by further differentiating with respect to time the first equation and rewrite it 
as a second-order differential equation containing a white noise term : τ φ φ τ ζ τ+ + ″ + ′ =−

̈x x x x D[ ( )] ( )/ /1 1/2 . 
By using the scaled time s =  τ−1/2t this equation becomes: τ τ φ φ ζ τ+ + ″ + ′ =−

̈x x x x D[ ( )] ( ) /1/2 1/2 1/2 1/4. 
When the dynamics is cast in this form the key point of the UCNA becomes clear: the term τ τ φ+ ″− x[ ( )]1/2 1/2  
plays the role of a non-homogeneous friction and, if the potential curvature φ″ is positive, we can neglect the ̈x 
term (adiabatic approximation) both in the small and long τ limit (see ref. 29 for more details). Moreover from 
this second-order differential equation we can obtain a Kramers equation for the full phase-space distribution 
Ψ x x t( , ; ):
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We now consider the stationary solution Ψ x x( , )0 . In this case, by multiplying Eq. (4) by x and integrating, we 
obtain:
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At this point we make the antsatz Ψ = Π x x P x( ) ( )0 , where Π  has the Gaussian form of Eq. (3), and we substi-
tute this into Eq. (5). With such a factorization Eq. (5) reduces to an ordinary differential equation for P(x), whose 
solution coincides precisely with the probability   of Eq. (2) proving that Π  is the correct velocity distribution 
within our approximation (see the Supplemental Material for details on the derivation for many degrees of 
freedom).

The result of Eq. (3) immediately tells us that the probability distribution of x is a multivariate Gaussian but, 
very differently from the Maxwell-Boltzmann distribution, its covariance matrix depends on the positions via the 
Hessian. Let us start examining the implications of Eq. (3) by considering a single active particle moving in one 
dimension (1d) and subjected to an external potential. In this case Eq. (3) gives the variance as a function of 

∫ τ τφ= Π = + ″
−∞

∞
   x x x dx x x x D x: ( ) ( ) ( / )/[1 ( )]2 2  where the prime represents the derivative with respect to x. 

From now on we will use the overbar to indicate specifically the averaging over the velocities: 
∫… = Π …

 
dx x x( ) ( )( ) ,  while  the average over posit ions wil l  be indicated by the brackets : 

∫… = … dx x( ) ( )( ) . This shows that when the particle is in a region of high potential curvature its velocity 
variance decreases. To be more specific let us consider a purely repulsive potential of the form φ =  x−12. The cor-
responding x2 is plotted in Fig. 1(a) as a dashed-dotted line and this shows clearly that the velocity variance is 
close to the unperturbed value D/τ where the φ″ is small, but it decreases rapidly to zero in proximity to the 
repulsive “wall” generated by the external potential.
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Two interacting particles.  We now consider two particles, with positions x =  (x1, x2), interacting via the 
potential φ(x1− x2) =  φ(Δx) and moving in 1d. In this case Eq. (3) can be used to compute both the velocity vari-
ance: ∫ τ τφ τφ∆ = ∆ = Π = + ″ ∆ + ″ ∆

−∞

∞
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the velocity decreases when the particles are at a distance where the interaction potential has high curvature and 
that in this situation also a correlation of velocities emerge. To visualize these quantities we consider the interac-
tion potential φ ∆ = ∆ −x x( ) 12 and we plot x1

2 and  x x1 2 in Fig. 1(a) as a full and dashed line respectively. Since this 
potential has a curvature that goes rapidly to zero, x1

2 tends rapidly to the unperturbed value D/τ, while when the 
particles are close enough the value of x1

2 goes to D/(2τ). This limiting value represents the mean squared speed of 
the center of mass of the two particles system. Similarly, the correlation  x x1 2  goes to zero at large Δx (where inter-
action is small) while, when Δx is small, the two particles will move coherently with the velocity of the center of 
mass resulting in the limiting value τ= x x D/(2 )1 2 .

Up to this point we have considered the velocity variance when the particles positions are fixed arbitrarily. 
However, we want also to compute this quantity averaging it over the positions to obtain the overall velocity vari-
ance of a GCN-driven system. This can be done, within the MUCNA, by combining Eqs (2) and (3):
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where, by dividing by dN, we average also over all particles and all components. To understand this result let us 
consider, as above, two particles in 1d interacting via φ =  Δx−12 and assume that they move in a box of length L 
with periodic boundary conditions. The 

x2  computed numerically via Eq. (6) is plotted in Fig. 1(b) (full lines) as 
a function of the 1d density ρ =  2/L of the system and for several values of D (at fixed τ). In Fig. 1(b) we divide the 
variance by the free-particle value D/τ so that τx D/( / )2  reduces to unity in absence of interactions. This shows 
clearly that τx D/( / )2  decreases systematically with increasing ρ and with increasing D. Upon increasing D we 
also observe a change in the convexity of the curves in Fig. 1(b). Such a phenomenology can be understood by 
noting that the  ∆x( ) is very peaked around ∆ ≈x 1 (see dotted line in Fig. 1(a)). Note also that the  ∆x( ) is 
practically zero when ∆ <x 1 defining the “diameter” of the particles σ ≈  1 that changes very little in the wide 
range of D and τ studied here. In ref. 25 we have shown that, by assimilating the potential x−12 to a hard potential, 
∆x( )  can be approximated by a Dirac delta of area  τ− D21  around the points Δx ≈  ± σ  and reduced to −1 

elsewhere, the normalization constant being  σ τ= − +L D( 2 ) 2 2 . As discussed above in this limit we find 
also: τ=x D/1

2  if  σ∆ >x , and τ=x D/(2 )1
2  if  σ∆ ≤x . Combining these formulae we find the velocity vari-

ance of two GCN active hard spheres: τ = ρ σ τ
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1  which is a monotonic decreasing function of 
ρ and D. Moreover τx D/( / )2  is bounded from below by 1/2 (in the limit of both large ρ and D). This is plotted as 
a dashed line in Fig. 1(b) and follows qualitatively well the results of the φ =  Δx−12 case. Moreover from this equa-
tion we can see that ρ∂ ∂ >x / 02 2 2  if   τ σ= >D / 2  where we have introduced the characteristic length of 
the active motion . This, in practice, means that, the velocity variance becomes especially sensitive to density 
changes when the Péclet number23 Pe becomes of order one, i.e.  σ=Pe / 1.

(b)

(a)

Figure 1.  Velocity variance and correlation for two interacting particles. (a) Velocity variance and 
correlation as a function of distance for D =  1 and τ =  1 as computed from Eq. (3). The dashed-dotted line is 
the variance of velocity as a function of x for one particle moving in 1d in the presence of the repulsive barrier 
φ =  x−12. The full line is the variance of velocity of one particle interacting with another particle via the 
repulsive potential φ =  Δx−12, the dashed line is the velocity correlation between the two interacting particles. 
The dotted line is the probability distribution given by Eq. (2) for the interacting particles and L =  8. (b) 
Overall velocity variance (Equation (6)) for two interacting active particles as a function of density for fixed 
τ =  1. Full lines with one symbol represent 

x2  for the interaction φ =  Δx−12 at different values of D (see 
legend). The dashed line 

x2  in the limiting case of two hard spheres. The shaded area represents the lower 
bound D/(2τ).
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Many interacting particles.  To make progress towards the statistical description of the velocities of the 
many-body active system we consider N interacting particles in 1d. We perform numerical simulations of systems 
with N =  1000 composed by GCN-driven particles interacting via the potential φ = ∑ −>

−x xx( ) ( )i j i j
12 for sev-

eral values of the density ρ =  N/L, of D and τ. In all these simulations we compute the variance 
x2  and report the 

results in Fig. 2 as connected symbols. The velocity variance is computed by averaging over all particle and over 
more than 3 ×  104 configurations. The relative error on this quantity can be estimated by computing its standard 
deviation over configurations and that results to be ≈ 5% (i.e. about the size of the symbols in Fig. 2). Qualitatively 
the emerging scenario seems to be close to the two-particle case (see Fig. 1(b)). However from a quantitative point 
of view the two-particle model is far from the results in Fig. 2, in particular the many-body τx D/( / )2  reaches 
values well below the lower bound of the two-particle case 1/2. To test uniquely the approximated distribution 
given by Eq. (3), we compute the average over positions in Eq. (6) directly from the coordinates obtained numer-
ically, instead of using the theoretical   of Eq. (2). This is plotted in Fig. 2 as dashed lines and follows well the 
numerical curves, although some expected deviation29 is observed upon increasing D to very high values.

If we assume a uniform density and long-ranged interactions (mean-field approximation) the velocity distri-
bution (Eq.  (3)) simplifies substantially. The terms on the diagonal of ∇  ∇  φ  take the form 
φ ϕ ρϕ∇∇ = ∑ ″ − ≈≠ x xx[ ( )] ( )ii j j i i j( ) 2, where ϕ is the pair potential and ∫ϕ ϕ= ″

σ

∞ dx x2 ( )2  is the mean 
potential curvature integrated up to the diameter σ. Similarly the out-of-diagonal terms of ∇ ∇ φ become 
φ ϕ ρϕ∇∇ = − ″ − ≈ −≠

−x x Nx[ ( )] ( )ij j i i j( )
1

2. With this approximation the matrix I +  τ ∇ ∇ φ has (N −  1) iden-
tical eigenvalues33 of the form 1 +  (N +  1) τϕ2ρ/N, while the N-th (non-degenerate) eigenvalue is 1 +  τϕ2ρ/N. The 
trace of the inverse matrix is therefore

τ φ
τϕ ρ τϕ ρ τϕ ρ
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−

+ +
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N N N
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1 ( 1) /
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2 2 2

for large N. Dividing this result by N yields the density-dependent variance:
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1
1

1
1 2 (7)

2

2 

where in the last equality we have used the fact that, for a generic repulsive potential, σ corresponds roughly to  
the distance where the interaction force balances the self-propulsion (i.e. ϕ σ τ′ ≈ D( ) / ) and 
ϕ ϕ ϕ σ τ= ′ ∞ − ′ ≈ D2[ ( ) ( )] 2 /2 . This is plotted in Fig. 2 as a thick line for the largest D and follows qualita-
tively well the data when  is large. When τ is small Eqs. (2) and (3) can be expanded to first order in τ (see 
Supplemental Material) which gives an alternative formula for φ2 in terms of the pair distribution function g(x), 
i.e. ∫ϕ ϕ= ″

∞ dxg x x( ) ( )2 0
. This is plotted in Fig. 2 as dashed-dotted lines and compares well with the numerical 

simulations at small values of τ. However, by fixing τ and increasing D this approximation deviates strongly from 
the simulations and therefore it is not shown in Fig. 2. In order to describe more accurately the high-density 
regime, we derive also a harmonic model for the velocity distribution. To this aim we consider a 1d system of 
active particles connected by springs having elastic constant k. In this system each particle is connected only to its 
nearest neighbour by a harmonic potential, the Hessian matrix in Eq. (3) does not depend on the positions  
anymore and it takes the form of a banded symmetric Toeplitz matrix whose elements are 

τ φ τ+ ∇∇ = + kI x[ ( )] 1 2ii
, τ φ τ+ ∇∇ = −± kI x[ ( )]i i 1

 and zero else where. The eigenvalues of this matrix 
are known34 and the mean of their inverse can be computed as a Watson integral giving the result: 

τ τ τ= + −
−

x D k k/( / ) [(1 2 ) 4 ]2 2 2 2 1/2. To compare this result with the simulations of the φ =  Δx−12 potential 
we assume that in the high ρ regime particles are separated by the average distance ρ−1 and expand the interaction 
potential to 2nd order around these distance. We obtain an estimate of the effective spring constant as 
k(ρ) =  156ρ14. The resulting τx D/( / )2  is plotted in Fig. 2 as a dotted line and it is found to well reproduce the 

Figure 2.  Normalized velocity variance for a 1d system of many interacting active particles. Symbols are 
the results of numerical simulations for several values of τ and D (see legend). Dashed lines are the theoretical 
velocity variances obtained by averaging Eq. (3) over the coordinates obtained numerically. Thick lines are 
the result of a homogenous density approximation. Dashed-dotted lines represent the small-τ approximation 
connecting the variance to the pair distribution function. Dotted lines are the velocity variances obtained by 
mapping the system onto a harmonic model.
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numerical results at high values of ρ and τ, while some deviation is observed upon increasing D. However, by 
going at high densities (ρ ≈  1) this harmonic model predicts quantitatively very well τx D/( / )2  for all values of D 
and τ (see Fig. 3).

Effective free energy functional.  We have seen that the probability distribution given by Eq. (2)  
can be mapped onto a  B oltzmann distr ibut ion character ized by the ef fect ive  potent ia l 
 φ τ φ τ φ= + ∇ − + ∇∇D I/2 ln2 . Exploiting this analogy, as we have shown in ref. 26, we can con-
struct an effective free energy functional of the form F P P P H∫= +d Dx[ ] (ln / ). Moreover by using Eq. (3) 
we can rewrite τ φ τ+ ∇∇ = − α β

 ‖ ‖x x DIln ln /i j  since the determinant of the inverse is the inverse of the 
determinant. Using these results we can recast   as

F P P P∫
τ φ τ φ=






+ + + ∇



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α β
 d

D
x x

D D
x[ ] ln ln

2 (8)
i j

2

which shows a dependence on the velocities resembling closely the one suggested in ref. 11. In particular the term 
α β
 ‖ ‖x xln i j  represents the differential entropy of the velocity distribution, i.e. how much velocities are “spread” in 

the velocity space. This implies that if velocities have some very high values, for a given configuration x, this 
brings positive contribution to free energy and therefore   will be low for such x. Conversely, if velocities concen-
trate around zero at x,   will grow for this configuration. Note also that we know how to express the velocity term 
in Eq. (8) as a function of density, at least at the mean field level in 1d, by using Eq. (7). This further suggests that 
the velocity variance is itself a decreasing function of density establishing the feedback mechanism hypothesized 
in ref. 11. Moreover, if we assume a homogeneous ρ and only repulsive interactions, the terms φ and |∇ φ|2 corre-
spond only to repulsive potential terms in Eq. (8). With these considerations we rewrite Eq. (8) in the mean-field 
form:

∫ρ ρ ρ
ρσ

ρ ρ=









 −





−





− ′ + ′

ρ
f d( ) ln

1
1 ln(1 2 )

(9)0


where we have introduced the free energy per unit length =f L/  and we have absorbed all the repulsive terms 
in the 1d hard-spheres excess free energy − ρ ln (1− ρσ). If ∂ <

ρ
f 02

2  the homogeneous density phase is unstable 
and the system undergoes a spinodal decomposition. In contrast to this scenario, we find from the mean-field 
Eq. (9) always gives ∂ >

ρ
f 02

2 . This suggests that our active system does not phase separate for any value of ρ, D 
and τ even in the presence of long-ranged interactions. This is consistent with the numerical results that do not 
show any discontinuity in any of the average values that we have monitored. However Eq. (9) does predict an 
anomalous behaviour of density fluctuations. To show this we consider the 1d Fourier transformed density fluc-
tuations ρ〈| | 〉q

2 , where ρ = ∑−N eq i
iqx1/2 i (q being the wavevector). We study the long wave-length density fluc-

tuations by choosing q ≈  (20σ)−1 and compute ρ〈| | 〉q
2  in numerical simulations which is plotted in Fig. 4 (top 

panel) as a colormap for several values of D, ρ and τ. This shows that at sufficiently high D the ρ〈| | 〉q
2  develops a 

maximum as a function of the average density, ρ and that this maximum increases in amplitude as τ increases. At 
such small q we can approximate35 ρ ρ〈| | 〉 ≈ | ∂ |

ρ
−fq

2 2 1
2  which is plotted in Fig. 4 (bottom panel). This is found to 

follow qualitatively very well the numerical results in the whole D, τ and ρ range explored. In practice, the effect 
of the colored noise is to introduce a sort of weak effective attraction at high persistence lengths  enhancing the 
density fluctuations in the low-density regime with respect to a purely repulsive equilibrium system. In this low-ρ/
high- regime an evident clustering of the particles is generated by the persistent propulsion forces.

Figure 3.  Harmonic model for the velocity variance. Comparison between the harmonic model (dotted line) 
and the numerical simulations (symbols) at high ρ for several values of D (same legend as Fig. 2) at fixed τ = 0.3.
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Discussion
By using the unified colored noise approximation, we have derived an explicit expression for the distribution of 
velocities of interacting active particles and shown that it agrees well with the numerical simulation of the GCN 
model. This distribution predicts the non-equilibrium coupling between velocities and positions and the corre-
lation between velocities of different particles. These have been characterized in detail for the two-particle case. 
In the case of many interacting active particles, we have derived approximations connecting the velocity variance 
to the pair distribution function at low values of the persistence time. From our microscopic model, we have also 
derived directly an effective free energy functional that shows surprising similarities with the one proposed so far 
for describing the phase separation in active particles. Our functional establishes directly a connection between 
the stationary probability of coordinates and the covariance matrix of velocities showing that a configuration 
with low velocities is favoured. Moreover, our theory shows that when interactions are strong (i.e. when density 
is high) the velocities tend to decrease generating a feedback mechanism that enhances density fluctuations. The 
basic physics of this phenomenon is captured by a mean-field version of our functional that predicts qualitatively 
well the excess density fluctuations observed numerically. These anomalous density fluctuations indicate cluster-
ing of the particles in analogy with the cluster formation observed experimentally for Janus colloids14. However, 
in the present one-dimensional mean-field model, this mechanism is too weak to lead to spinodal decomposition. 
Simulation results (see Supplemental Material) show that this scenario is also found in two-dimensional systems 
driven by GCN. The velocity variance obtained in 2d is still a decreasing function of density although an interest-
ing non-monotonic behavior as a function of the diffusivity is found. Moreover anomalous density fluctuations 
and clustering (without phase separation) are found also in 2d. As expected the qualitative mean-field picture is 
not changed by further increasing the dimensionality. This marks a clear difference between our model and the 
AB model which has been shown to phase separate. It has been noted that, in the GCN model, the magnitude 
of the propulsive forces can fluctuate36,37 and occasionally reach very high values and that could destabilize the 
condensed phase. Differently this mechanism should not be present in AB systems where the propulsion force is 
always bounded. Moreover it has been shown28 that the AB model and the GCN model can display quite different 

Figure 4.  Density fluctuations for a many-body active system. (Top-panel) The colormap represents ρ〈| | 〉q
2  at 

low q obtained numerically for several values of ρ, D and τ. Colouring close to red indicates large density 
fluctuations at that state-point (ρ, D). (Bottom-panel) Theoretical value of ρ〈| | 〉q

2  (computed from Equation (9)) 
shows a qualitative behaviour very similar to the one found in simulations.
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stationary distributions in presence of external potentials. In that particular case it has been found that noise 
distributions having different shapes can lead to rather different stationary density profiles. Interestingly however 
it was shown in ref. 22 that a further approximation of the GCN theoretical framework could predict the phase 
separation in AB particles. With this perspective it would be interesting to extend our mean-field model to the3d 
case, accounting explicitly for the potential terms, and perform exhaustive 3d simulations of the GCN model.
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