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Abstract
The aim of this talk is to present a detailed, self-contained and compre-

hensive account of the state of the art in representing and reasoning with
fuzzy knowledge in Semantic Web Languages such as triple languages
RDF/RDFS, conceptual languages of the OWL 2 family and rule lan-
guages. We further show how one may generalise them to so-called anno-
tation domains, that cover also e.g. temporal and provenance extensions.

1 Introduction

Managing uncertainty and fuzziness is growing in importance in Semantic Web
research as recognised by a large number of research efforts in this direc-
tion [264, 270]. Semantic Web Languages (SWL) are the languages used to pro-
vide a formal description of concepts, terms, and relationships within a given
domain, among which the OWL 2 family of languages [207], triple languages
RDF & RDFS [50] and rule languages (such as RuleML [124], Datalog± [54]
and RIF [223]) are major players.

While their syntactic specification is based on XML [295], their semantics is
based on logical formalisms: briefly,

• RDFS is a logic having intensional semantics and the logical counterpart
is ρdf [205];

• OWL 2 is a family of languages that relate to Description Logics (DLs) [4];

• rule languages relate roughly to the Logic Programming (LP) paradigm [163];

• both OWL 2 and rule languages have an extensional semantics.

Uncertainty versus Fuzziness. One of the major difficulties, for those unfa-
miliar on the topic, is to understand the conceptual differences between uncer-
tainty and fuzziness. Specifically, we recall that there has been a long-lasting
misunderstanding in the literature of artificial intelligence and uncertainty mod-
elling, regarding the role of probability/possibility theory and vague/fuzzy the-
ory. A clarifying paper is [95]. We recall here the salient concepts.
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Uncertainty. Under uncertainty theory fall all those approaches in which
statements rather than being either true or false, are true or false to some
probability or possibility (for example, “it will rain tomorrow”). That is, a state-
ment is true or false in any world/interpretation, but we are “uncertain” about
which world to consider as the right one, and thus we speak about e.g. a prob-
ability distribution or a possibility distribution over the worlds. For example,
we cannot exactly establish whether it will rain tomorrow or not, due to our
incomplete knowledge about our world, but we can estimate to which degree
this is probable, possible, or necessary.

To be somewhat more formal, consider a propositional statement (formula) φ
(“tomorrow it will rain”) and a propositional interpretation (world) I. We may
see I as a function mapping propositional formulae into {0, 1}, i.e. I(φ) ∈ {0, 1}.
If I(φ) = 1, denoted also as I |= φ, then we say that the statement φ under
I is true, false otherwise. Now, each interpretation I depicts some concrete
world and, given n propositional letters, there are 2n possible interpretations.
In uncertainty theory, we do not know which interpretation I is the actual one
and we say that we are uncertain about which world is the real one that will
occur.

To deal with such a situation, one may construct a probability distribu-
tion over the worlds, that is a function Pr mapping interpretations in [0, 1],
i.e. Pr(I) ∈ [0, 1], with

∑
I Pr(I) = 1, where Pr(I) indicates the probability

that I is the actual world under which to interpret the propositional statement
at hand. Then, the probability of a statement φ in Pr , denoted Pr(φ), is the
sum of all Pr(I) such that I |= φ, i.e.

Pr(φ) =
∑
I|=φ

Pr(I) .

Fuzziness. On the other hand, under fuzzy theory fall all those approaches
in which statements (for example, “heavy rain”) are true to some degree, which
is taken from a truth space (usually [0, 1]). That is, the convention prescribing
that a proposition is either true or false is changed towards graded propositions.
For instance, the compatibility of “heavy” in the phrase “heavy rain” is graded
and the degree depends on the amount of rain is falling.1 Often we may find
rough definitions about rain types, such as: 2

Rain. Falling drops of water larger than 0.5 mm in diameter. In forecasts,
“rain” usually implies that the rain will fall steadily over a period of time;

Light rain. Rain falls at the rate of 2.6 mm or less an hour;

Moderate rain. Rain falls at the rate of 2.7 mm to 7.6 mm an hour;

1More concretely, the intensity of precipitation is expressed in terms of a precipitation
rate R: volume flux of precipitation through a horizontal surface, i.e. m3/m2s = ms−1. It is
usually expressed in mm/h.

2http://usatoday30.usatoday.com/weather/wds8.htm
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Figure 1: Light, Moderate and Heavy Rain.

Heavy rain. Rain falls at the rate of 7.7 mm an hour or more.

It is evident that such definitions are quite harsh and resemble a bivalent (two-
valued) logic: e.g. a precipitation rate of 7.7mm/h is a heavy rain, while a
precipitation rate of 7.6mm/h is just a moderate rain. This is clearly unsatis-
factory, as quite naturally the more rain is falling, the more the sentence “heavy
rain” is true and, vice-versa, the less rain is falling the less the sentence is true.

In other words, this means essentially, that the sentence “heavy
rain” is no longer either true or false as in the definition above, but
is intrinsically graded.

A more fine grained way to define the various types of rains is illustrated in
Figure 1.
Light rain, moderate rain and heavy rain are called Fuzzy Sets in the litera-
ture [300] and are characterised by the fact that membership is a matter of
degree. Of course, the definition of fuzzy sets is frequently context dependent
and subjective: e.g. the definition of heavy rain is quite different from heavy
person and the latter may be defined differently among human beings.

From a logical point of view, a propositional interpretation maps a statement
φ to a truth degree in [0, 1], i.e. I(φ) ∈ [0, 1]. Essentially, we are unable to
establish whether a statement is entirely true or false due to the involvement of
vague/fuzzy concepts, such as “heavy”.

Note that all fuzzy statements are truth-functional, that is, the degree of
truth of every statement can be calculated from the degrees of truth of its
constituents, while uncertain statements cannot always be a function of the
uncertainties of their constituents [94]. For the sake of illustrative purpose, an
example of truth functional interpretation of propositional statements is as fol-
lows:

I(φ ∧ ψ) = min(I(φ), I(ψ))
I(φ ∨ ψ) = max(I(φ), I(ψ))
I(¬φ) = 1− I(φ) .
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In such a setting one may be interested in the so-called notions of minimal (resp.
maximal) degree of satisfaction of a statement, i.e. minI I(φ) (resp. maxI I(φ)).

Uncertain fuzzy sentences. Let us recap: in a probabilistic setting each
statement is either true or false, but there is e.g. a probability distribution telling
us how probable each interpretation is, i.e. I(φ) ∈ {0, 1} and Pr(I) ∈ [0, 1]. In
fuzzy theory instead, sentences are graded, i.e. we have I(φ) ∈ [0, 1].

A natural question is: can we have sentences combining the two orthogonal
concepts? Yes, for instance, “there will be heavy rain tomorrow” is an uncertain
fuzzy sentence. Essentially, there is uncertainty about the world we will have
tomorrow, and there is fuzziness about the various types of rain we may have
tomorrow.

From a logical point of view, we may model uncertain fuzzy sentences in the
following way:

• we have a probability distribution over the worlds, i.e. a function Pr map-
ping interpretations in [0, 1], i.e. Pr(I) ∈ [0, 1], with

∑
I Pr(I) = 1;

• sentences are graded. Specifically, each interpretation is truth functional
and maps sentences into [0, 1], i.e. I(φ) ∈ [0, 1];

• for a sentence φ, we are interested in the so-called expected truth of φ,
denoted ET (φ), namely

ET (φ) =
∑
I
Pr(I) · I(φ) .

Note that if I is bivalent (that is, I(φ) ∈ {0, 1}) then ET (φ) = Pr(φ).

Talk Overview. We present here some salient aspects in representing and rea-
soning with fuzzy knowledge in Semantic Web Languages (SWLs) such as triple
languages [50] (see, e.g. [265, 274]), conceptual languages [207] (see, e.g. [181,
245, 253]) and rule languages (see, e.g. [72, 217, 250, 251, 255, 257, 264]). We
refer the reader to [270] for an extensive presentation concerning fuzziness and
semantic web languages. We then further show how one may generalise them
to so-called annotation domains, that cover also e.g. temporal and provenance
extensions (see, e.g. [165, 164, 303]).

2 Basics: From Fuzzy Sets to Mathematical
Fuzzy Logic and Annotation Domains

2.1 Fuzzy Sets Basics

The aim of this section is to introduce the basic concepts of fuzzy set theory.
To distinguish between fuzzy sets and classical (non fuzzy) sets, we refer to the
latter as crisp sets. For an in-depth treatment we refer the reader to, e.g. [93,
142].
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From Crisp Sets to Fuzzy Sets. To better highlight the conceptual shift
from classical sets to fuzzy sets, we start with some basic definitions and well-
known properties of classical sets. LetX be a universal set containing all possible
elements of concern in each particular context. The power set, denoted 2A, of
a set A ⊂ X, is the set of subsets of A, i.e., 2A = {B | B ⊆ A}. Often
sets are defined by specifying a property satisfied by its members, in the form
A = {x | P (x)}, where P (x) is a statement of the form “x has property P”
that is either true or false for any x ∈ X. Examples of universe X and subsets
A,B ∈ 2X may be

X = {x | x is a day}
A = {x | x is a rainy day}
B = {x | x is a day with precipitation rate R ≥ 7.5mm/h} .

In the above case we have B ⊆ A ⊆ X.
The membership function of a set A ⊆ X, denoted χA, is a function mapping

elements of X into {0, 1}, i.e. χA : X → {0, 1}, where χA(x) = 1 iff x ∈ A. Note
that for any sets A,B ∈ 2X , we have that

A ⊆ B iff ∀x ∈ X. χA(x) ≤ χB(x) . (1)

The complement of a set A is denoted Ā, i.e. Ā = X \ A. Of course, ∀x ∈
X. χĀ(x) = 1 − χA(x). In a similar way, we may express set operations of
intersection and union via the membership function as follows:

∀x ∈ X. χA∩B(x) = min(χA(x), χB(x)) (2)

∀x ∈ X. χA∪B(x) = max(χA(x), χB(x)) . (3)

The Cartesian product, A × B, of two sets A,B ∈ 2X is defined as A × B =
{〈a, b〉 | a ∈ A, b ∈ B}. A relation R ⊆ X × X is reflexive if for all x ∈ X
χR(x, x) = 1, is symmetric if for all x, y ∈ X χR(x, y) = χR(y, x). The inverse
of R is defined as function χR−1 : X × X → {0, 1} with membership function
χR−1(y, x) = χR(x, y).

As defined so far, the membership function of a crisp set A assigns a value
of either 1 or 0 to each individual of the universe set and, thus, discriminates
between being a member or not being a member of A.

A fuzzy set [300] is characterised instead by a membership function χA : X →
[0, 1], or denoted simply A : X → [0, 1]. With 2̃X we denote the fuzzy power set
over X, i.e. the set of all fuzzy sets over X. For instance, by referring to Figure 1,
the fuzzy set

C = {x | x is a day with heavy precipitation rate R}

is defined via the membership function

χC(x) =

 1 if R ≥ 7.5
(x− 5)/2.5 if R ∈ [5, 7.5)
0 otherwise .
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Figure 2: (a) Trapezoidal function trz (a, b, c, d); (b) Triangular function
tri(a, b, c); (c) L-function ls(a, b); and (d) R-function rs(a, b).

As pointed out previously, the definition of the membership function may de-
pend on the context and may be subjective. Moreover, also the shape of such
functions may be quite different. Luckily, the trapezoidal (Fig. 2 (a)), the tri-
angular (Figure 2 (b)), the L-function (left-shoulder function, Figure 2 (c)),
and the R-function (right-shoulder function, Figure 2 (d)) are simple, but most
frequently used to specify membership degrees.

The usefulness of fuzzy sets depends critically on our capability to con-
struct appropriate membership functions. The problem of constructing mean-
ingful membership functions is a difficult one and we refer the interested reader
to, e.g. [142, Chapter 10]. However, one easy and typically satisfactory method
to define the membership functions (for a numerical domain) is to uniformly
partition the range of, e.g. precipitation rates values (bounded by a minimum
and maximum value), into 5 or 7 fuzzy sets using either trapezoidal functions
(e.g. as illustrated in Figure 3), or using triangular functions (as illustrated in
Figure 4). The latter one is the more used one, as it has less parameters.

The standard fuzzy set operations are defined for any x ∈ X as in Equa-
tion (2) and Equation (3). Note also that the set inclusion defined as in Equa-
tion (1) is indeed crisp in the sense that either A ⊆ B or A 6⊆ B.

Norm-Based Fuzzy Set Operations. Standard fuzzy set operations are
not the only ones that can be conceived to be suitable to generalise the classical
Boolean operations. For each of the three types of operations there is a wide
class of plausible fuzzy version. The most notable ones are characterised by the
so-called class of t-norms ⊗ (called triangular norms), t-conorms ⊕ (also called
s-norm), and negation 	 (see, e.g. [141]). An additional operator is used to define
set inclusion (called implication ⇒). Indeed, the degree of subsumption between
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Figure 3: Fuzzy sets construction using trapezoidal functions.

Figure 4: Fuzzy sets construction using triangular functions.
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Table 1: Properties for t-norms and s-norms.

Axiom Name T-norm S-norm

Tautology / Contradiction a⊗ 0 = 0 a⊕ 1 = 1
Identity a⊗ 1 = a a⊕ 0 = a
Commutativity a⊗ b = b⊗ a a⊕ b = b⊕ a
Associativity (a⊗ b)⊗ c = a⊗ (b⊗ c) (a⊕ b)⊕ c = a⊕ (b⊕ c)
Monotonicity if b ≤ c, then a⊗ b ≤ a⊗ c if b ≤ c, then a⊕ b ≤ a⊕ c

Table 2: Properties for implication and negation functions.

Axiom Name Implication Function Negation Function

Tautology / Contradiction 0⇒ b = 1, a⇒ 1 = 1, 1⇒ 0 = 0 	 0 = 1, 	 1 = 0
Antitonicity if a ≤ b, then a⇒ c ≥ b⇒ c if a ≤ b, then 	 a ≥ 	 b
Monotonicity if b ≤ c, then a⇒ b ≤ a⇒ c

two fuzzy sets A and B, denoted A v B, is defined as infx∈X A(x) ⇒ B(x),
where ⇒ is an implication function.

An important aspect of such functions is that they satisfy some properties
that one expects to hold (see Tables 1 and 2). Usually, the implication function
⇒ is defined as r-implication, that is,

a⇒ b = sup {c | a⊗ c ≤ b} .

Of course, due to commutativity, ⊗ and ⊕ are monotone also in the first
argument. We say that ⊗ is indempotent if a⊗ a = a, for any a ∈ [0, 1]. For any
a ∈ [0, 1], we say that a negation function 	 is involutive iff 		 a = a . Salient
negation functions are:

Standard or  Lukasiewicz negation: 	la = 1− a;

Gödel negation: 	ga is 1 if a = 0, else is 0.

Of course,  Lukasiewicz negation is involutive, while Gödel negation is not.
Salient t-norm functions are:

Gödel t-norm: a⊗g b = min(a, b);

Bounded difference or  Lukasiewicz t-norm: a⊗l b = max(0, a+ b− 1);

Algebraic product or product t-norm: a⊗p b = a · b;

Drastic product: a⊗d b =

{
0 when (a, b) ∈ [0, 1[×[0, 1[
min(a, b) otherwise
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Salient s-norm functions are:

Gödel s-norm: a⊕g b = max(a, b);

Bounded sum or  Lukasiewicz s-norm: a⊕l b = min(1, a+ b);

Algebraic sum or product s-norm: a⊕p b = a+ b− ab;

Drastic sum: a⊕d b =

{
1 when (a, b) ∈]0, 1]×]0, 1]
max(a, b) otherwise

We recall that the following important properties can be shown about t-norms
and s-norms.

1. There is the following ordering among t-norms (⊗ is any t-norm):

⊗d ≤ ⊗ ≤ ⊗g
⊗d ≤ ⊗l ≤ ⊗p ≤ ⊗g .

2. The only idempotent t-norm is ⊗g.

3. The only t-norm satisfying a⊗ a = 0 for all a ∈ [0, 1[ is ⊗d.

4. There is the following ordering among s-norms (⊕ is any s-norm):

⊕g ≤ ⊕ ≤ ⊕d
⊕g ≤ ⊕p ≤ ⊕l ≤ ⊕d .

5. The only idempotent s-norm is ⊕g.

6. The only s-norm satisfying a⊕ a = 1 for all a ∈]0, 1] is ⊕d.

The dual s-norm of ⊗ is defined as

a⊕ b = 1− (1− a)⊗ (1− b) . (4)

Some t-norms, s-norms, implication functions, and negation functions are shown
in Table 3. One usually distinguishes three different sets of fuzzy set oper-
ations (called fuzzy logics), namely,  Lukasiewicz, Gödel, and Product logic;
the popular Standard Fuzzy Logic (SFL) is a sublogic of  Lukasiewicz logic as
min(a, b) = a⊗l (a⇒l b) and max(a, b) = 1−min(1− a, 1− b). The importance
of these three logics is due to the Mostert–Shields theorem [202] that states that
any continuous t-norm can be obtained as an ordinal sum of these three (see
also [115]).

The implication x ⇒ y = max(1 − x, y) is called Kleene-Dienes implication
in the fuzzy logic literature. Note that we have the following inferences: let
a ≥ n and a ⇒ b ≥ m. Then, under Kleene-Dienes implication, we infer that
if n > 1 −m then b ≥ m. Under r-implication relative to a t-norm ⊗, we infer
that b ≥ n⊗m.

The composition of two fuzzy relations R1 : X×X → [0, 1] and R2 : X×X →
[0, 1] is defined as (R1 ◦R2)(x, z) = supy∈X R1(x, y)⊗R2(y, z). A fuzzy relation
R is transitive iff R(x, z)> (R ◦R)(x, z).
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Table 3: Combination functions of various fuzzy logics.

 Lukasiewicz Logic Gödel Logic Product Logic SFL

a⊗ b max(a + b− 1, 0) min(a, b) a · b min(a, b)
a⊕ b min(a + b, 1) max(a, b) a + b− a · b max(a, b)

a⇒ b min(1− a + b, 1)

{
1 if a ≤ b

b otherwise
min(1, b/a) max(1− a, b)

	 a 1− a

{
1 if a = 0

0 otherwise

{
1 if a = 0

0 otherwise
1− a

Table 4: Some additional properties of combination functions of various fuzzy
logics.

Property  Lukasiewicz Logic Gödel Logic Product Logic SFL

x⊗	x = 0 + − − −
x⊕	x = 1 + − − −
x⊗ x = x − + − +
x⊕ x = x − + − +
		x = x + − − +

x⇒ y = 	x⊕ y + − − +
	 (x⇒ y) = x⊗	 y + − − +
	 (x⊗ y) = 	x⊕	 y + + + +
	 (x⊕ y) = 	x⊗	 y + + + +
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Figure 5: Linear modifier lm(a, b).

Fuzzy Modifiers. Fuzzy modifiers are an interesting feature of fuzzy set the-
ory. Essentially, a fuzzy modifier, such as very, more or less, and slightly,
apply to fuzzy sets to change their membership function.

Formally, a fuzzy modifier m represents a function

fm : [0, 1]→ [0, 1] .

For example, we may define fvery(x) =x2 and fslightly(x) =
√
x. In this way,

we may express the fuzzy set of very heavy rain by applying the modifier very
to the fuzzy membership function of “heavy rain” i.e.

χvery heavyrain(x) = fvery(χheavyrain(x)) = (χheavyrain(x))2 = (rs(5, 7.5)(x))2 .

A typical shape of modifiers is the so-called linear modifiers, as illustrated in
Figure 5. Note that such a modifier can be parameterized by means of one
parameter c only, i.e. lm(a, b) = lm(c), where a = c/(c+ 1) , b = 1/(c+ 1).

2.2 Mathematical Fuzzy Logic Basics

We recap here briefly that in Mathematical Fuzzy Logic [115], the convention
prescribing that a statement is either true or false is changed and is a matter
of degree measured on an ordered scale that is no longer {0, 1}, but [0, 1]. This
degree is called degree of truth of the logical statement φ in the interpretation
I. Fuzzy statements have the form 〈φ, r〉, where r∈ [0, 1] (see, e.g. [114, 115])
and φ is a statement, which encodes that the degree of truth of φ is greater or
equal r. A fuzzy interpretation I maps each basic statement pi into [0, 1] and is
then extended inductively to all statements:

I(φ ∧ ψ) = I(φ)⊗ I(ψ)
I(φ ∨ ψ) = I(φ)⊕ I(ψ)
I(φ→ ψ) = I(φ)⇒ I(ψ)
I(φ↔ ψ) = I(φ→ ψ)⊗ I(ψ → φ)
I(¬φ) = 	I(φ)
I(∃x.φ) = supa∈∆I Iax(φ)
I(∀x.φ) = infa∈∆I Iax(φ) ,

(5)
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where ∆I is the domain of I, and ⊗, ⊕, ⇒, and 	 are the t-norms, t-conorms,
implication functions, a negation functions we have seen in the previous section.3

One may also consider the following abbreviations:

φ ∧g ψ
def
= φ ∧ (φ→ ψ) (6)

φ ∨g ψ
def
= (φ→ ψ)→ φ) ∧g (ψ → φ)→ ψ) (7)

¬⊗φ
def
= φ→ 0 . (8)

(9)

In case ⇒ is the r-implication based on ⊗, then ∧g (resp. ∨g) is interpreted as
Gödel t-norm (resp. s-norm), while ¬⊗ is interpreted as the negation function
related to ⊗.

A fuzzy interpretation I satisfies a fuzzy statement 〈φ, r〉, or I is a model of
〈φ, r〉, denoted I |= 〈φ, r〉, iff I(φ) ≥ r. We say that I is a model of φ if I(φ) = 1.
A fuzzy knowledge base (or simply knowledge base, if clear from context) is a set
of fuzzy statements and an interpretation I satisfies (is a model of) a knowledge
base, denoted I |= K, iff it satisfies each element in it.

We say 〈φ, n〉 is a tight logical consequence of a set of fuzzy statements K iff
n is the infimum of I(φ) subject to all models I of K. Notice that the latter is
equivalent to n= sup {r | K |= 〈φ, r〉}. n is called the best entailment degree of φ
w.r.t. K (denoted bed(K, φ)), i.e.

bed(K, φ) = sup {r | K |= 〈φ, r〉} . (10)

On the other hand, the best satisfiability degree of φ w.r.t. K (denoted bsd(K, φ))
is

bsd(K, φ) = sup
I
{I(φ) | I |= K} . (11)

Of course, the properties of Table 4 immediately translate into equivalence
among formulae. For instance, the following equivalences hold (in brackets we
indicate the logic for which the equivalences holds)

¬¬φ ≡ φ ( L)

φ ∧ φ ≡ φ (G)

¬(φ ∧ ¬φ) ≡ 1 ( L, G,Π)

φ ∨ ¬φ ≡ 1 ( L) .

Remark 1 Unlike the classical case, in general, we do not have that ∀x.φ and
¬∃x.¬φ are equivalent. They are equivalent for  Lukasiewicz logic and SFL,
but are neither equivalent for Gödel nor for Product logic. For instance, un-
der Gödel negation, just consider an interpretation I with domain {a} and
I(p(a)) = u, with 0 < u < 1. Then I(∀x.p(x)) = u, while I(¬∃x.¬p(x)) = 1
and, thus, ∀x.p(x) 6≡ ¬∃x.¬p(x).

We refer the reader to [270] for an overview of reasoning algorithms for fuzzy
propositional and First-Order Logics.

3The function Iax is as I except that x is interpreted as a.
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2.3 Conjunctive Queries

The classical case. In case a KB is a classical knowledge base, a conjunctive
query is a rule-like expression of the form

q(~x)← ∃~y.ϕ(~x, ~y) (12)

where the rule body ϕ(~x, ~y) is a conjunction4 of predicates Pi(~zi) (1 ≤ i ≤ n)
and ~zi is a vector of distinguished or non-distinguished variables.

For instance,
q(x, y)← AdultPerson(x), Age(x, y)

is a conjunctive query, whose intended meaning is to retrieve all adult people
and their age.

Given a vector ~x = 〈x1, . . . , xk〉 of variables, a substitution over ~x is a vector
of individuals ~t replacing variables in ~x with individuals. Then, given a query
q(~x) ← ∃~y.ϕ(~x, ~y), and two substitutions ~t, ~t′ over ~x and ~y, respectively, the
query instantiation ϕ(~t,~t′) is derived from ϕ(~x, ~y) by replacing ~x and ~y with ~t
and ~t′, respectively.

We adopt here the following notion of entailment. Given a knowledge base
K, a query q(~x) ← ∃~y.ϕ(~x, ~y), and a vector ~t of individuals occurring in K, we
say that q(~t) is entailed by K, denoted K |= q(~t), if and only if there is a vector
~t′ of individuals occurring in K such that in any two-valued model I of K, I is
a model of any atom in the query instantiation ϕ(~t,~t′).

If K |= q(~t) then ~t is called a answer to q. We call these kinds of answers
also certain answers. The answer set of q w.r.t. K is defined as

ans(K, q) = {~t | K |= q(~t)} .

The fuzzy case. Consider a new alphabet of fuzzy variables (denoted Λ). To
start with, a fuzzy query is of the form

〈q(~x),Λ〉 ← ∃~y∃Λ′.ϕ(~x,Λ, ~y, ~Λ′) (13)

in which ϕ(~x,Λ, ~y, ~Λ′) is a conjunction (as for the crisp case, we use “,” as con-
junction symbol) of fuzzy predicates and built-in predicates, ~x and Λ are the

distinguished variables, ~y and ~Λ′ are the vectors of non-distinguished variables
(existential quantified variables), and ~x, Λ, ~y and ~Λ′ are pairwise disjoint. Vari-

able Λ and variables in ~Λ′ can only appear in place of degrees of truth or built-in
predicates. The query head contains at least one variable.

For instance, the query

〈q(x), s〉 ← 〈SportsCar(x), s1〉, hasPrice(x, y), s :=s1 · ls(10000, 15000)(y)

has intended meaning to retrieve all cheap sports cars. Any answer x is scored
according to the product of being cheap and a sports car, were cheap is encode
as the fuzzy membership function ls(10000, 15000).

4We use the symbol “,′′ to denote conjunction in the rule body.
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From a semantics point of view, given a fuzzy KB K, a query 〈q(~x),Λ〉 ←
∃~y∃Λ′.ϕ(~x,Λ, ~y, ~Λ′), a vector ~t of individuals occurring in K and a truth degree
λ in [0, 1], we say that 〈q(~t), λ〉 is entailed by K, denoted K |= 〈q(~t), λ〉, if and

only if there is a vector ~t′ of individuals occurring K and a vector ~λ′ of truth
degrees in [0, 1] such that for any model I of K, I is a model of all fuzzy atoms

occurring in ϕ(~t, λ,~t′, ~λ′). If K |= 〈q(~t), λ〉 then 〈~t, λ〉 is called an answer to q.
The answer set of q w.r.t. K is

ans(K, q) = {〈~t, λ〉 | K |= 〈q(~t), λ〉, λ 6= 0 and

for any λ′ 6= λ such that K |= 〈q(~t), λ′〉, λ′ ≤ λ holds} .

That is, for any tuple ~t, the truth degree λ is as large as possible.

Fuzzy queries with aggregation operators. We may extend conjunctive
queries to disjunctive queries and to queries including aggregation operators as
well. Formally, let @ be an aggregate function with

@ ∈ {SUM,AVG,MAX,MIN,COUNT,⊕,⊗}

then a query with aggregates is of the form

〈q(~x),Λ〉 ← ∃~y∃Λ′.ϕ(~x, ~y,Λ′),
GroupedBy(w̃),
Λ:=@[f(~z)] ,

(14)

where ~w are variables in ~x or ~y and each variable in ~x occurs in ~w and any
variable in ~z occurs in ~y or ~Λ′.

From a semantics point of view, we say that I is a model of (satisfies)
〈q(~t), λ〉, denoted I |= 〈q(~t), λ〉 if and only if

λ = @[λ1, . . . , λk] where g = {〈~t,~t′1, ~λ′1〉, . . . , 〈~t,~t′k, ~λ′k〉},
is a group of k tuples with identical projection

on the variables in ~w, ϕ(~t,~t′r,
~λ′r) is true in I

and λr = f(~~t) where ~~t is the projection of 〈~t′r, ~λ′r〉
on the variables ~z .

Now, the notion of K |= 〈q(~t), λ〉 is as usual: any model of K is a model of
〈q(~t), λ〉.

The notion of answer and answer set of a disjunctive query is a straightfor-
ward extension of the ones for conjunctive queries.

Top-k Retrieval. As now each answer to a query has a degree of truth
(i.e. score), a basic inference problem that is of interest is the top-k retrieval
problem, formulated as follows.

Given a fuzzy KB K, and a query q, retrieve k answers 〈~t, λ〉 with maximal
degree and rank them in decreasing order relative to the degree λ, denoted

ansk(K, q) = Topk ans(K, q) .
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2.4 Annotation Domains

We have seen that fuzzy statements extend statements with an annotation r ∈
[0, 1]. Interestingly, we may further generalise this by allowing a statement being
annotated with a value λ taken from a so-called annotation domain [52, 164, 165,
274, 303],5 which allow to deal with several domains (such as, fuzzy, temporal,
provenance) and their combination, in a uniform way. Formally, let us consider
a non-empty set L. Elements in L are our annotation values. For example, in
a fuzzy setting, L = [0, 1], while in a typical temporal setting, L may be time
points or time intervals. In the annotation framework, an interpretation will map
statements to elements of the annotation domain. Now, an annotation domain
is an idempotent, commutative semi-ring

D = 〈L,⊕,⊗,⊥,>〉 ,

where ⊕ is >-annihilating [52]. That is, for λ, λi ∈ L

1. ⊕ is idempotent, commutative, associative;

2. ⊗ is commutative and associative;

3. ⊥⊕ λ = λ, >⊗ λ = λ, ⊥⊗ λ = ⊥, and >⊕ λ = >;

4. ⊗ is distributive over ⊕, i.e.λ1 ⊗ (λ2 ⊕ λ3) = (λ1 ⊗ λ2)⊕ (λ1 ⊗ λ3);

It is well-known that there is a natural partial order on any idempotent semi-
ring: an annotation domain D = 〈L,⊕,⊗,⊥,>〉 induces a partial order � over
L defined as:

λ1 � λ2 if and only if λ1 ⊕ λ2 = λ2 .

The order � is used to express redundant/entailed/subsumed information. For
instance, for temporal intervals, an annotated statement 〈φ, [2000, 2006]〉 entails
〈φ, [2003, 2004]〉, as [2003, 2004] ⊆ [2000, 2006] (here, ⊆ plays the role of �).

Remark 2 ⊕ is used to combine information about the same statement. For
instance, in temporal logic, from 〈φ, [2000, 2006]〉 and 〈φ, [2003, 2008]〉, we infer
〈φ, [2000, 2008]〉, as [2000, 2008] = [2000, 2006] ∪ [2003, 2008]; here, ∪ plays the
role of ⊕. In the fuzzy context, from 〈φ, 0.7〉 and 〈φ, 0.6〉, we infer 〈φ, 0.7〉, as
0.7 = max(0.7, 0.6) (here, max plays the role of ⊕).

Remark 3 ⊗ is used to model the “conjunction” of information. In fact, a ⊗
is a generalisation of boolean conjunction to the many-valued case. In fact, ⊗
satisfies also that

1. ⊗ is bounded: i.e.λ1 ⊗ λ2 � λ1.

2. ⊗ is �-monotone, i.e. for λ1 � λ2, λ⊗ λ1 � λ⊗ λ2

5The readers familiar with the annotated logic programming framework [139], will notice
the similarity of the approaches.
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For instance, on interval-valued temporal logic, from 〈φ, [2000, 2006]〉 and
〈φ→ ψ, [2003, 2008]〉, we may infer 〈ψ, [2003, 2006]〉, as [2003, 2006] =
[2000, 2006] ∩ [2003, 2008]; here, ∩ plays the role of ⊗. In the fuzzy context,
one may chose any t-norm [115, 141], e.g. product, and, thus, from 〈φ, 0.7〉 and
〈φ→ ψ, 0.6〉, we will infer 〈ψ, 0.42〉, as 0.42 = 0.7 · 0.6) (here, · plays the role
of ⊗).

Remark 4 Observe that the distributivity condition is used to guarantee that
e.g. we obtain the same annotation λ⊗ (λ2 ⊕ λ3) = (λ1 ⊗ λ2)⊕ (λ1 ⊗ λ3) of ψ
that can be inferred from 〈φ, λ1〉, 〈φ→ ψ, λ2〉 and 〈φ→ ψ, λ3〉.

Note that, conceptually, in order to build an annotation domain, one has to:

1. determine the set of annotation values L (typically a countable set6), iden-
tify the top and bottom elements;

2. define a suitable operations ⊗ and ⊕ that acts as “conjunction” and “dis-
junction” function, to support the intended inferences.

Eventually, annotated queries are as fuzzy queries in which annotation variables
and terms are used in place of fuzzy variables and values r ∈ [0, 1] instead. We
refer the reader to [303] for more details about annotation domains.

3 Fuzzy Logic and Semantic Web Languages

We have seen in the previous section how to “fuzzyfy” a classical language such
as propositional logic and FOL, namely fuzzy statements are of the form 〈φ, r〉,
where φ is a statement and r ∈ [0, 1].

The natural extension to SWLs consists then in replacing φ with appropriate
expressions belonging to the logical counterparts of SWLs, namely ρdf, DLs and
LPs, as we will illustrate next.

3.1 Fuzzy RDFS

The basic ingredients of RDF are triples of the form (s, p, o), such as
(umberto, likes, tomato), stating that subject s has property p with value o.
In RDF Schema (RDFS), which is an extension of RDF, additionally some spe-
cial keywords may be used as properties to further improve the expressivity of
the language. For instance we may also express that the class of ’tomatoes are
a subclass of the class of vegetables’, (tomato, sc, vegetables), while Zurich is an
instance of the class of cities, (zurich, type, city).

Form a computational point of view, one computes the so-called closure
(denoted cl(K)) of a set of triples K. That is, one infers all possible triples using
inference rules [192, 205, 218], such as

(A, sc, B), (X, type, A)

(X, type, B)
6Note that one may use XML decimals in [0, 1] in place of real numbers for the fuzzy

domain.
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“if A subclass of B and X instance of A then infer that X is instance of
B”,

and then store all inferred triples into a relational database to be used then for
querying. We recall also that there also several ways to store the closure cl(K)
in a database (see [1, 125]). Essentially, either we may store all the triples in
table with three columns subject, predicate, object, or we use a table for each
predicate, where each table has two columns subject, object. The latter approach
seems to be better for query answering purposes.

In Fuzzy RDFS (see [265, 270] and references therein), triples are annotated
with a degree of truth in [0, 1]. For instance, “Rome is a big city to degree 0.8”
can be represented with 〈(Rome, type,BigCity), 0.8〉. More formally, fuzzy triples
are expressions of the form 〈τ, r〉, where τ is a RDFS triple (the truth value r
may be omitted and, in that case, the value r = 1 is assumed).

The interesting point is that from a computational point of view the inference
rules parallel those for “crisp” RDFS: indeed, the rules are of the form

〈τ1, r1〉, . . . , 〈τk, rk〉, {τ1, . . . , τk} `RDFS τ

〈τ,
⊗

i ri〉
(15)

Essentially, this rule says that if a classical RDFS triple τ can be inferred
by applying a classical RDFS inference rule to triples τ1, . . . , τk (denoted
{τ1, . . . , τk} `RDFS τ), then the truth degree of τ will be

⊗
i ri.

As a consequence, the rule system is quite easy to implement for current
inference systems. Specifically, as for the crisp case, one may compute the clo-
sure cl(K) of a set of fuzzy triples K, store them in a relational database and
thereafter query the database.

Concerning conjunctive queries, they are essentially the same as in Sec-
tion 2.3, where predicates are replaced with triples. For instance, the query

〈q(x), s〉 ← 〈(x, type,SportsCar), s1〉, (x, hasPrice, y), s = s1 · cheap(y) (16)

where e.g. cheap(y) = ls(10000, 15000)(y), has intended meaning to retrieve all
cheap sports car. Then, any answer is scored according to the product of being
cheap and a sports car.

3.1.1 Annotation domains & RDFS.

The generalisation to annotation domains is conceptual easy, as now one may
replace truth degrees with annotation terms taken from an appropriate domain.
For further details see [303].

3.2 Fuzzy DLs

Description Logics (DLs) [4] are the logical counterpart of the family of OWL
languages. So, to illustrate the basic concepts of fuzzy OWL, it suffices to show
the fuzzy DL case (see [11, 181, 270], for a survey). We recap that the basic
ingredients are the descriptions of classes, properties, and their instances, such
as
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• a:C, such as a:Person u ∀hasChild.Femal, meaning that individual a is an
instance of concept/class C (here C is seen as a unary predicate);

• (a, b):R, such as (tom,mary):hasChild, meaning that the pair of individuals
〈a, b〉 is an instance of the property/role R (here R is seen as a binary
predicate);

• C v D, such as Person v ∀hasChild.Person, meaning that the class C is a
subclass of class D;

So far, several fuzzy variants of DLs have been proposed: they can be classified
according to

• the description logic resp. ontology language that they generalize [14, 20,
22, 23, 26, 92, 175, 176, 177, 178, 180, 182, 183, 224, 225, 226, 236, 242,
248, 249, 255, 263, 288, 299];

• the allowed fuzzy constructs [19, 27, 29, 30, 31, 33, 34, 36, 91, 119, 120,
121, 122, 123, 128, 129, 130, 131, 132, 133, 134, 135, 187, 248, 267, 284];

• the underlying fuzzy logic [16, 18, 24, 116, 117, 247, 259, 254];

• their reasoning algorithms and computational complexity results [5, 6, 10,
12, 13, 15, 16, 17, 21, 32, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 58,
59, 60, 100, 208, 237, 240, 241, 245, 246, 253, 258, 260, 272, 273, 297, 302].

In general, fuzzy DLs allow expressions of the form 〈a:C, r〉, stating that a is
an instance of concept/class C with degree at least r, i.e. the FOL formula
C(a) is true to degree at least r. Similarly, 〈C1 v C2, r〉 states a vague sub-
sumption relationships. Informally, 〈C1 v C2, r〉 dictates that the FOL formula
∀x.C1(x) → C2(x) is true to degree at least r. Essentially, fuzzy DLs are then
obtained by interpreting the statements as fuzzy FOL formulae and attaching
a weight n to DL statements, thus, defining so fuzzy DL statements.

Example 1 Consider the following background knowledge about cars:

Car v ∃HasPrice.Price
Sedan v Car
V an v Car

CheapPrice v Price
ModeratePrice v Price
ExpensivePrice v Price
〈CheapPrice v ModeratePrice, 0.7〉

〈ModeratePrice v ExpensivePrice, 0.4〉
CheapCar = Car u ∃HasPrice.CheapPrice

ModerateCar = Car u ∃HasPrice.ModeratePrice
ExpensiveCar = Car u ∃HasPrice.ExpensivePrice
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Essentially, the vague concepts here are CheapPrice,ModeratePrice, and
ExpensivePrice and the graded GCIs declare to which extent there is a re-
lationship among them.

The facts about two specific cars a and b are encoded with:

〈a:Sedan u ∃HasPrice.CheapPrice, 0.7〉
〈b:V an u ∃HasPrice.ModeratePrice, 0.8〉 .

So, a is a sedan having a cheap price, while b is a van with a moderate price.
Under Gödel semantics it can be shown that

K |= 〈a:ModerateCar, 0.7〉
K |= 〈b:ExpensiveCar, 0.4〉 .

From a decision procedure point of view, a popular approach consists of a set
of inference rules that generate a set of in-equations (that depend on the t-
norm and fuzzy concept constructors) that have to be solved by an operational
research solver (see, e.g. [24, 248]). An informal rule example is as follows:

“If individual a is instance of the class intersection C1uC2 to degree
greater or equal to xa:C1 u C2

,7 then a is instance of Ci (i = 1, 2)
to degree greater or equal to xa:Ci , where additionally the following
in-equation holds:

xa:C1 u C2
≤ xa:C1

⊗ xa:C2
.”

Concerning conjunctive queries, they are essentially the same as in Section 2.3,
where predicates are replaced with unay and binary predicates. For instance,
the fuzzy DL analogue of the RDFS query (16) is

〈q(x), s〉 ← 〈SportsCar(x), s1〉,HasPrice(x, y), s :=s1 · cheap(y) . (17)

Applications. Fuzzy set theory and fuzzy logic [300] have proved to be
suitable formalisms to handle fuzzy knowledge. Not surprisingly, fuzzy ontolo-
gies already emerge as useful in several applications, such as information re-
trieval [3, 53, 161, 280, 281, 293, 301], recommendation systems [57, 150, 210,
296], image interpretation [81, 82, 83, 201, 239, 243, 244], the Semantic Web
and the Internet [66, 212, 227], ambient intelligence [89, 90, 160, 221], ontol-
ogy merging [61, 283], matchmaking [2, 65, 213, 214, 215, 216, 217, 278, 279],
decision making [266], summarization [149], robotics [97, 98], machine learn-
ing [152, 153, 154, 155, 156, 157, 158, 159, 276] and many others [7, 80, 99, 126,
144, 151, 162, 194, 211, 220, 234, 267].

7For a fuzzy DL formula φ we consider a variable xφ with intended meaning: the degree of
truth of φ is greater or equal to xφ.
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Representing Fuzzy OWL Ontologies in OWL. OWL [206] and its suc-
cessor OWL 2 [67, 207] are standard W3C languages for defining and instanti-
ating Web ontologies whose logical counterpart are classical DLs. So far, several
fuzzy extensions of DLs exists and some fuzzy DL reasoners have been imple-
mented, such as fuzzyDL [19, 39], DeLorean [14], Fire [101, 238], Soft-
Facts [269], GURDL [111], GERDS [112], YADLR [143], FRESG [294] and
DLMedia [268, 281]. Not surprisingly, each reasoner uses its own fuzzy DL
language for representing fuzzy ontologies and, thus, there is a need for a stan-
dard way to represent such information. A first possibility would be to adopt
as a standard one of the fuzzy extensions of the languages OWL and OWL 2
that have been proposed, such as [108, 235, 236]. However, as it is not expected
that a fuzzy OWL extension will become a W3C proposed standard in the near
future, [25, 28, 31] identifies the syntactic differences that a fuzzy ontology lan-
guage has to cope with, and proposes to use OWL 2 itself to represent fuzzy
ontologies [107].

3.2.1 Annotation domains & OWL.

The generalisation to annotation domains is conceptual easy, as now one may
replace truth degrees with annotation terms taken from an appropriate domain
(see, e.g. [44, 46, 254].

3.3 Fuzzy Rule Languages

The foundation of the core part of rule languages is Datalog [286], i.e. a Logic
Programming Language (LP) [163]. In LP, the management of imperfect infor-
mation has attracted the attention of many researchers and numerous frame-
works have been proposed. Addressing all of them is almost impossible, due to
both the large number of works published in this field (early works date back
to early 80-ties [232]) and the different approaches proposed (see, e.g. [264]).
Below a list of references.8

Fuzzy set theory: [8, 9, 51, 56, 62, 63, 64, 96, 109, 110, 118, 127, 140, 186,
193, 203, 204, 209, 219, 231, 232, 233, 282, 287, 289, 290, 291, 292, 298]

Multi-valued logic: [55, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 84, 85, 86,
87, 88, 102, 103, 104, 105, 106, 113, 136, 137, 138, 139, 145, 146, 147, 148,
166, 167, 168, 169, 170, 171, 172, 173, 174, 177, 179, 180, 182, 184, 185, 188,
189, 190, 191, 195, 196, 197, 198, 199, 200, 213, 214, 215, 216, 217, 222, 228,
229, 230, 250, 251, 252, 255, 256, 257, 259, 261, 262, 263, 271, 275, 277, 285]

Basically [163], a Datalog program P is made out by a set of rules and a set
of facts. Facts are ground atoms of the form P (~c). On the other hand rules are
similar as conjunctive queries and are of the form

A(~x)← ∃~y.ϕ(~x, ~y) ,

8The list of references is by no means intended to be all-inclusive. The author apologises
both to the authors and with the readers for all the relevant works, which are not cited here.
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where ϕ(~x, ~y) is a conjunction of n-ary predicates. A query is a rule and the
answer set of a query q w.r.t. a set K of facts and rules is the set of tuples ~t
such that there exists ~t′ such that the instantiation ϕ(~t,~t′) of the query body is
true in minimal model of K, which is guaranteed to exists.

In the fuzzy case, rules and facts are as for the crisp case, except that now
a predicate is annotated. An example of fuzzy rule defining good hotels may be
the following:

〈GoodHotel(x), s〉 ← Hotel(x), 〈Cheap(x), s1〉, 〈CloseToV enue(x), s2〉,
〈Comfortable(x), s3〉, s := 0.3 · s1 + 0.5 · s2 + 0.2 · s3(18)

A fuzzy query is a fuzzy rule and, informally, the fuzzy answer set is the ordered
set of weighted tuples 〈~t, s〉 such that all the fuzzy atoms in the rule body are
true in the minimal model and s is the result of the scoring function f applied to
its arguments. The existence of a minimal is guaranteed if the scoring functions
in the query and in the rule bodies are monotone [264].

We conclude by saying that most works deal with logic programs without
negation and some may provide some technique to answer queries in a top-down
manner, as e.g. [69, 139, 148, 251, 289]. Deciding whether a wighted tuple 〈~t, s〉
is the answer set is undecidable in general, though is decidable if the truth space
is finite and fixed a priory, as then the minimal model is finite.

Another rising problem is the problem to compute the top-k ranked answers
to a query, without computing the score of all answers. This allows to answer
queries such as “find the top-k closest hotels to the conference location”. Solu-
tions to this problem can be found in [180, 257, 262].

3.3.1 Annotation domains & Rule Languages.

The generalisation of fuzzy rule languages to the case in which an annotation
r ∈ [0, 1] is replaced with an annotation value λ taken from an annotation
domain is straightforward and proceeds as for the other SWLs.
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[44] Stefan Borgwardt and Rafael Peñaloza. Description logics over lattices
with multi-valued ontologies. In Proceedings of the Twenty-Second In-
ternational Joint Conference on Artificial Intelligence (IJCAI-11), pages
768–773, 2011.
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[117] Petr Hájek. What does mathematical fuzzy logic offer to description logic?
In Elie Sanchez, editor, Fuzzy Logic and the Semantic Web, Capturing
Intelligence, chapter 5, pages 91–100. Elsevier, 2006.

[118] C.J. Hinde. Fuzzy prolog. International Journal Man.-Machine Studies,
24:569–595, 1986.

[119] Steffen Hölldobler, Tran Dinh Khang, and Hans-Peter Störr. A fuzzy
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