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Abstract: Video violence detection is a subset of human action recognition aiming to detect violent behaviors in trimmed
video clips. Current Computer Vision solutions based on Deep Learning approaches provide astonishing re-
sults. However, their success relies on large collections of labeled datasets for supervised learning to guarantee
that they generalize well to diverse testing scenarios. Although plentiful annotated data may be available for
some pre-specified domains, manual annotation is unfeasible for every ad-hoc target domain or task. As a
result, in many real-world applications, there is a domain shift between the distributions of the train (source)
and test (target) domains, causing a significant drop in performance at inference time. To tackle this problem,
we propose an Unsupervised Domain Adaptation scheme for video violence detection based on single image
classification that mitigates the domain gap between the two domains. We conduct experiments considering
as the source labeled domain some datasets containing violent/non-violent clips in general contexts and, as the
target domain, a collection of videos specific for detecting violent actions in public transport, showing that our
proposed solution can improve the performance of the considered models.

1 INTRODUCTION

In recent years, in the Computer Vision field,
there has been an increasing interest in develop-
ing applications and services that make life eas-
ier for citizens. Thanks to the significant growth
of Deep Learning (DL) and the ubiquity of video
surveillance cameras in modern cities, smart ap-
plications ranging from pedestrian detection (Am-
ato et al., 2019b) (Ciampi et al., 2020a) (Cafarelli
et al., 2022) to people tracking (Spremolla et al.,
2016) (Staniszewski et al., 2020), crowd count-
ing (Benedetto et al., 2022) (Avvenuti et al., 2022),
parking lot management (Ciampi et al., 2022b) (Am-
ato et al., 2019a) (Amato et al., 2018) (Ciampi
et al., 2018) and even facial reconstruction (Pęszor
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et al., 2016) have been proposed and are nowadays
widely employed worldwide, helping to manage pub-
lic spaces and preventing many criminal activities by
exploiting AI systems that automatically analyze this
deluge of visual data. However, the success of these
supervised DL-based approaches hinges on two as-
sumptions: (i) the existence of large collections of
labeled data required for accurate model fitting dur-
ing the training phase, and (ii) training (or source)
and test (or target) datasets are independent and iden-
tically distributed (i.i.d.) (Huo et al., 2022). Al-
though plentiful annotated data may be available for a
few pre-specified domains, such as ImageNet (Deng
et al., 2009) for image classification or COCO (Lin
et al., 2014) for object detection, manual annotations
are often prohibitive to obtain for every ad-hoc tar-
get domain or task. As a result, models trained by
leveraging already existing labeled data are applied
to target domains never seen during the training and
consequently suffer from shifts in data distributions,
i.e., Domain Shifts between source and target do-
mains (Torralba and Efros, 2011).

One possible solution to tackle this issue is repre-



sented by Unsupervised Domain Adaptation - (UDA).
Specifically, it aims at mitigating domain shifts be-
tween different domains, relying on labeled data in
the source domain and unlabelled data in the target
domain. In other words, UDA techniques exploit an-
notated data from the source domain as well as non-
annotated data coming from the target domain that is
easy to gather since it does not require human effort
for labeling. The challenge here is to automatically
infer some knowledge from this latter data flow to re-
duce the gap between the two domains and, specifi-
cally, to learn feature representations that should be (i)
discriminative for the main learning task on the source
domain and (ii) indiscriminative concerning the shift
between the domains.

In this work, we focus on the specific task of vi-
olence detection in trimmed videos, i.e., capturing an
exact action (either violent or non-violent). There-
fore, this task is a subset of human action recogni-
tion. Specifically, the goal is to binary classify clips
to predict if they contain (or not) any behaviors con-
sidered to be violent, differing from violent detection
in untrimmed videos, a subset of action localization
where the purpose is also to seek the action in the
temporal dimension. Despite its importance in many
practical, real-world scenarios, it is relatively unex-
plored compared to other action recognition tasks.
Although some annotated datasets for video violence
detection in general contexts already exist, they are
limited in size and in the considered different scenar-
ios. Therefore, existing Deep Learning-based solu-
tions trained using these data systematically experi-
ence performance degradation when applied to new
specific contexts, such as violence detection in public
transport environments (Ciampi et al., 2022a).

To mitigate this problem, in this paper, we pro-
pose an end-to-end DL-based UDA solution to detect
violent situations in videos in specific target scenarios
where annotated data is scarce or lacking. Our pro-
posal relies on single image classification randomly
sampled from the frames making up the video, a
simple technique already addressed by (Akti et al.,
2022). Starting from this, some UDA techniques for
image classification are employed during the train-
ing pipeline, automatically gathering some knowl-
edge from the unlabeled data belonging to the target
domain. To the best of our knowledge, it is the first
attempt at using a UDA schema for video violence de-
tection. We conducted experiments by exploiting, as
the source domain, several annotated datasets present
in the literature dealing with video violence detection
in general contexts and, as the target domain, the re-
cently introduced Bus Violence benchmark (Ciampi
et al., 2022a), a collection of clips specific for detec-

tion of violent behaviors inside a moving bus. Exper-
imental results show that by using our UDA pipeline,
we can improve the performance of the considered
models by a significant margin, thus suggesting that
they generalize better over this new scenario without
the need to use new labels.

Summarizing, the contribution of this work can be
listed as follows:

• we introduce a UDA scheme for video violence
detection based on single-image classification,
which can mitigate the domain gap between a la-
beled source dataset and an unlabeled target one:
to the best of our knowledge, this is the first time
that UDA has been applied to video violence de-
tection;

• we conduct an experimental evaluation taking
into account as the source domain some anno-
tated dataset containing violent/non-violent clips
in general contexts and, as the target domain, a re-
cently introduced collection of videos specific for
detection of violent behaviors in public transport;

• preliminary results show that our proposed UDA
scheme can improve the performance of the
considered models, which can better generalize
against new scenarios for which labels are absent.

The rest of the paper is structured as follows. Sec-
tion 2 reviews some works related to ours. Section 3
describes the proposed methodology. Section 4 shows
the performed experimental evaluation. Finally, Sec-
tion 5 concludes the paper, suggesting some insights
on future directions.

2 RELATED WORKS

In the literature, there are several methods and
datasets specific to video violence detection. Most
deal with trimmed clips, i.e., capturing an exact action
(either violent or non-violent). Therefore, this task
lies with action recognition aiming at binary classi-
fying videos to predict if they contain (or not) violent
human behaviors. On the other hand, a few works also
deal with untrimmed videos. In this case, the task is
no longer a subset of action recognition but is treated
as action localization, i.e., it is also needed to seek
the actions’ starting and ending time points. This dis-
tinction is also reflected in the datasets required for
the learning phase: in the former case, they are anno-
tated at a video level, while in the second case, frame-
annotated data is necessary. In this paper, we consider
video violence detection in trimmed videos. Hereafter
we describe some of the more popular techniques and



collections of trimmed clips in the literature, conclud-
ing the section by reviewing some existing UDA ap-
proaches.

2.1 Video Violence Detection Methods

In (Sudhakaran and Lanz, 2017), the authors intro-
duced a Deep Learning-based model consisting of
a series of convolutional layers for spatial features
extraction, followed by Convolutional Long Short
Memory (ConvLSTM) (Shi et al., 2015) for encod-
ing the frame level changes. On the other hand, a
variant of this architecture is presented in (Hanson
et al., 2019), where a spatio-temporal encoder built
on a standard convolutional backbone for features ex-
traction is combined with the Bidirectional Convolu-
tional LSTM (BiConvLSTM) architecture for extract-
ing the long-term movement information present in
the clips. Differently, the authors in (Akti et al., 2022)
proposed classifying videos using single frames ran-
domly sampled from the clips. Alternatively, it is also
possible to exploit methods suitable for human ac-
tion recognition: in this case, fine-tuning is needed
to recognize only two classes – violence and non-
violence. For instance, the ResNet 3D network (Tran
et al., 2018) considers actions as spatiotemporal ob-
jects and handles both spatial and temporal dimen-
sions using 3DConv layers (Tran et al., 2015); on
the other hand, the ResNet 2+1D architecture (Tran
et al., 2018), decomposes the convolutions into sepa-
rate 2D spatial and 1D temporal filters (Feichtenhofer
et al., 2016). Another popular model is represented
by SlowFast (Feichtenhofer et al., 2019). In this two-
pathway architecture, the first one is designed to cap-
ture the semantic information that can be given by im-
ages or a few sparse frames operating at low frame
rates. In contrast, the other one is responsible for cap-
turing rapid changing motion by working at a fast re-
freshing speed. Finally, recently, architecture relying
on Transformer attention modules have been intro-
duced, such as Video Swim Transformer (Liu et al.,
2022), which extends the sliding-window Transform-
ers proposed for image processing (Liu et al., 2021) to
the temporal axis, obtaining an excellent efficiency-
effective trade-off.

2.2 Video Violence Detection Datasets

In the last years, some benchmarks of trimmed clips
suitable for video violence detection have been intro-
duced. In (Padamwar, 2020), the authors presented
two video benchmarks for violence detection — the
Hockey Fight and the Movies Fight datasets. The for-
mer consists of 200 clips extracted from short movies.

On the other hand, the second one has 1,000 fight and
non-fight clips from the ice hockey game. More re-
cently, another dataset, named Surveillance Camera
Fight, has been presented in (Akti et al., 2019). It con-
sists of 300 videos in total, 150 of which describe fight
sequences and 150 depict non-fight scenes, recorded
from several surveillance cameras located in public
spaces. Moreover, the RWF-2000 (Cheng et al., 2021)
and the Real-Life Violence Situations (Soliman et al.,
2019) datasets were gathered from public surveillance
cameras. In both collections, the authors collected
2000 video clips: half of them include violent behav-
iors, while the others belong to non-violent activities.
Finally, in the Bus Violence benchmark (Ciampi et al.,
2022a), the authors gathered and made publicly avail-
able 1,400 videos of violent/non-violent actions sim-
ulated by several actors in a moving bus.

2.3 Unsupervised Domain Adaptation

Traditional UDA approaches have been developed
to address the problem of image classification, and
they try to align features across the two domains.
Some notable examples are (Ganin et al., 2016) (Jin
et al., 2020) (Tzeng et al., 2017). However, their
usage in other applications is not straightforward,
as pointed out by (Zhang et al., 2017), and in the
literature, there are a limited number of UDA ap-
proaches suitable for different tasks. More recent ad-
vances involve semantic segmentation (Hong et al.,
2018) (Chen et al., 2019) and visual counting (Ciampi
et al., 2020b) (Ciampi et al., 2021). In this work, we
propose a UDA scheme for video violence detection
in videos. To the best of our knowledge, it is the first
attempt to exploit UDA in this task.

3 METHOD

3.1 Background

Following the notation introduced in (Pan and Yang,
2010) (Csurka, 2017), we define a domain D con-
sisting of two components: a d-dimensional feature
space X ⊂ Rd and a marginal probability distribution
P(X), where X = {x1, . . . ,xn} ⊂ X . Given a specific
domain, D = {X ,P(X)}, we formulate a task T de-
fined by a label space Y and the conditional probabil-
ity distribution P(Y |X), where Y = {y1, . . . ,yn} ⊂ Y
is the set of the corresponding labels for X . In gen-
eral, P(Y |X) can be learned in a supervised manner
from these feature-label pairs ⟨xi,yi⟩.

When considering Unsupervised Domain Adap-
tation (UDA), there is (i) a source domain DS =



{XS,P(XS)} with TS = {YS,P(YS|XS)} and (ii)
a target domain DT = {XT ,P(XT )} with TT =
{YT ,P(YT |XT )}, where YT is unknown, i.e., we do
not have any labels. Due to the difference between the
two domains, the distributions are assumed to be dif-
ferent, i.e., P(XS) ̸= P(XT ) and P(YS|XS) ̸= P(YT |XT ).
UDA aims to learn a model with lower generalization
error in the target domain by mitigating the domain
discrepancy.

3.2 UDA for Video Violence Detection

In this work, the source domain DS consists of a la-
beled set of videos with YS = {0,1}, where 0 and 1
indicate the non-presence/presence of violent actions
occurring in the clips, respectively. Specifically, we
considered some general violence detection datasets
present in the literature collecting very heterogeneous
and everyday life violent and non-violent actions. On
the other hand, the target domain DT consists of a
different set of videos for which we do not have anno-
tations. In this case, clips include violent/non-violent
actions performed in a more specific and different sce-
nario compared to the ones characterizing the source
domain. The goal is to infer some knowledge from
the unlabeled target domain during the training phase,
mitigating the domain discrepancy present with the
source domain so that the model can be able to better
generalize to the new specific scenario for which the
annotations are absent.

Our method relies on Deep Learning-based mod-
els trained end-to-end together with some UDA tech-
niques attached to them. The peculiarity of our UDA
scheme is that it is based on image classification.
Specifically, we cast the task of video classification to
image classification since the scenes including violent
actions can be discriminated from non-violent scenes
just by classifying an image randomly sampled from
the entire video clip (Akti et al., 2022). Starting from
this baseline, we put into the training pipeline two
different UDA techniques native for image classifica-
tion that we fed with images sampled from the target
domain, which are responsible for the intra-domain
transfer knowledge.

More in detail, we considered some Convolutional
Neural Networks (CNNs) as backbones for feature
extraction, cutting off the final classification layers.
We replaced the last classification head with a binary
classification layer, outputting the probability that the
given video contains (or does not contain) violent ac-
tions, and we added an additional linear layer fol-
lowed by a ReLu to map the feature maps coming
from the feature extractor to a fixed dimension. This
latter fixed dimensional feature map is then fed to a

UDA module.
We considered two different UDA strategies. The

first one is the Domain-Adversarial Neural Network
- (DANN) (Ganin et al., 2016) where a domain re-
gressor competes against the classifier in an adversar-
ial way. Here, UDA is achieved by connecting the
domain classifier to the feature extractor via a gra-
dient reversal layer that produces an adversarial loss
by multiplying the gradient by a certain negative con-
stant during the backpropagation-based training. Oth-
erwise, the training proceeds in a standard way by
minimizing the label prediction loss (for source exam-
ples) and the domain classification loss (for all sam-
ples). The adversarial loss ensures that the feature
distributions over the two domains are made similar
(as indistinguishable as possible for the domain clas-
sifier), thus resulting in domain-invariant features. We
refer the reader to (Ganin et al., 2016) for further de-
tails. The second one is the Minimum Class Confu-
sion - (MCC) (Jin et al., 2020), a loss function that
can be considered as a UDA approach that does not
explicitly perform domain alignment. It is based on
class confusion, i.e., the tendency of a classifier to
confuse the predictions between the correct and the
ambiguous classes. Specifically, given the feature ex-
tractor, MCC is defined on the class prediction given
by the classifier on the target data. Provided that less
class confusion implies more transferability, during
the training pipeline, MCC is optimized using stan-
dard backpropagation to obtain more generalized fea-
tures. We refer the reader to (Jin et al., 2020) for fur-
ther details.

4 PERFORMANCE ANALYSIS

4.1 Evaluation Metrics

Following previous works regarding video violence
detection, we used Accuracy to measure the perfor-
mance of the considered methods, defined as:

Accuracy =
T P+T N

T P+T N +FP+FN
, (1)

where TP, TN, FP, and FN are the True Positives, True
Negatives, False Positives, and False Negatives, re-
spectively. To have a more in-depth comparison be-
tween the obtained results, we also considered as met-
rics the F1-score, the False Alarm, and the Missing
Alarm, defined as follows:

F1 = 2× Precision×Recall
Precision+Recall

, (2)



FalseAlarm =
FP

T N +FP
, (3)

MissingAlarm =
FN

T P+FN
, (4)

where Precision and Recall are defined as T P
T P+FP and

T P
T P+FN , respectively. Finally, to account also for the
probabilities of the detections, we employed the Area
Under the Receiver Operating Characteristics (ROC
AUC), computed as the area under the curve plotted
with True Positive Rate (TPR) against the False Posi-
tive Rate (FPR) at different threshold settings, where
T PR = T P

T P+FN and FPR = FP
T N+FP .

4.2 Experimental Setting

We exploited three datasets present in the litera-
ture as the source domain — Surveillance Camera
Fight (Akti et al., 2019), Real-Life Violence Situa-
tions (Soliman et al., 2019), and RWF-2000 (Cheng
et al., 2021), already mentioned in Section 2. These
videos have been gathered from fixed security cam-
eras and include trimmed heterogeneous violent and
non-violent scenes, thus containing very general vi-
olent situations. On the other hand, we considered
the recently introduced Bus Violence dataset (Ciampi
et al., 2022a) as the target domain. In this case,
trimmed clips are recorded inside a moving bus where
some actors simulated violent/non-violent actions.
This latter scenario is, therefore, more specific as it
involves violent situations in public transport, and it
represents the perfect testing ground for evaluating
the generalization capabilities of Deep Learning mod-
els trained with more generic labeled data. We depict
the considered scenario in Figure 1.

As the backbone for feature extraction, we con-
sidered two popular CNNs — ResNet50 (He et al.,
2016) and VGG16 (Simonyan and Zisserman, 2015).
As already mentioned, we replaced their final clas-
sification head with a binary classification layer and
exploited them as baselines, i.e., without any UDA
modules, as well as the feature extractors and clas-
sifier for our proposed UDA schemes. Furthermore,
to compare the obtained results with the literature,
we also considered other existing approaches tailored
for video violence detection and video action recog-
nition. Specifically, we exploited the architectures in-
troduced in (Sudhakaran and Lanz, 2017) and (Han-
son et al., 2019) that employ ConvLSTM and BiCon-
vLSTM as spatio-temporal encoders, together with
some popular video action classifiers — the (2+1)D
network (Tran et al., 2018), the SlowFast (Feichten-
hofer et al., 2019) architecture and the Video Swim
Transformer (Liu et al., 2022). We refer the reader

to Section 2 and the related papers for further details
about the employed models. For a fair comparison,
we accounted for the ImageNet pre-trained versions
of all these models as the starting point without using
any additional extra data. Furthermore, we always ap-
plied the same data augmentation strategy during the
learning phase: horizontal flipping with a probability
of 0.5 and image resizing to 256×256 pixels.

4.3 Results and Discussion

We employed the following evaluation protocol to
have reliable statistics on the final metrics. For each
of the three considered source (training) domains, i.e.,
Surveillance Camera Fight, Real-Life Violence Situa-
tions, and RWF-2000, we randomly varied the train-
ing and validation subsets three times, picking up the
best model in terms of accuracy and testing it over
the target (test) domain, i.e., the Bus Violence bench-
mark. Finally, we reported the mean and the standard
deviation of these three runs.

Results are shown Table 1. Overall, all the con-
sidered models exhibit moderate performance, indi-
cating the difficulties in generalizing their abilities in
detecting violent actions in videos coming from the
target domain. However, the model which turns out
to be the most performing in terms of the golden met-
rics, i.e., the Accuracy, is the ResNet50 architecture
with the MCC UDA module. Specifically, we gain
7.4%, 0.37%, and 12.9% of accuracy compared with
the ResNet50 network without UDA concerning the
Surveillance Camera Fight, the RWF-2000, and the
Real-life Violence Situations source domains, respec-
tively, overcoming all the other considered methods
present in the literature.

Considering False Alarms and Missing Alarms, it
can be noted that, in general, all the methods obtained
very good results regarding the first metric, while they
struggled with the latter. Considering that missing
alarms are crucial for video violence detection since
they indicate violent actions that happened but were
not detected, this represents the main limitation for
all the violence detectors. However, it is worth not-
ing that the proposed approach made of the ResNet50
architecture and the MCC module can mitigate this is-
sue, achieving better performance compared with the
single ResNet50 model and often overtaking all the
other techniques. This behavior is linked with a lower
number of detected False Negatives and consequently
affects and improves the Recall and F1-score. In Fig-
ure 2, we report some samples of True Positive, True
Negative, False Positive, and False Negative coming
out from the best model, i.e., the ResNet50 architec-
ture with attached the MCC UDA module.
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Surveillance camera fight

Real life violence situations
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Figure 1: The considered scenario. We propose an Unsupervised Domain Adaptation scheme for video violence detection to
mitigate the domain gap existing between a source domain (on the left) and a target domain (on the right). The source domain
consists of three collections of annotated videos depicting violent/non-violent scenes in general contexts. On the other hand,
the target domain is represented by a set of unlabeled clips of violent/non-violent actions in public transport.

5 CONCLUSIONS AND FUTURE
DIRECTIONS

In this paper, we tackled the problem of video vio-
lence detection in the context of data scarcity. In-
deed, current Deep Learning solutions hinge on vast
quantities of labeled data needed for supervised learn-
ing, and they suffer when applied to new scenarios
never seen during the training phase. Thus, a model
trained on one domain, named source, usually expe-
riences a drastic drop in performance when applied
on another domain, named target. To tackle this is-
sue, we proposed an Unsupervised Domain Adapta-
tion scheme for detecting violent/non-violent actions
present in trimmed videos, which relies on supervised
learning in the source domain and, at the same time,
exploits an unlabeled target dataset to reduce the do-
main shift between the two sets. Our proposed solu-
tion is based on single image classification, randomly
sampled from the frames making up the clips. The
feature representations generated by the target images
have been hooked and fed to a UDA module responsi-
ble for making them indiscriminative concerning the
shift between the domains. To the best of our knowl-
edge, it is the first attempt at using a UDA schema
for video violence detection. We conducted exper-

iments considering as source domain three datasets
composed of videos of violent/non-violent scenes in
general contexts and, as the target domain, a collec-
tion of clips of violent/non-violent actions in public
transport. Preliminary results showed that our UDA
scheme can help to improve the generalization capa-
bilities of the considered models mitigating the do-
main gap.

In the future, we plan to extend our experimenta-
tion by considering and designing other UDA strate-
gies to be attached to the classifier. Indeed, although
we obtained a significant performance boost, the con-
sidered models still exhibit moderate generalization
capabilities, suggesting that a more effective domain
gap reduction is needed. Furthermore, we plan to put
into the pipeline also the spatio-temporal information
provided by consecutive frames making up the clips.
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Table 1: Performance Evaluation. We considered three datasets for video violence detection in general contexts as source
domains and a collection of clips with violent situations in public transport as the target domain. We randomly varied the
training and validation subsets of the source domains three times, picking up the best model in terms of accuracy. Mean ±
st.dev is reported.

Source Domain: Surveillance Camera Fight (Akti et al., 2019) - Target Domain: Bus Violence (Ciampi et al., 2022a)

Model Accuracy ↑ F1 ↑ False Alarm ↓ Miss Alarm ↓ ROC AUC ↑
(Hanson et al., 2019) 0.54 ± 0.02 0.19 ± 0.11 0.04 ±0.03 0.89 ± 0.07 0.68 ± 0.02
(Sudhakaran and Lanz, 2017) 0.52 ± 0.01 0.27 ± 0.18 0.16 ± 0.17 0.79 ± 0.18 0.55 ± 0.02
ResNet (2+1)D (Tran et al., 2018) 0.52 ± 0.02 0.44 ± 0.34 0.52 ± 0.44 0.44 ± 0.46 0.54 ± 0.05
SlowFast (Feichtenhofer et al., 2019) 0.55 ± 0.01 0.40 ± 0.21 0.27 ± 0.32 0.62 ± 0.35 0.62 ± 0.02
VideoSwimTransformer (Liu et al., 2022) 0.52 ± 0.01 0.65 ± 0.01 0.86 ± 0.01 0.10 ± 0.01 0.50 ± 0.01
ResNet50 (He et al., 2016) 0.54 ± 0.02 0.52 ± 0.06 0.44 ± 0.12 0.48 ± 0.12 0.55 ± 0.03
VGG16 (Simonyan and Zisserman, 2015) 0.51 ± 0.01 0.45 ± 0.07 0.39 ± 0.21 0.59 ± 0.19 0.51 ± 0.01

ResNet50 + DANN (Ganin et al., 2016) 0.55 ± 0.01 0.51 ± 0.04 0.39 ± 0.03 0.51 ± 0.06 0.56 ± 0.03
ResNet50 + MCC (Jin et al., 2020) 0.58 ± 0.01 0.52 ± 0.03 0.45 ± 0.05 0.47 ± 0.04 0.63 ± 0.01
VGG16 + DANN (Ganin et al., 2016) 0.53 ± 0.01 0.51 ± 0.04 0.49 ± 0.12 0.46 ± 0.10 0.51 ± 0.01
VGG16 + MCC (Jin et al., 2020) 0.53 ± 0.01 0.43 ± 0.01 0.28 ± 0.03 0.64 ± 0.01 0.52 ± 0.01

Source Domain: RWF-2000 (Cheng et al., 2021) - Target Domain: Bus Violence (Ciampi et al., 2022a)

Model Accuracy ↑ F1 ↑ False Alarm ↓ Miss Alarm ↓ ROC AUC ↑
(Hanson et al., 2019) 0.51 ± 0.01 0.07 ± 0.03 0.01 ± 0.01 0.96 ± 0.02 0.67 ± 0.05
(Sudhakaran and Lanz, 2017) 0.51 ± 0.01 0.08 ± 0.08 0.03 ± 0.03 0.95 ± 0.05 0.52 ± 0.02
ResNet (2+1)D (Tran et al., 2018) 0.53 ± 0.03 0.43 ± 0.05 0.29 ± 0.01 0.64 ± 0.05 0.54 ± 0.03
SlowFast (Feichtenhofer et al., 2019) 0.53 ± 0.03 0.40 ± 0.10 0.26 ± 0.08 0.67 ± 0.12 0.55 ± 0.03
VideoSwimTransformer (Liu et al., 2022) 0.53 ± 0.01 0.52 ± 0.04 0.45 ± 0.12 0.49 ± 0.09 0.57 ± 0.01
ResNet50 (He et al., 2016) 0.54 ± 0.01 0.49 ± 0.04 0.34 ± 0.05 0.56 ± 0.06 0.58 ± 0.01
VGG16 (Simonyan and Zisserman, 2015) 0.54 ± 0.01 0.41 ± 0.03 0.25 ± 0.06 0.67 ± 0.04 0.54 ± 0.01

ResNet50 + DANN (Ganin et al., 2016) 0.55 ± 0.01 0.52 ± 0.01 0.40 ± 0.01 0.50 ± 0.01 0.57 ± 0.01
ResNet50 + MCC (Jin et al., 2020) 0.56 ± 0.01 0.59 ± 0.02 0.49 ± 0.05 0.37 ± 0.05 0.60 ± 0.02
VGG16 + DANN (Ganin et al., 2016) 0.55 ± 0.02 0.52 ± 0.03 0.39 ± 0.04 0.51 ± 0.03 0.54 ± 0.02
VGG16 + MCC (Jin et al., 2020) 0.55 ± 0.01 0.41 ± 0.02 0.20 ± 0.05 0.69 ± 0.06 0.55 ± 0.01

Source Domain: Real-life Violence Situations (Soliman et al., 2019) - Target Domain: Bus Violence (Ciampi et al., 2022a)

Model Accuracy ↑ F1 ↑ False Alarm ↓ Miss Alarm ↓ ROC AUC ↑
(Hanson et al., 2019) 0.58 ± 0.02 0.49 ± 0.09 0.26 ± 0.12 0.57 ± 0.14 0.61 ± 0.01
(Sudhakaran and Lanz, 2017) 0.52 ± 0.01 0.45 ± 0.02 0.35 ± 0.04 0.61 ± 0.04 0.55 ± 0.02
ResNet (2+1)D (Tran et al., 2018) 0.51 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.99 ± 0.01 0.57 ± 0.08
SlowFast (Feichtenhofer et al., 2019) 0.51 ± 0.01 0.02 ± 0.02 0.01 ± 0.01 0.99 ± 0.01 0.54 ± 0.04
VideoSwimTransformer (Liu et al., 2022) 0.51 ± 0.02 0.30 ± 0.20 0.22 ± 0.17 0.76 ± 0.20 0.53 ± 0.02
ResNet50 (He et al., 2016) 0.54 ± 0.01 0.49 ± 0.03 0.38 ± 0.08 0.54 ± 0.06 0.56 ± 0.01
VGG16 (Simonyan and Zisserman, 2015) 0.53 ± 0.01 0.54 ± 0.02 0.33 ± 0.09 0.51 ± 0.08 0.58 ± 0.01

ResNet50 + DANN (Ganin et al., 2016) 0.57 ± 0.01 0.49 ± 0.03 0.25 ± 0.04 0.59 ± 0.03 0.57 ± 0.02
ResNet50 + MCC (Jin et al., 2020) 0.61 ± 0.01 0.54 ± 0.09 0.32 ± 0.15 0.51 ± 0.13 0.61 ± 0.01
VGG16 + DANN (Ganin et al., 2016) 0.54 ± 0.01 0.52 ± 0.03 0.40 ± 0.05 0.49 ± 0.03 0.54 ± 0.02
VGG16 + MCC (Jin et al., 2020) 0.57 ± 0.01 0.54 ± 0.04 0.36 ± 0.08 0.50 ± 0.08 0.59 ± 0.01

Spoke 1 "Human-centered AI", funded by European
Union - NextGenerationEU.
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