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Abstract: This work analyses the impact of the large-scale
atmospheric-oceanic phenomenon known as El Niño Southern Oscillation on
wheat production, and the consequent changes in prices at the global scale by
using computer simulations. Several intermediate results are obtained on the
way to the final goal. The identification of geographic areas relevant to the
international wheat market and the integration of heterogeneous datasets are
two of them. Building on these two results, the local effects of the El Niño
Southern Oscillation phases on the wheat yield are quantified using robust
ANOVA regression, and their potential impacts on the aggregate production
of each area are estimated. Finally, these estimates are provided as inputs to
the computational model, which outputs, among others, the wheat prices of
12 internationally relevant production areas. Simulation results show how the
cross-section distributions of prices, conditional on the occurring of El Niño
and La Niña, spread to the right compared to that observed for the neutral
phase. Therefore, both non-neutral phases imply an increase of average and
dispersion of prices, although the effect of La Niña is weaker than that of
El Niño.
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1 Introduction

Food price dispersion is a key economic issue since the negative effects are both for
consumers and producers at the local and global scale. Traditionally, the analysis has
been focused on the level of average food staples prices. In fact, rapidly rising food
prices are harmful to poor countries who spend as much as 50% to 70% of income
on food (Headey and Fan, 2008). A recent interest is to look also at price dispersion
because its deeper understanding would give an opportunity to improve local food
security policies (Distefano et al., 2019). It could also provide a guide in setting up
international commercial relationships when prices dispersion is associated with a high
volatility of prices in international food staple markets that would trigger frequent
revisions of commercial partnership to limit domestic food prices.

Many factors affect food prices. Wright (2011) highlights how the balance between
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consumption, available supply, and stocks seems to be as relevant for our understanding
of these markets as it was decades ago. Ott (2014) analyses the role of the stock in
supply-side shocks finding that low cereal stocks mostly influence inter-annual volatility
while large cereal stocks reduce the effects of shocks on both intra- and inter-annual
volatilities. Moreover, this author finds that the derivatives market does not have a
significant impact differently from the crude oil price and exchange rate, especially
for intra-annual volatility. Climate variability is another prominent factor in influencing
food prices’ dispersion (Ubilava, 2018). This is mainly due to the impact of large-scale
climate oscillation on crop productivity that Heino et al. (2018) demonstrate to involve
the two-thirds of global cropland area.

The objective of this study is to investigate what is the role of a large scale climate
driver in modulating the global price of wheat, which together with rice, maize, and
soybean are employed as a fundamental element of food and have become a staple in
over 97% of countries (Khoury et al., 2014). To this end, we develop a computational
model that incorporates the varying of wheat quantity derived from climate variability.
In particular, we focus on El Niño Southern Oscillation (ENSO)1 to reproduce such
climate variability at a large scale.

Among large scale forcing mechanisms on Earth, ENSO represents the most
prominent climate oscillation. It is a coupled oceanic-atmospheric phenomenon that
develops in late boreal summer in the Tropical Pacific Ocean. ENSO reaches an intensity
peak in the following winter and dissipates a few months later, during Spring. Such a
large scale oscillation modulates weather patterns and ecosystem fluctuations worldwide.
During its three phases, warm, cold and neutral (commonly known as El Niño, La Niña,
and neutral, respectively), it directly forces weather regimes in the Pacific region and
provides indirect influences to others through teleconnection mechanisms (Hu et al.,
2020). Such modifications on weather regimes modify the distribution of precipitation
and temperature patterns in the Tropics and Sub-Tropics areas mainly. Often negative
impacts, such as drought periods or floods are produced (Rojas et al., 2014) and their
effects are transferred on crop production (see for example Iizumi et al., 2014a) affecting
global food.

Several studies examine the role of climate variability in determining global wheat
price variation. Most of them are econometrics models which estimate the response
of global wheat price dynamic to the modulation of large scale climate drivers.
In particular, since climate affects the supply side of the market, they use some
climate variability index as shocks in the equilibrium framework. For instance, Ubilava
(2018) proposes an econometric framework to account for possible structural change
and regime-dependent nonlinearities in the commodity price dynamics. In particular,
the author adopts a time-varying smooth transition autoregressive model to account
for the nonlinearity of the ENSO-prices relationship due to the nature of climate
anomalies. Algieri (2014) investigates the drivers of wheat prices and quantifies their
impact through a vector error correction model. Gutierrez (2017) uses a global vector
autoregression model to account for the transmission of shocks from one country to
others markets and to analyse ENSO impacts on wheat yield anomalies, export prices,
exports, and stock-to-use ratios. The present work aims at contributing to this literature
through a generative approach (Epstein, 2006) rather than an econometric approach. In
the generative approach, the feature under investigation emerges from the interaction of
the agents in the model. The system evolves freely without any restriction to achieve
a particular state, such as equilibrium. Given the presence of a considerable number
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of agents, computational modelling techniques, also used in this study, are at the heart
of the generative approach. To our knowledge, any of the existing studies examine
the patterns of price variability using this approach at the global scale, though a few
introduce the agent-based modelling to determine the wheat price after farm behaviour
in the South of Italy (Siad et al., 2017) or the computational approach to predict the
economic impact of climate change-induced loss of agricultural productivity in Pakistan
(Khan et al., 2020). Thus, the present paper is a novelty in the adoption of economic
computational models to analyse price dispersion induced by climate variability.

This study is composed of two models:

1 the regression model to estimate the impact of ENSO on wheat production

2 the computational model to simulate the international wheat market in presence of
climate-derived variation in wheat supply.

The sequential application of these two models allows identifying how the ENSO
phenomenon affects international wheat prices. Important preparatory work was
necessary before building and applying the two models. This work is described in
Appendices A and B1. The article is organised as follows. Section 2 presents the
aggregation/disaggregation of geographic areas made to reach a spatial configuration
which can better represent geographic areas most relevant in the international wheat
market. Several sources of data were used and combined to estimate the macroscopic
effects of the ENSO phenomenon. Section 3 presents some descriptive statistics aiming
at highlighting what real-world data tell us on the relationship between ENSO phases
and wheat prices. The following two sections describe the regression model and the
virtual international wheat market model, respectively. Section 4 illustrates the statistical
techniques used to regress yield on a one-dimensional index representing ENSO
phases dynamic and the findings of the correlations worldwide. Section 5 presents
the computational model used to simulate how the climate effects found in Section 4
affect wheat international markets. The section also discusses the results obtained
from simulations. Finally, Section 6 provides conclusions and discusses possible future
research.

2 Spatial aspects

Being interested in an international analysis, the geographic setting of the model
has an important role. As will be discussed below, several data sources are used in
our investigation. Among them, the FAOSTAT datasets from Food and Agriculture
Organization (FAO) of United Nations have a prominent role. The spatial domain
of the model is therefore basically in line with FAOSTAT classification (which in
turn is derived from the United Nations M49 standard) at the ‘intermediate regions’
level, i.e., sub-continental geographic areas normally composed of several countries.
The sub-continental areas considered in this study are reported in the lower part of
Figure 1 (Table 7 in Appendix C reports all the countries belonging to each region).
The intermediate region world partitioning was amended to explicitly account for
countries playing a relevant role in the world wheat production/consumption system.
These countries are listed in the last line of the table included in Figure 1 where the
superscripts connect each country to the region from which it was parceled out. The
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world map highlighting regions and countries is displayed in Figure 1. This geographic
setting is also used in a previous work on which we will base the computational part of
this work (Giulioni et al., 2019).

Figure 1 Regions and relevant single countries considered in the model (see online version
for colours)

Notes: The superscripts in the table connect each of the five relevant single countries
with the region it was a parceled of.

To obtain data for the geographic entities identified here, we use several datasets. Some
of them provide data at the country level, while others refer to rectangular portions
of the globe which dimension depends on dataset resolution. We refer to the latter as
gridded datasets. The datasets we use are the following:

1 the FAOSTAT time series of yearly wheat production, yield, and harvested area
(http://www.fao.org/faostat/)

2 the GDHY wheat yield gridded dataset described in Iizumi and Sakai (2020)

3 the Global Crop Planting Dates (GCPD) dataset described in Sacks et al. (2010)
that includes spatial patterns of harvested area for winter and spring crop sowing
and their corresponding crop calendars

4 the ENSO quarterly time series classified into neutral, El Niño, and La Niña
phases
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5 the FAOSTAT ‘wheat and products’ database for the components of wheat
demand.

More details on these datasets are given in Appendix A. Since these datasets have a
different spatial and temporal resolution, we have to aggregate them to common scales.
The spatial aggregation of 1, 2, 3 and 5 is done according to the geographic units shown
in Figure 1 while 4 has only a temporal resolution. In particular, for the gridded datasets
2 and 3 that have an equivalent resolution of 0.5◦ by 0.5◦, we aggregate the cell grid
values by overlaying 24 raster polygons that represent the shape of the geographical
units listed in Table 1. On the other hand, data of 1 and 5 are released both at regional
and national levels where the regional aggregations correspond to those chosen for this
study. Nevertheless, we have to break up national time series of the US, India, Pakistan,
the Russian Federation, and China from their original regions.

The temporal aggregation used in this study is the year. Data from 1, 2, and
5 are already aligned to it, although with different time windows: 1 – 1961–2018,
2 – 1981–2016, and 5 – 1961–2017. The time series of dataset 4 is composed of 12
quarterly values for each year and is currently updated from 1959 on, while 3 is an
instantaneous picture of spatial patterns.

3 Empirical regularities of climate effect on wheat prices

By investigating the distributions of wheat price levels conditional on ENSO phases,
we find that there is a strong correlation with wheat prices when El Niño or La Niña
are active in the December-January-February (DJF) quarter, especially with La Niña.
The result is shown in Figure 2(a). As explained in Appendix A, the ENSO phases
we consider are computed on the sea surface temperature anomaly averaged on a
three months moving window. The averaging quarters are identified with a three-letter
acronym made of the months’ initials, e.g., DJF stands for December, January, February;
JFM for January, February, and March, and so on. This is the notation employed in
Figure 2 and will be used in the paragraphs below. It is also interesting to analyse
the same conditional distributions when the ENSO phenomenon begins in DJF and last
up to MAM [Figure 2(b)]. The time series of yearly export prices index used here
are retrieved from FAOSTAT (http://www.fao.org/faostat/en/#data/PI) and refer to the
markets of wheat top exporters. The export price index is calculated by taking as base
the period 2004–2006.

In particular, the plots show that both El Niño and La Niña increases the probability
of observing high prices. It is also worth noticing that the spread of prices is larger
with long-lasting phenomena and, particularly, La Niña causes a bimodal shape of the
price distribution. This asymmetric response of prices to the different ENSO phases has
been highlighted in other studies (Algieri, 2014; Ubilava, 2017). It is also related to the
different local effects manifestation such as the heterogeneity of drought risk associated
with ENSO (Rojas et al., 2014; Heino et al., 2018).2 Such a macro-scale asymmetry
modulates wheat and grains cereal production in the Mid-Latitude regions. Local supply
shortages are therefore more likely during La Niña.
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Figure 2 Distribution of wheat export prices conditioned on the three ENSO phases of
El Niño, La Niña, and neutral observed in, (a) DJF (b) long-lasting from DJF to
MAM (see online version for colours)

(a) (b)

Note: Prices are from the worldwide top exporters.

4 Modelling climate effects on wheat yields

The influence of ENSO on rainfall and temperature patterns has been largely studied in
the last decades. An overview of them is shown at https://www.pmel.noaa.gov/elnino/
impacts-of-el-nino. In this study, we consider the ENSO impact on the wheat production
of 18 groups of countries in addition to India, Pakistan, China, the Russian Federation,
and the USA (see Figure 1). We also account for different time-lags of ENSO impact
on the wheat-growing season according to the spring and winter crop sowing. In fact,
in many places in the world, the sowing of wheat can be done either during winter or
spring. Hereinafter, we use the term ‘crop sowing’ to distinguish between winter and
spring sowing. Furthermore, since “yield is more important in determining production
because of the large year-to-year variability of yield associated with climatic factors”
(Iizumi et al., 2014a), in the analysis of ENSO correlation with wheat production, we
analyse yield instead of production.

The components of the approach adopted to this end are explained either in the
following paragraphs or in the Appendix. Data preparation, analysis, and modelling,
as well as most of the plots, are done with the R software (R Core Team, 2020)
and, particularly, by using the set of packages included in tidyverse (Wickham et al.,
2017). For the raster cropping and variables aggregation we use the raster package
(Hijmans, 2019). To apply robust ANOVA regression, we use the WRS2 package (Mair
and Wilcox, 2019).

4.1 Selection of potentially impacting ENSO quarters on the growing season

To find a correlation between the time series of ENSO and wheat yield, it is crucial
to identify the growing season of this crop for each geographical unit and to find out
the period of the ENSO activities more strongly connected to such a growing season.
The length of the growing period for winter and spring wheat extracted from the GCPD
dataset is displayed in Figure 3.



8 E. Di Giuseppe et al.

Figure 3 Global distribution of wheat growing season obtained from Sacks et al. (2010),
(a) winter (b) spring (see online version for colours)

(a)

(b)

These periods are important because the longer the growing period, the longer the list
of ENSO quarters that might have an impact on the harvest. Using this Figure, we can
also identify areas with potential double rotation, i.e., areas where both the winter and
spring sowing are managed along the same year.
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Table 1 Growing period and ENSO impact time window for winter and spring varieties

Country-group Growing winter Growing spring Impact winter Impact spring

Eastern Africa (May–October) (June–December) DJF -> MAM ASO -> OND
Middle Africa (May–October) DJF -> MAM
Northern Africa (November–July) OND -> MAM
Southern Africa (June–November) ASO -> OND
Western Africa (December–July) NDJ -> MAM
Northern America (October–August) (May–September) OND -> MAM DJF -> MAM
Central America (November–May) OND -> MAM
South America (June–December) (January–August) ASO -> OND DJF -> MAM
Central Asia (September–July) (May–September) OND -> MAM DJF -> MAM
Eastern Asia (October–June) (February–July) OND -> MAM DJF -> MAM
Southern Asia (October–June) OND -> MAM
South-Eastern Asia (October–April) OND -> MAM
Western Asia (December–May) (April–August) NDJ -> MAM DJF -> MAM
Eastern Europe (October–July) (May–September) OND -> MAM DJF -> MAM
Northern Europe (October–July) OND -> MAM
Southern Europe (November–June) (April–August) OND -> MAM DJF -> MAM
Western Europe (November–August) OND -> MAM
Oceania (June–December) ASO -> OND
Russian Federation (August–August) (May–August) ASO -> OND DJF -> MAM
India (November-March) OND -> FMA
Pakistan (August–May) OND -> MAM
USA (September–August) (May–September) OND -> MAM DJF -> MAM
China (September–June) (March–August) OND -> MAM DJF -> MAM

The columns growing winter and growing spring in Table 1 report the growing period
for the 23 geographical units3 that results from the aggregation of the gridded dataset.
To obtain this aggregation, we firstly crop the GCPD visualised in Figure 3 over the
area covered by the 23 geographical units. Secondly, we count the cells with the same
planting and harvesting day of the year. Finally, we identify the month to which the
most frequent day belongs. For example, the period reported for the winter sowing
of Eastern Africa in Table 1 is May–October, this means that May (October) is the
month during which the planting (harvesting) activity has been more frequent in that
area. Table 1 shows how the winter sowing is largely widespread and that the double
rotation is adopted in 12 out of 23 geographic units. It is worth noticing that the unique
crop sowing adopted in Oceania is commonly attributed to Spring although the growing
season Jun-Dec covers usually the winter months.

In Table 1, the columns impact winter and impact spring report the period of ENSO
activity that can potentially have effects on the wheat growing season. In fact, the most
intense activity of this large scale phenomenon is during the autumn-winter time when it
reaches a peak. Nevertheless, the effects on weather and climate regimes can persist for
a longer period until the thermal inertia of its oceanic component is reached. Thus, its
effects are pushed further to the subsequent months such that they extend to the wheat
growing season.
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4.2 One-way robust ANOVA regression model for wheat yield-ENSO correlation

Regression analysis is used to create models that measure the effect on the dependent
variable due to a unit of variation in predictor variables. In our model, the dependent
variable is the wheat de-trended yield percentage while the unique predictor is the
ONI. It is worth pointing out that the de-trended yield percentage is calculated by
dividing the residuals of local polynomial regression by the corresponding fitted values
(see Appendix B2), and that ONI is computed by averaging sea surface temperature
anomalies in the Niño-3.4 region of the Pacific Ocean and that it also provides a
classification of such anomalies corresponding to the three ENSO phases of El Niño
(warm), La Niña (cold), and neutral (see Appendix A). Then, ONI has either a
continuous or a categorical configuration while the dependent variable is continuous.
This opens the possibility to apply a simple linear regression model by taking into
account the value of ONI anomalies, but also an analysis of variance (ANOVA)
regression model. Nevertheless, a combination of the two is also an option, i.e., the
analysis of the covariance (ANCOVA) regression mode. However, as discussed in
Section 1, the most important effects pushed by ENSO on worldwide ecosystems come
from the modulation of the phases rather than the level of deviation from the neutral
situation. As a consequence, we choose the one-way ANOVA (one-way because there is
only one predictor) regression to model the effects of the ENSO warm and cold phases
on percentage variation of wheat yield in contrast to the level of yield normally expected
during the neutral phase. In practice, with the one-way ANOVA, we study the effect of
the predictor by pairwise comparison of the variances for each level of the categorical
variable, i.e., El Niño, La Niña, and neutral. When the gap is statistically significant, we
estimate the value of the percentage difference in yield between El Niño and neutral,
La Niña and neutral. However, we find in our data many situations of unequal sample
sizes and differences in skewness among the three groups of observations as well as the
presence of outliers. These deviations from normality assumptions make the statistical
test unuseful. Therefore, also because of the nonhomogeneity of the three variances
that is a pre-condition for the application of ANOVA, we adopt its robust version, the
so-called robust ANOVA one-way.

The robust estimation was introduced by Tukey (1959), Huber (1964), and Hampel
(1968) since the ‘60s. The robust test and estimation used here refer to the work of
Wilcox (2012) and, consequently, in the following we call it Wilcox test. In particular,
we perform the comparison of multiple trimmed group means, with a trimming threshold
equals to 0.20. In practice, we exclude the lowest 10% and the largest 10% of values
for each group and compute the arithmetic mean on the remaining values. For example,
the trimmed mean of yield during El Niño is X̄E

yield =
∑nE

i=1 x
E
i /nE with nE being the

effective sample size after the trimming. Therefore, the null hypothesis of the test is H0 :
µE
yield = µL

yield = µN
yield where µ indicates the arithmetic mean of trimmed observations

and E, L, and N stand for El Niño, La Niña, and neutral, respectively. Similarly to
classical ANOVA, a significant test is followed up by a post-hoc test to perform multiple
pairwise comparisons between groups. Nevertheless, when the objective of the study is
to perform a comparison between groups, there is no need to first obtain a significant
omnibus ANOVA. Therefore, we directly apply the Wilcox post-hoc test on the trimmed
means. This test belongs to the family of F-distributed Welch-type test statistics that
allow for unequal variances in the groups (Welch, 1951) and its test statistic for two
independent groups is of the form:
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T =
X̄g1 − X̄g2√
dg1 + dg2

(1)

where X̂ is the trimmed mean of the group g and d is a measure of its squared standard
errors.

Since we have three independent groups, the test statistic of the multi comparison
between two groups can be easily built from equation (1) by applying a linear constraint

Ψ̂ =
3∑

j=1

cjX̄gj (2)

and setting two of the constraints cj to 1 and –1 and the third to 0. The specificity of
the test is determined by the form of the denominator in equation (1), which results in
an F-distributed test statistic. Details on its definition can be found in Wilcox (2012).
Finally, being respectively σ2(Y ) and σ2(Ŷ ) some robust measure of the variation
associated with observations and fitted values under the null hypothesis, the estimate of
the effect size is ϵ =

√
ϵ2 where

ϵ2 =
σ2(Ŷ )

σ2(Y )

In particular, being X̄yield the grand mean, σ2(Ŷ ) is estimated with

(X̄E
yield − X̄yield)

2 + (X̄L
yield − X̄yield)

2 + (X̄N
yield − X̄yield)

2

where X̄yield,X̄E
yield, X̄L

yield, and X̄N
yield are the trimmed means.

Figure 4 Distribution of India’s yield observations of winter sowing in the three phases of
ENSO, (a) complete distribution (b) trimmed distribution (see online version
for colours)

(a) (b)
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We apply the bootstrap version of this heteroscedastic one-way ANOVA post-hoc
test for trimmed means with 999 repetitions over the entire set of quarters reported
in the columns impact winter and impact spring of Table 1 and select the most
strong among those that result to be significant. For the sake of clarity, we describe
the entire procedure for India while the complete list of significant effects found is
reported in Table 3. India adopts a mono-cropping winter sowing and the growing
season goes from November to March (see Table 1). The table also shows the list of
potential ENSO quarters that are tested: from October-November-December (OND) to
February-March-April (FMA). The distribution of yield observations in each phase is
displayed in the box-plot of Figure 4.

Firstly, a trimmed mean is applied over these three distributions leading to those
shown in Figure 4(b), secondly the Wilcox post-hoc test is performed by applying the
function mcppb20 included in the WRS2 R package (Mair and Wilcox, 2019). Finally,
the significant effects are selected by means of the P-value. The result of the test for
India is reported in Table 2.

Table 2 Robust ANOVA-one way test results for India

Group 1 Group 2 Ψ̂ ci.lower ci.upper p.value

Neutral El Niño –4.73 –9.61 0.11 0.02
Neutral La Niña –4.74 –9.30 –0.21 0.02
El Niño La Niña –0.01 –4.14 3.65 0.96

Table 3 Robust ANOVA-one way percentage effects of ENSO on winter and spring yields

Country-group CropSowing Quarter Phase Effect (%) Neutral (%)

Northern Africa Winter OND* El Niño –7.75 2.90
Northern Africa Winter FMA La Niña 4.12 0.84
Central America Winter FMA El Niño –2.94 –0.25
South America Winter OND El Niño 1.42 –4.18
Central Asia Winter MAM El Niño 12.01 –1.51
Central Asia Spring MAM La Niña 28.49 –5.94
Southern Asia Winter MAM El Niño 2.41 1.04
Northern Europe Winter DJF La Niña –2.44 1.60
Oceania Spring SON El Niño –3.49 0.74
India Winter DJF La Niña 0.08 1.35
India Winter JFM El Niño –4.74 1.22
USA Spring MAM La Niña –1.10 –1.47
China Spring DJF La Niña –1.92 1.61

Notes: The last column reports the trimmed mean of yield during the neutral phase.
*indicates that the identified quarter belongs to the year before the one when
the effect is quantified.

There, the effect under linear constraint Ψ̂ is shown in the corresponding column
while the associated lower and upper confidence intervals are reported in the column
ci.lower and ci.upper, respectively. Note that in order to obtain the explanatory effect
size of El Niño or La Niña with respect to neutral, we have to take into account the
transformation adopted with the linear constraint [see equation (2)]. That is why the
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La Niña value of Ψ̂, very similar to that of El Niño, corresponds to an effect size close
to 0 (not shown). On the contrary, the El Niño back-transformed value of Ψ̂ = 4.74
just corresponds to the estimated effect size, i.e., a decrease of yield with respect to the
neutral phase equals to 4.74%. This value is also reported in Table 3.

The results show that the wheat yield of 10 out of 23 geographic units is highly
correlated with the climate oscillation generated by ENSO. Moreover, the yield of
Northern Africa, Central Asia, and India is subject to the variation determined by either
El Niño or La Niña. Depending on the type of crop sowing and Hemisphere, the number
of significant effects associated with El Niño (7) is almost the same as that associated
with La Niña (6). Also, the sign of the effects is more or less equally distributed among
the two: 4 (3) negative (positive) with El Niño, 3 (3) negative (positive) with La Niña.
On average, the level of the explanatory effect caused by La Niña seems to be more
strong than that caused by El Niño, especially because of the high effect found in Central
Asia. Although statistically significant, this finding is supported by very few cases
happened out of the neutral phase. In the future development of the model, this will
require a further investigation of the climate variability at the local level. Nevertheless,
in general, these results are consistent with the findings of other studies, for example
Iizumi et al. (2014a) and Iizumi et al. (2018) where it clearly appears that the impact of
such effects on production strictly depends on local factors such as climate mechanism
and the harvested area devoted to wheat cultivation in each geographic unit.

4.3 Estimates of regional wheat production under the ENSO effect

To identify the ENSO impacts on wheat production, we use the estimates of yield
variation listed in Table 3 to compute the corresponding variation of production given
the harvested area. More specifically, the 13 significant effects found through the
statistical model are applied over the years classified by the two phases of El Niño
or La Niña, correspondingly, then multiplied by the harvested area devoted to wheat
cultivation in those years. Therefore, we obtain a time series of estimated variation
of production due to the found correlation with ENSO for each of the interested
geographic unit. Finally, the complete time series of production is obtained by summing
the estimated variation to the quantity estimated through the loess procedure described
in Appendix B2. Note that the production of years characterised by a neutral phase as
well as that of the geographic units where ENSO has no effect is also estimated through
the loess procedure. These time series are an input of the computational model presented
in the next section..

5 Modelling climate effects on wheat markets

Our previous analysis allows to identify the ENSO effects on wheat yield and
to compute the corresponding impact on the production quantity in the considered
geographic units. In this section, we will use those results to evaluate the response of
the international markets to such effects. The analysis is performed by integrating wheat
production and wheat demand.

As one can easily imagine, this market is a complex object whose analysis is not
easy. We, therefore, take advantage of computer simulations.
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5.1 The computational model

We build our investigation on an existing computational model able to analyse
international wheat markets. The starting point is the commodity markets simulator for
wheat (CMS-wheat), which is a computational model addressed to the analysis of wheat
spot price formation, its dynamics, and the dynamics of exchanged quantities. In this
section, we briefly summarise the functioning of the model details of which can be
found either in Giulioni et al. (2019) or in the supporting material available at the
software Github repository https://github.com/gfgprojects/cms_wheat.

The model handles the dynamics of several producers/suppliers, several consumers/
users, and their interactions on markets. The interplay between demand and supply on
markets determines prices and exchanged quantities.

Table 4 Geographic regions and market sessions

Continent Region Has an internat. Outgoing hub Incoming hub
market session? location location

Africa Eastern Ethiopia
Middle Angola
Northern Egypt
Southern South Africa
Western Nigeria

USA Northern – USA X USA USA
Northern except USA X Canada Canada

South X Argentina Brazil
Central Mexico

Caribbean Cuba
Asia Southern – India X India India

Southern – Pakistan X Pakistan Pakistan
Southern except India and Pakistan Iran

Central – Russian Federation X Russian Fed. Russian Fed.
Central except Russian Federation X Kazakhstan Uzbekistan

Eastern – China X China China
Eastern except China Japan

South-Eastern Indonesia
Western Iraq

Europe Eastern X Ukraine Poland
Northern X UK UK
Western X France Netherland
Southern Italy

Oceania X Australia New Zealand

Producers/suppliers and consumers/users in this model are the wide regions and
countries listed in Table 1. On the supply side, each producing area has a wheat outlet.
The model distinguishes outlets that are relevant at the international level from those
which are relevant at the local level only. The latter are those whose production is
always lower than demand. Because the focus of the model is studying the international
wheat market, only internationally relevant outlets are kept in the analysis, i.e., demand
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and supply of these regions are both considered in the model. Only the net demand, i.e.,
demand minus production, is considered at the international level for the other regions,
and these areas’ productions are assumed to be addressed to local users. Internationally
relevant outlets are gathered in the international market and will be referred to, more
formally, as market sessions.

Figure 5 Regions considered in the model (thick line contour) and commercial hubs (circles)
(see online version for colours)

Notes: Green circles denotes outgoing hubs, light blue circles denotes incoming hubs.
The size of the circles inform about produced and used quantities.

12 of the 24 areas and countries listed in Table 1 has a production permanently higher
than their domestic demand. Therefore they are allowed to sell in the international wheat
market. See the ‘has an international market session?’ column in Table 4. All the 24
areas direct their demand to the international market. In particular, each of them prepares
a demand schedule for each of the 12 considered producers and sends it to the relative
market session before the market opens. After opening, each producer aggregates the
24 demand schedules received and sets the wheat price to the level that allows it to
sell a quantity as close as possible to the wished one. Once the price was established,
the quantity assigned to each buyer is computed by using the individual demand curve.
Following this assignment, the wheat is moved from the producer outgoing hub to the
buyer’s incoming hub identified in Table 4 and displayed in Figure 5. The distance
between these hubs is used to compute transport costs that are paid by the buyer, and
therefore it increases the cost of wheat. Buyers use the information on the costs of
wheat obtained from the different producers to modify demand schedules that will be
sent to the market before the next opening. Demand schedules are also moved in case
the gathered quantity differs from the buyer’s target.

The international wheat market opens at regular time intervals, i.e., monthly.
Producers and buyers gradually adjust their behaviour over time to achieve their goals.
In particular, producers aim at selling the quantity harvested in a year throughout the
various market sessions performed in a year. They aim at selling at the highest possible
price, provided that the selling price is higher than production costs. Buyers aim at
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obtaining a target quantity at the lowest possible cost. Therefore, they manage to move
their demand towards those producers who were recently experienced as cheaper.

5.1.1 Changes to the model

The change to the computational model was performed to include the progress made
in the above analysis which distinguishes the winter and spring crop sowing. The
model from which we start (Giulioni et al., 2019) is a first attempt to investigate
the international wheat markets and, being based mostly on the FAOSTAT databases,
considers the total yearly production. Therefore, among its inputs, there is a time series
of yearly production and an integer number informing on the mean harvesting month
(HM) for each producer. In the new version of the model, these inputs are composed of
two time series and two integer numbers. They give the winter and spring production
and the months in which these productions are harvested, respectively.

The primary consequence of this development is that quantities supplied in the
various market sessions change more often, mimicking reality more closely than the
original model.

5.2 Simulation procedure

Wheat markets are affected by a large number of factors and historical events.
Extrapolating the climate effects is a hard task in a dynamic context where a changing
number of these effects merge in time. To identify the climate effects on wheat prices,
we favor the ceteris paribus analysis made possible by a simulation approach rather
than its most frequently used full-blown dynamic ability.

Our approach consists of selecting a reference year in which the production was
not significantly affected by a relevant event such as war, import and export ban, and
similar. From the climate point of view, this means that the selected year was preceded
by a persistent level of ONI close to zero. We then run a simulation giving as inputs
the quantities obtained from the databases in the chosen year. Keeping these values
unchanged over time, we obtain the output time series (basically prices and quantities
exchanged in the various market sessions) to be used as benchmark. In the following
runs, the model has the same initialisation, but one of the inputs is changed at a given
point in time.

Comparing the set of time series obtained from each simulation run with those
obtained from the benchmark we can evaluate the effect of the changes in the inputs on
outputs.

5.2.1 Reference year selection

In the last decades, a few periods were characterised by a persistent level of
neutral ENSO phase and thus a weak ONI index. According to the ONI index time
series4, the years characterised by a prevalent neutral ENSO phase are: 1980–1981,
1989-1990-1991, 2001–2002, 2003–2004, 2012-2013-2014. Among them, we select
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2014 which is the second in a row of three consecutive neutral years, since the
identification of the phase depends on the ONI value registered during the winter
2013–2014 and up to that of spring 2014.

Our choice is to use the most recent candidate in the conviction that available data
are more reliable. Moreover, we point out that FAOSTAT changed its methodology in
the computation of demand components from 2013.5

5.2.2 Simulations

As hinted at above, simulations are performed providing to the model data we compute
for 2014. In particular, the quantities that fill the supply side of the benchmark
simulation are reported in the central column of Table 5.

The other simulations are obtained by changing the harvested quantities at a certain
point in time with those that would be observed, according to our previous analysis,
if El Niño or La Niña had replaced the ENSO neutral phase happened in reality.
More precisely, simulations run on a monthly base, i.e., the international wheat market
operates once a month. Each simulation lasts 72 time ticks.

The model has several parameters that are listed and described in the documentation
available at https://github.com/gfgprojects/cms_wheat. The most relevant ones, regulate
the shape of the demand curve, the level of transport costs and the buyers behaviour
on moving demand from most to less expensive producers. Because our analysis focus
on one year, the parametrisation of the model is that used in Giulioni et al. (2019)
who implemented a computationally intensive procedure for parameter setting using data
from 1992 to 2013. There, the calibration process for those parameter that cannot be
established using empirical observations was made by an heuristic global optimisation
process. The differential evolution algorithm (Storn and Price, 1997) was used for this
purpose. Briefly, the process goes through the following steps:

• a population of parameters vectors is taken from the parameter space

• the model is run for each element of the population

• the goodness of each element is evaluated by computing the distance of the yearly
prices obtained from the simulation with those observed in reality

• the element of the population producing the minimum distance is selected

• starting from this element, a new population is generated aiming at obtaining
lower values for the distance

• if an improvement is realised, the element of the population that provided for this
improvement is selected to generate a new population

• the process is iterated until a stopping condition is met.

The outcome of this process provided very good results which are better described in
Giulioni et al. (2019).
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Table 5 Production in 2014 and estimated change in produced quantities if the ENSO phase
would be El Niño or La Niña instead of neutral, CS = cropping systems (w = winter,
s = spring) and HM = harvesting month

Area Share CS Production (p) HM ∆p El Niño ∆p La Niña

Northern America 4.84% 29,758,963
w 6,058,129 9
s 23,700,834 10

South America 3.6% 22,122,784
w 16,736,353 1 234,329
s 5,386,431 9

Central Asia 3.71% 22,778,168
w 9,559,974 8 1,148,153
s 13,218,194 10 3,765,863

Eastern Europe 9.74% 59,883,770
w 36,948,893 8
s 22,934,877 10

Northern Europe 4.92% 30,263,058
w 30,263,058 8 –738,419
s 0

Western Europe 10.82% 66,504,216
w 66,504,216 9
s 0

Oceania 4.01% 24,623,834
w 0
s 24,623,834 1 –859,372

Russian Federation 9.38% 57,661,512
w 4,566,060 9
s 53,095,452 9

India 15.14% 93,090,460
w 93,090,460 4 –4,412,488 74,472
s 0

Pakistan 4.17% 25,652,858
w 25,652,858 6
s 0

USA 9.44% 58,043,684
w 46,796,563 9
s 11,247,121 10 –123,718

China 20.23% 124,355,184
w 49,502,258 7
s 74,852,926 9 –1,437,176

Total 100% 614,738,491 –3,889,378 1,541,022
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5.2.3 Simulating the effects of ENSO phases

In the benchmark simulation, no changes to the inputs are performed during the whole
simulation.

In the second run of the model, we start loading the changes to the production that,
according to our model, would be observed in 2014 if the ENSO phase were El Niño
instead of neutral in period 37. Note that time tick 37 of the simulation corresponds
to January of the fourth year. We let the model progress for 36 time steps to avoid
transient effects due to initialisation. As seen in the HM column of Table 5, in January,
winter wheat is harvested in South America and spring wheat is harvested in Oceania.
However, in time tick 37, South America’s production is 234,329 tonnes higher than the
previous January and in Oceania 859,372 tonnes lower. These changes start affecting
the supplies on these two markets possibly causing a change in buyers’ wheat cost
ranking and, therefore, movements in their demand schedules in the following months.
The next change will take place in April (time tick 40 in the simulation) when El Niño
would have caused a significant reduction in India’s winter wheat production. This event
triggers further adjustments in the international wheat market. In June, July, and August,
‘normal’ productions are realised by Pakistan, China Eastern, and Northern Europe,
while Central Asia would have an increase in its winter production. The simulation then
progresses by inputting the ‘normal’ produced quantities for each geographic unit at the
due month. Quantities which progressively enter into the model are those emended with
the estimated El Niño effects up to time tick 72.

In the third run, the process repeats, but taking as input the La Niña quantities
starting from time tick 37.

5.2.4 Simulating the effects of different levels of demand

A second factor that strongly affects the result is the level of demand compared to
the available quantity. It is well known that recording data is a hard task, and it is
subject to significant distortion even if it is done very carefully. Difficulties concerning
the management of demand components are for example discussed in the FAOSTAT
documentation cited in footnote 5.

Faced with these difficulties, we choose to perform the previous analysis concerning
the climate effect for different levels of demand. In particular, we generate for each
buyer four different levels of demand, scaling the sum of the three principal components
supplied by the food balance FAOSTAT database (food, feed, and seed) by factors of
1.13, 1.14, 1.15 and 1.16. Note that FAOSTAT identifies four other minor wheat uses:
‘processing’, ‘waste’, ‘other uses’, and ‘stock variation’. This justifies the adoption of a
multiplier greater than one in our computation of the total demand.

This what if approach allows us to compare situations where the total supply of
wheat, that in the neutral phase is 614,738,491 tonnes as displayed in Table 5 with the
following levels of aggregate demands: D1 = 604,797,562, D2 = 610,149,753, D3 =
615,501,942 and D4 = 620,854,136.

The comparison of these simulations allows the analysis of the effects of El Niño
and La Niña on wheat prices at a different level of market demand.
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5.3 Results

In this section, we deal with the effects the ENSO phase would have had on the price
distribution of wheat.

Figure 6 Price distribution dynamics

It is useful to recall that the model outputs a price for each production area at each
time the market is performed. Therefore, at each time tick, we gather the 12 prices
established in the corresponding market sessions. As highlighted above, we run the
model on a monthly scale. In a year (12 simulation time ticks) 144 observations are
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available. Our analysis consists of evaluating the dynamics of the statistical distribution
of these monthly prices. To this aim, we build their kernel density estimation that is
displayed in Figure 6.

In this Figure, each chart displays four lines with a different degree of thickness.
We will refer to thickness 1 to 4 hereafter. The line with thickness level equal to 1 is
the kernel density estimation of the 144 observations obtained from the simulation in
time ticks 25–36. That with thickness 2 gives the same for time ticks 37–48 and so
on. Comparing these distributions we can monitor the dynamics of the monthly price
distribution starting from the thinnest and ending in the thickest.

Figure 6 reports by column the conditional distributions on the three ENSO phases
while, by row, distributions are conditionated on the four levels of demand D1, D2, D3

and D4.
Because for each level of demand, harvested quantities inputted in the simulation

change with ENSO phases starting from time tick 37, the three thinnest distributions are
the same by row (they relate to time ticks 25–36 where quantities are the same). They,
therefore, provide a term of comparison.

A second useful observation concerns the price range. In simulations, prices have
a lower boundary represented by production costs. Therefore, a decreasing level of
demand would not cause a reduction in minimum observed prices. This explains why
density accumulates at a low, but positive value in some chart of Figure 6, especially
those with a low level of demand.

It is convenient to start the analysis of the charts in Figure 6 from the results
obtained for the neutral phase. In this case, harvested quantities enter the model
periodically at the HM identified in Table 5, but, for each producer, they are the same
during the whole simulation. Looking at the four charts in the central column of the
Figure, we notice that the distribution moves in time, but its shape does not change
much. This behaviour signals that the thickness 1 distribution can be taken as a term of
comparison for the following distributions when the ENSO phase is switched to El Niño
or La Niña, that is from time tick 37 on. Secondly, going down from the top to the
bottom chart in the central column of Figure 6 we can see a feature that should not come
as a surprise: demand increases create upward pressure on prices. Prices distributions
spread to the right as the demand gradually increases from D1 to D4.

Some other observations can be done by comparing Figure 6 columns side by side.
But two considerations are in order before starting the analysis. First, it is useful to make
a consideration of how the sequence of thickness 1–4 distributions can be interpreted
in the charts showing El Niño and La Niña cases. As it was highlighted above, the
thickness 1 distribution represents the state in the neutral phase. Thickness 2 distribution
is the price distribution of the period in which the climate effects are first introduced into
the model. As explained above, these changes can be seen as shocks that sequentially
perturb the price distribution. From this point of view, this distribution can be seen
as representing a transition period. Thickness 3 distribution is that in which all the
harvested quantities are constant since at least one production cycle. Therefore, if we
want to get rid of transition effects, the comparison has to be done between thicknesses
1 and 3 distributions. Finally, thickness 4 distribution can be used to check if the change
process is still ongoing or it has been completed.

Second, to fully appreciate the results, it is useful to highlight ENSO effects on
global production. They can be evaluated by looking at the last line in Table 5.
According to the estimation based on the analysis in the previous sections, El Niño,
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other things being equal, decreases global production by 3,889,378 tonnes, while
La Niña increases it by 1,541,022 tonnes. Although these figures should be better
qualified in the future (especially for La Niña) because of the ‘fragile’ estimation of
Central Asia effects, we will use them because, as we will show below, they will bring
to price behaviour consistent with those observed in reality and discussed in Section 3.

The comparison between the neutral and the El Niño charts (Figure 6 columns 1 and
2) clearly reveals the upward pressure on prices triggered by the reduction of production
due to the change in ENSO phase. At the D1 level of demand, densities move to the
right implying a significant increase in dispersion among the monthly prices of the
various producers. The distribution is basically unchanged for thickness levels greater
than one.

The transitional nature of thickness 2 distribution is evident in the D2 – El Niño
chart. There, thicknesses 1 and 3 distributions are very different, with the second one
roughly symmetric and significantly moved to the right. This is also an example in
which the adjustment process comes to an end with thickness 3 distribution. In fact,
thickness 4 distribution essentially overlaps it. Differently from D2, the appearance of
El Niño when the global demand increases to D3 triggers a continuous growth of prices.
This is represented by the continuous movements of price distribution to the right. Prices
growth is even faster the higher the aggregate demand is. The D4− El Niño chart
confirms the result.

Looking at the La Niña charts, i.e., comparing Figure 6 columns 2 and 3, we can
observe an unexpected phenomenon: there is a tendency of prices to rise even though the
global supply of wheat increases. In other words, despite a downward pressure of prices
is expected because of the increase of supply, the changes in prices distributions going
through the D1, D2, D3 and D4 levels of demand are qualitatively the same than those
observed after the supply reduction bring about by El Niño. However, the phenomenon
is quantitatively less intense. As an example, the D3 – La Niña distributions behave
very similarly to the D2 – El Niño ones. Similarly, the D4 – La Niña distributions move
like the D3 – El Niño ones.

This unexpected behaviour points us to take a different perspective which opens a
possible way for future research. Looking at La Niña effects in Table 5 we see that the
production of some areas is reduced by La Niña. The price dynamics behaviour just
commented could point to the fact that their effects on markets prevail on those activated
by opposite and quantitatively more relevant effects. In this context, the research can be
directed to investigate which market(s) most affect all the others in a particular historical
time and global system configuration. As the theory of complex systems teaches us,
even small shocks can have macroscopic effects if they hit a component of the system
which, in that particular time, is in a critical situation. Distefano et al. (2019) also hint
at the international food trade network as a complex system.

6 Conclusions

This paper presents a someway singular work where several heterogeneous elements
are carefully orchestrated to travel the broken ground trail going from oceanic surface
temperature to wheat prices.

At the beginning of this journey, there is the identification of the geographic
units which are relevant to the international wheat markets. The choice is to use
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sub-continental areas with some exception in which particular relevant countries are
considered individually. The construction of a dataset by aggregating or disaggregating
existing data sources with heterogeneous resolution complying with the spatial structure
tailored in the previous steps paves the way to the next section of the trail.

In the middle of this traveling, there is the regression model that transforms a so
large natural forcing as ENSO into a measurable variable that is directly connected
to the ancestral and widespread cultivar of wheat. There are a number of factors
affecting wheat production. The climate forcing is perhaps the first to pay attention
to. Notwithstanding, its identification is hard. To overcome these difficulties, this work
starts from the observation that, other things equal, a ‘normal’ production follows
‘normal’ climate conditions. Therefore, the production realised under a neutral phase of
ENSO is taken as reference for the analysis. Deviations of production from that observed
in the neutral state are measured by means of the one-way robust ANOVA regression
coefficients. This change is strictly local-depending and, in fact, the results show that
only 10 out of 23 regions/countries that produce wheat is highly correlated with the
climate oscillation generated by ENSO. The number of significant effects associated to
El Niño, the warm deviation from normality, is almost the same of that associated to
La Niña, the cold one, and a similar situation holds for the sign of the effects: 4 (3)
negative (positive) with El Niño, 3 (3) negative (positive) with La Niña.

Instead, the last part of the journey is in charge of a computational model that
leads straight to another fundamental instrument of the human being’s development:
the market. The virtual reproduction of the wheat international market realised in the
final part of this work by using computer simulations shows how ENSO Phases affect
differently the wheat markets and prices according to the level of global demand
relative to global supply. In some circumstances, this causes a one-shot movement of
the distribution, while in other cases it triggers potentially long-lasting and cumulative
effects on price dynamics.

Being based on a long route, this traveling has also many limitations that it is
worth discussing here. Moreover, they suggest directions for further research that will
hopefully smooth the trail followed in this work.

First comes the need for a more disaggregated dataset. In particular, the availability
of data concerning the different crop sowing seasons would have significantly improved
the quality of the results obtained in this paper. This option is available for some
countries around the world, however, a global dataset that gathers data from country
institutional sources, i.e., FAOSTAT is only composed of merged (from winter and
spring sowing) time series. Several research groups have devoted their efforts to this
end, the GDHY dataset used in this work is an example. However, they often result in
some lacunas in the aggregation of quantities due to objective difficulties in collecting
such a huge amount of information. It is why we choose to split FAOSTAT production
time series into winter and spring ones by using a simple ‘weighting’. Additional
work in improving this splitting procedure is planned for the future. Furthermore, by
aggregating harvested area and production per region to compute regional yield, we de
facto assume that the technique adopted in each region is the same for all the countries
in that region. This assumption could conceivably be true if we accept that the spatial
proximity generates a similar ‘modernity’ evolution.

Beyond these difficulties, this work has several potential applications both in the
short and long run. A possible short-term application of this work is the possibility of
implementing the computational model in order to predict the wheat prices for the next
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season at the regional level, because of the good predictability of ENSO mechanism. On
the long run side, what discussed above allows us to glimpse the potential that entices
the scholar to complete the model in various directions. On the supply side, decisions
on land use, the effects of climate on plant diseases, or the management of the stocks
could be modelled. On the demand side, attention could be focused on the determinants
of its components. If successful, this will provide in the future a reliable tool to find out
policies to enhance food security via better control of main staple average and volatility
prices.
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Appenix A

Description of datasets

Wheat supply database

The time series of production, yield, and harvested area are taken from the
‘production-crops‘ section of the FAOSTAT database. Because of their importance
as wheat producers, it is worth detailing the time series of China and the Russian
Federation. For the former, Taiwan, Macao and Hong Kong are part of China since
2014, however, we only refer to ‘China, Mainland’ because of historical homogeneity.
For the latter, it is necessary to take into account the significant modification that
interested the Russian territory since 1991. In fact, from the pre-existent USSR,
they have been created several nations: ‘Russian Federation’, ‘Ukraine’, ‘Kazakhstan’,
‘Kyrgyzstan’, ‘Uzbekistan’, ‘Turkmenistan’, ‘Tajikistan’, ‘Azerbaijan’, ‘Armenia’, and
‘Belarus’. Because of this historic happening, the wheat time series of the Russian
Federation, as well as those of Central Asia and Eastern Europe, start only from 1992
instead of 1961.

Winter and spring yield dataset

It is important for the goal of this study to know the gathering month since the model
in Section 5 takes into account the moment at which the product is ready to be sold.
Therefore, the distinction between winter and spring sowing becomes essential. It is
also important to know those areas where the double wheat rotation is practiced. Those
regions/countries that practice the double rotation have two harvesting periods during
the same year, and, consequently, they supply the market two times a year. Furthermore,
the climate effects might be significant for one cropping season but not for the other.

For all these reasons, we need a dataset of wheat yield that is able to distinguish
between the winter and spring crop sowing. Among others, our choice has fallen on
the GDHY dataset from Iizumi and Sakai (2020). This is the updated version of the
same dataset described in Iizumi et al. (2014b). As hinted above, GDHY is a yield
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gridded dataset of several crops, and wheat is one of them. Its grid size is 0.5◦ by
0.5◦ in longitude and latitude while the period is of 36 years (from 1981 to 2016). In
GDHY, the winter and spring yield values were obtained from the FAOSTAT yearly time
series by integrating them with eco-physiological information from several sources such
as remotely sensed leaf area index, the fraction of photosynthetically active radiation,
reanalysis of solar radiation, harvested area map, and crop calendars.

We extract from this dataset the fraction of winter and spring production and winter
and spring harvested area then use them to split the correspondent FAOSTAT time series.
The procedure is explained in Appendix B.

Figure 7 (a) Niño regions: the portion of the Pacific Ocean where the various ENSO indexes
are calculated (b) Time series of ENSO phases calculated by means of ONI from
2010 to 2017 (see online version for colours)

(a)

(b)

Notes: Red for El Niño, blue for La Niña and white for neutral.
Source: Credits to https://www.nws.noaa.gov/credits.php

Harvested area devoted to winter and spring wheat cultivation and crop calendars

To set the wheat growing season in each geographic unit, we use the GCPD dataset
released by Sacks et al. (2010) that is composed of data on crop planting and harvesting
dates elaborated from multiple institutional sources. In particular, the authors have
obtained the crop calendars in each cell grid by examining the relationship between
planting dates and temperature, precipitation, and potential evapotranspiration using
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30-year average climatologies from the Climatic Research Unit, University of East
Anglia. The GCPD dataset is based in turn on the spatial patterns built by Monfreda
et al. (2008). We use this dataset also to compensate for some lacks in GDHY dataset.

ENSO index

To represent ENSO variability and to account for its effects, we use an oceanic
index, the Oceanic Ninõ Index (ONI), which is a standard metric to represent ENSO
phases. Following the adopted definition at the National Oceanic and Atmospheric
Administration – Climatic Prediction Center6, the ONI index is computed by averaging
sea surface temperature anomalies in an area of the east-central equatorial Pacific Ocean
(5◦ S to 5◦ N; 170◦ W to 120◦ W), which is called the Niño-3.4 region [see Figure 7(a)].
Finally, the ONI provides a classification of the year according to three phases of ENSO,
El Niño, La Niña, and neutral whenever it results in 5 consecutive quarters belonging to
the same phase. An example of such a classification is shown in Figure 7(b). Recall that
the averaging quarters are identified with a three-letter acronym made of the months’
initials. In this study, we use ONI to model the impact of ENSO variability on wheat
global production.

Wheat demand database

For the analysis of worldwide wheat consumption, we use ‘wheat and products’
definition from the FAOSTAT database. The default composition of wheat and products
is wheat, flour, bran, macaroni, germ, bread, bulgur, pastry, starch, gluten, cereals
breakfast, wafers, mixes and doughs, food preparations, flour, malt extract. These data
are available in the two sections of FAOSTAT database:

1 commodity balances

2 food balance sheets.

These two databases have some differences that are described in the FAOSTAT
document retrievable at http://fenixservices.fao.org/faostat/static/documents/FBS/
KeydifferencesbetweennewandoldFoodBalanceSheet.pdf. However, the various
components of the demand maintain their specificity in both of them such that their
merging is not inappropriate provided that one check which of the definitions are
changed. For example, the US time series of waste in 2 is composed of missing values.
The components that result from the merging of the two databases are food, feed, seed,
processing, waste, other uses, and stock variation.

Appendix B

B1 Building on FAOSTAT time series of production, yield, and harvested area: from
merged to winter and spring ones.

While wheat yield data at the national level are reported by the FAOSTAT, similar data
for winter and spring crop sowing are rarely available at that spatial scale. To satisfy
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the necessity to have a better correlation between wheat yield and ENSO, we obtain the
winter and spring yield time series by splitting the FAOSTAT averaged ones through the
information gathered from other gridded datasets, in particular the GDHY and GCPD
produced by Iizumi and Sakai (2020) and Sacks et al. (2010), respectively. However,
the total yield of a crop, when considering all production systems, is not the sum of the
individual yields, but rather the weighted average of their yields. On the other contrary,
total harvested area and production are exactly the sums of individual harvested area
and production. Thus, we start by splitting total harvested area and production into
spring and winter, then we compute the corresponding spring and winter yields. More in
details, let us denote the aggregated time series available from the FAOSTAT as pFAO

= total wheat production; hFAO = harvested area, and yFAO = yield, then

pFAO = hwyw + hsys (3)

where the superscripts w and s indicate the winter and spring sowing, respectively. Here
and in the following paragraphs, the unit of measure of these quantities are: tonnes
for production, hectares (ha) for harvested area, and hectogram/hectare (hg/ha) for
yield. To compute the unknown quantities hw, yw, hs, and ys of equation (3) at the
geographic unit level, we aggregate over each of them the GDHY values of production
and harvested area calculated at gridded cells. To exemplify, we report the maps of
China winter and spring yield obtained from GDHY. The map in Figure 8(a) displays
the areas of China in which the winter sowing is managed. Colours inform on the yields
obtained. Figure 8(b) maps the same for the spring sowing, and the map in Figure 8(c)
is the union of the two previously described maps. It is important to notice that in some
circumstances the same land can be used twice implementing both the winter and the
spring sowing. This clarification will be useful in the following more formal treatment.

The aggregated values of each geographic unit are:

1 ywGDHY =
∑nw

c=1 y
w
c /n

w winter yield averaged over the harvested nw cells c in
the geographic unit

2 ysGDHY the same but spring yield

3 hw
GDHY =

∑nw

c=1 c
w Area(cw) harvested area of winter production

4 hs
GDHY = the same but spring harvested area

5 hw+s
GDHY = hw

GDHY + hs
GDHY total harvested area.

Note that we could have computed the aggregated quantity of products directly from the
yield of each cell grid, however, because of the large variability of harvest area across
years and lacunas of yield data in some regions and by following the GDHY authors’
suggestion [see usage notes in Iizumi and Sakai (2020)], we prefer to reduce the spatial
variability by computing the geographic unit averaged yield. From these quantities, we
compute the share of winter and spring production:

βw =
hw
GDHY y

w
GDHY

hw
GDHY y

w
GDHY + hs

GDHY y
s
GDHY

βs = 1− βw (4)

and the correspondent share of harvested area devoted to winter and spring sowing:

γw =
hw
GDHY

hw+s
GDHY

γs =
hs
GDHY

hw+s
GDHY

(5)
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where 1 ≤ γw + γs ≤ 2 because of the presence of areas that are sowed both in winter
and spring.

Figure 8 Spatial distribution of China wheat yield according to Iizumi and Sakai (2020),
(a) winter (b) spring (c) merged (see online version for colours)

(a) (b)

(c)

By applying the coefficients β’s and γ’s of equations (4) and (5) to the FAOSTAT time
series, we obtain the split time series of production and harvested area for winter and
spring: pwFAO = βwpFAO, psFAO = βspFAO, hw

FAO = γwhFAO, and hs
FAO = γshFAO.

Finally, we calculate the FAO yield time series split into winter and spring as follows:

ywFAO =
pwFAO

hw
FAO

ysFAO =
psFAO

hs
FAO

(6)

To avoid misspecification by taking into account very small quantities of production for
one of the two cropping systems, we make a further check on the β−weights. In fact,
we attribute to a geographic unit a single type of crop sowing if the other has a very
small production (lesser or equal to 2%) with respect to the other. Furthermore, when
the aggregation that is done by using GDHY dataset gives strange results for any of the
geographic unit7, we directly use the share of the harvested area found in GCPD, that,
although referred to a unique year, it let us avoid mistakes in the splitting procedure.
The list of deleted systems resulting from such a double-check procedure is given in
Table 6.
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Finally, the procedure described in this paragraph let us obtain the winter and spring
time series of production, harvested area, and yield from 1982 to 2016, that is the time
window of GDHY. However, the FAOSTAT dataset covers the period 1961–2018, then
we extend the values of β’s and γ’s to the remaining years by assuming that the mean
value of the β’s and γ’s calculated in the time windows 1982–1991 and 1997–2016
remain fixed for the periods 1961–1981 and 2017–2018, respectively. Using again the
example for China, the procedure results in the estimates of the winter and spring time
series of harvested area, production, and yield shown in Figure 9.

Table 6 Crop system deleted because of very small production (<2% of the other system)

Country-group Notes

Middle Africa Production in spring-deleted
Western Africa Production in spring-deleted
Southern Africa Production in spring-deleted
Central America Production in spring-deleted
Southern Asia Production in spring-deleted
South-Eastern Asia Production in spring-deleted
Northern Europe Production in spring-deleted
Western Europe Production in spring-deleted
Oceania Production in winter-deleted
India Production in spring-deleted
Pakistan Production in spring-deleted

Figure 9 China estimated time series of winter and spring harvested, (a) area (b) production
(c) yield from 1961 to 2018 (see online version for colours)

(a) (b) (c)

B2 Yield de-trending

Yield is the quantity of wheat produced per each harvested hectare. When considered in
a specific country, it is somehow a measure of the technical capability of that country
in producing wheat. Like production, the yield is also affected by an increasing trend.
This appears evident for the case of China represented in Figure 9(c), nevertheless, this
is true also for most of the other geographical units (not shown). For this reason, it is
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straightforward to apply a de-trending procedure before setting any regression model. To
this end, we estimate the yield trend by using a nonparametric regression (loess). The
loess procedure is widely used. Among many, the reader can refer to the book of Berk
(2016) for details. It is based on the idea that for any given value of the predictor (time
in our case) a polynomial regression is constructed only from its nearest neighbours’
observations. In practice, we estimate a polynomial surface determined by the local
fitting of yield on time. To minimise the trade-off between the residual sum of squares
and the number of parameters, we setup a time-span equal to 0.75 that is the default
option of the loess function in the basic stats package of R software (R Core Team,
2020). As an example, a visual representation of the loess trend estimate for South
America, Southern Europe, and the US is displayed in Figure 10.

Figure 10 Wheat yield time series of, (a) South America (winter) (b) Southern Europe
(spring) (c) USA (winter) from 1961 to 2018 and the corresponding estimated
trend (see online version for colours)

(a) (b)

(c)

From this estimate, we compute the de-trended time series of yield, i.e., the yearly series
of residuals from local polynomial regression. Finally, we calculate the de-trended yield
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percentage by dividing the residuals of local polynomial regression by the corresponding
fitted values. The time series of de-trended yield percentage is basically the time series
of standardised deviations from its trend and constitutes the dependent variable of the
regression analysis on ENSO.

Appendix C

Detailed composition of geographic areas

Table 7 List of countries belonging to each region considered in the model and listed in
Figure 1

Africa Eastern British Indian Ocean Territory, Burundi, Comoros, Djibouti, Eritrea,
Ethiopia, French Southern Territories, Kenya, Madagascar, Malawi,
Mauritius, Mayotte, Mozambique, Réunion, Rwanda, Seychelles,
Somalia, South Sudan, Uganda, United Republic of Tanzania,
Zambia, Zimbabwe

Middle Angola, Cameroon, Central African Republic, Chad, Congo,
Democratic Republic of the Congo, Equatorial Guinea, Gabon,
Sao Tome and Principe

Northern Algeria, Egypt, Libya, Morocco, Sudan, Tunisia, Western Sahara
Southern Botswana, Eswatini, Lesotho, Namibia, South Africa
Western Benin, Burkina Faso, Cabo Verde, Côte d’Ivoire, Gambia, Ghana,

Guinea, Guinea-Bissau, Liberia, Mali, Mauritania, Niger, Nigeria,
Saint Helena, Senegal, Sierra Leone, Togo

USA Caribbean Bahamas, Barbados, Cuba, Others 25 (Carribean)
Central Belize, Costa Rica, El Salvador, Guatemala, Honduras, Mexico,

Nicaragua, Panama
Northern Bermuda, Canada, Greenland, Saint Pierre and Miquelon, USA
South Argentina, Bolivia (Plurinational State of), Bouvet Island, Brazil,

Chile, Colombia, Ecuador, Falkland Islands (Malvinas), French
Guiana, Guyana, Paraguay, Peru, South Georgia and the South
Sandwich Islands, Suriname, Uruguay, Venezuela (Bolivarian
Republic of)

Asia Central Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan
Eastern China, China, Hong Kong Special Administrative Region, China,

Macao Special Administrative Region, Democratic People’s Republic of
Korea, Japan, Mongolia, Republic of Korea

South-Eastern Brunei Darussalam, Cambodia, Indonesia, Lao People’s Democratic
Republic, Malaysia, Myanmar, Philippines, Singapore, Thailand,
Timor-Leste, Vietnam
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Table 7 List of countries belonging to each region considered in the model and listed in
Figure 1

Asia Southern Afghanistan, Bangladesh, Bhutan, India, Iran (Islamic Republic of),
Maldives, Nepal, Pakistan, Sri Lanka

Western Armenia, Azerbaijan, Bahrain, Cyprus, Georgia, Iraq, Israel, Jordan,
Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, State of Palestine,
Syrian Arab Republic, Turkey, United Arab Emirates, Yemen

Europe Eastern Belarus, Bulgaria, Czechia, Hungary, Poland, Republic of Moldova,
Romania, Russian Federation, Slovakia, Ukraine

Northern Åland Islands, Guernsey, Jersey, Sark, Denmark, Estonia, Faroe Islands,
Finland, Iceland, Ireland, Isle of Man, Latvia, Lithuania, Norway,
Svalbard and Jan Mayen Islands, Sweden, UK of Great Britain and
Northern Ireland

Southern Albania, Andorra, Bosnia and Herzegovina, Croatia, Gibraltar, Greece,
Holy See, Italy, Malta, Montenegro, North Macedonia, Portugal,
San Marino, Serbia, Slovenia, Spain

Western Austria, Belgium, France, Germany, Liechtenstein, Luxembourg,
Monaco, Netherlands, Switzerland

Oceania Australia, New Zealand, Papua New Guinea, others 26 (Oceania)

Notes

1 For the interested reader, more details are available at https://iridl.ldeo.columbia.edu/
maproom/ENSO/ENSO_Info.html.

2 During El Niño there is a likely increase of droughts in the Tropics, while during
La Niña such increasing is more pronounced in the Mid-Latitudes. See the note by
the International Research Institute for Climate and Society: https://iri.columbia.edu/news/
eight-misconceptions-about-el-nino/.

3 Since it has no production, the analysis by the supply side excludes the Caribbean area
resulting in 23 geographical units instead of 24.

4 Cold & Warm Episodes by Season: https://origin.cpc.ncep.noaa.gov/products/analysis_
monitoring/ensostuff/ONI_v5.php.

5 http://fenixservices.fao.org/faostat/static/documents/FBS/
KeydifferencesbetweennewandoldFoodBalanceSheet.pdf.

6 ONI (version 5) definition and historical data are available from https://origin.cpc.ncep.noaa.
gov/products/analysis_monitoring/ensostuff/ONI_v5.php.

7 These limitations are reported by the GDHY authors since they warn to consider that ‘yields
in some locations are lacking’ [see usage notes in Iizumi and Sakai (2020)].


