Supporting Information for

A Novel Cu(I)-5-nitropyridine-2-thiol Cluster with NIR Emission: Structural and Photophysical Characterization

Khaled Hassanein,^a Chiara Cappuccino,^b Marianna Marchini,^b Elisa Bandini,^a Meganne Christian,^c Vittorio Morandi,^c Filippo Monti,^{a*} Lucia Maini,^{b*} Barbara Ventura^{a*}

^a Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche

(CNR), Via P. Gobetti 101, 40129 Bologna, Italy. email: filippo.monti@isof.cnr.it;

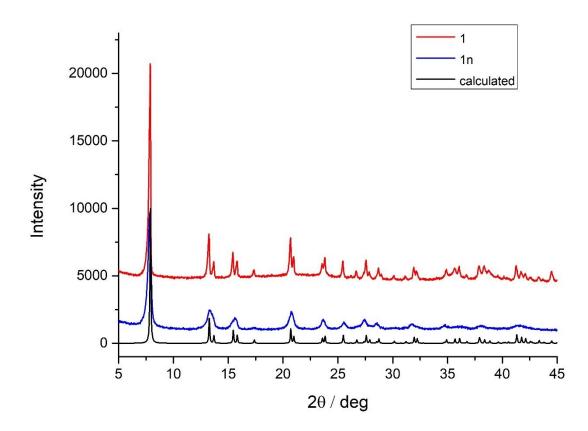
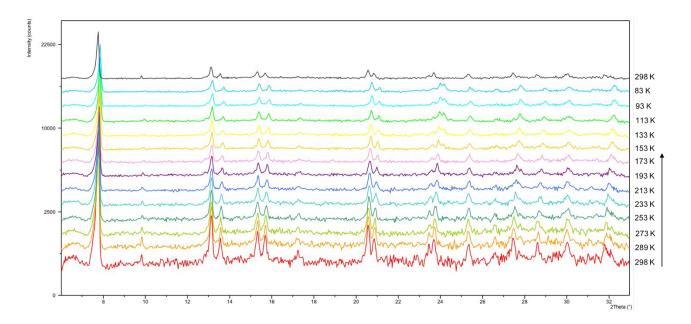
barbara.ventura@isof.cnr.it

^b Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna,

Italy. email: l.maini@unibo.it

^c Istituto per la Microelettronica e Microsistemi (IMM) Sede di Bologna, Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy.

S2

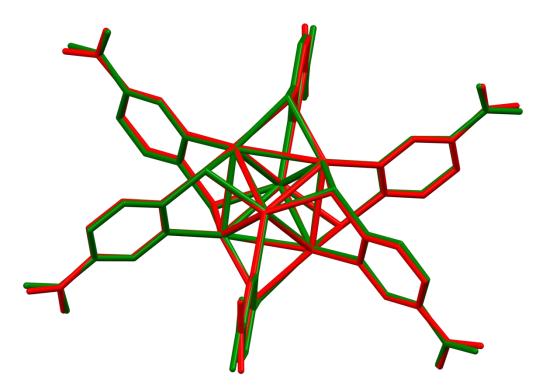

Figure S1: XRPD patterns of 1, 1n and the calculated pattern of 1.

Figure S2. Variable-temperature X-ray powder diffraction analysis of compound **1**. Powder pattern profiles measured *in situ*, color changes of the sample cooled down from 298 K (red line, bottom) to 83 K. At the end of the measurement, the sample was heated up to 298 K again (black line, top). No phase transition is observed, the shift of the peaks is due to thermal contraction.

Chemical formula	$C_{30}H_{18}Cu_6N_{12}O_{12}S_6$
Formula Mass	1312.22 g/mol
Temperature	RT
Crystal System	Trigonal
Space Group	R-3
a/Å	22.3832(12)
b/Å	22.3832(12)
c/Å	7.0996(4)
α/°	90
β/°	90
γ/°	120
Volume/ Å ³	3080.41
R(int)	0.035
R1	0.0342
R2 (all data)	0.0530
Chi ²	1.013

 Table S1. Crystallographic data of compound 1 at room temperature.

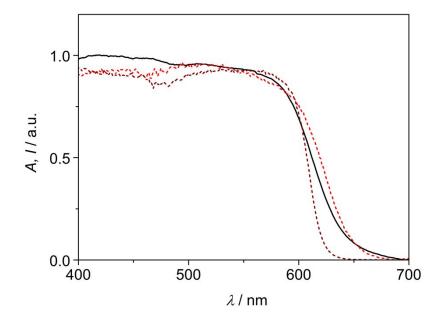


Figure S3. Comparison between the experimental X-ray structure of complex 1 (red) and the one optimised by DFT methods (green). The structural overlap is obtained by minimizing the root-mean-square deviation (RMSD) of all the atomic positions except hydrogen atoms.

	X-ray data [S ₆]	DFT data ground state [D _{3d}]	U-DFT data lowest triplet state [C _s]			
Distances [Å]						
Cu–Cu	2.819	2.757	2.582–2.438–2.582 2.596–2.568–2.596			
Cu–Cu'	2.792	2.751	2.635-2.620-2.563			
Cu–S	2.249–2.250	2.284	2.340-2.363-2.371 2.330-2.341-2.338			
Cu–N	2.053	2.079	2.009–2.069–2.009 2.099–2.102–2.099			
C–S	1.736	1.750	1.751–1.751–1.751 1.746–1.747–1.746			
	Angl	es [°]				
Cu–Cu–Cu	60.00	60.00	61.83–56.34–61.83 60.35–59.29–60.35			
Cu–Cu'–Cu	60.66	60.12	58.86–56.80–58.86 60.10–58.33–60.10			
Cu–Cu–Cu'	59.67	59.94	60.86–61.60–60.28 60.84–61.03–58.87			
Cu–S–Cu	77.62	74.22	66.59–61.88–66.59 67.38–66.87–67.38			
S–Cu–Cu	51.19–51.21	52.89	56.28–59.06–57.13 56.26–56.56–56.36			
S–Cu–Cu'	79.99–80.00	82.53	86.91-87.31-86.79 84.69-85.77-83.37			
N–Cu–Cu	142.00–143.38	142.25	143.87–141.25–148.17 143.98–140.77–142.82			
N–Cu–Cu'	86.50-87.34	86.06	87.00-88.28-91.25 85.37-86.28-87.84			
Cu–N–C	120.68	122.38	121.25–123.14–121.25 124.23–123.50–124.23			
Cu–S–C	105.94–106.49	104.27	101.35-100.46-101.09 102.45-100.80-101.75			
N–Cu–S	110.22–111.78	110.91	110.27-102.64-106.69 109.63-106.18-106.55			
S-C-N	119.61	119.70	120.45–120.51–120.45 120.92–120.67–120.92			
	Dihed	rals [°]				
Cu–N–C–S	1.30	0.00	2.08-0.00-2.08 2.40-0.00-2.40			
Cu–Cu'–S–C	44.27-44.94	43.40	40.50-40.95-38.71 40.36-42.36-38.14			
Cu–Cu–Cu–S	25.30	27.58	31.15-32.28-31.56			

Table S2. Comparison between key geometrical parameters of complex 1 obtained from X-ray diffraction crystallography and DFT optimizations in vacuum.

			27.83-30.09-27.95
Cu–Cu–Cu–S	148.00	146.02	143.52-144.74-143.52
	140.00	140.02	147.96–145.36–147.96
Cu'-Cu'-Cu'-N	138.46–140.02	138.22	137.18-144.57-150.76
Cu –Cu –Cu –N		136.22	136.43-138.80-141.52
Cu–Cu–Cu–Cu'	54.33	54.66	55.09-55.54-55.79
Cu–Cu–Cu–Cu			54.48-55.59-56.28
Cu–Cu–Cu–Cu'	109.74	109.52	109.32-110.07-109.32
Cu–Cu–Cu–Cu	109.74	109.32	108.09-109.14-108.09
py–NO ₂	10.45	0.00	0.23-0.00-0.23
			0.04-0.00-0.04

Figure S4. Arbitrarily scaled absorption spectrum (black solid), room temperature excitation spectrum (red dash, $\lambda_{em} = 768 \text{ nm}$), low temperature excitation spectrum (brown dash, $\lambda_{em} = 823 \text{ nm}$) of a powder sample of **1** obtained from bulk solution.

Table S3. The lowest 18 singlet vertical excitation for compound **1** in vacuum. Density differences are computed as $\rho_{Sn} - \rho_{S0}$ using relaxed excited-state densities and the ground-state SCF one. Isodensities = + 0.0004 (yellow, electron) and – 0.0004 e bohr⁻³ (gray, hole). The symmetry of each excited state (and molecular orbital) is given accordingly to the ground-state D_{3d} point group.

	Transition energy [eV (nm)] oscillator strength	Density difference $(\rho_{Sn} - \rho_{S0})$	Molecular-orbital contribution	Nature
$S_0 \rightarrow S_1$ (E _u)	2.42 (512) f = 0.092		$\begin{array}{rrrr} H-1 & \rightarrow & L+4 \\ (e_u) & & (a_{1g}) \\ & 96.1\% \end{array}$	cluster centered
$S_0 \rightarrow S_2$ (E _u)	2.42 (512) f = 0.092		$\begin{array}{ccc} H & \rightarrow & L+4 \\ (e_u) & & (a_{1g}) \\ & 96.1\% \end{array}$	cluster centered
$S_0 \rightarrow S_3$ (Eg)	2.43 (511) f = 0.000		$\begin{array}{rrrr} H-4 & \rightarrow & L+4 \\ (e_g) & (a_{1g}) \\ & 97.6\% \end{array}$	cluster centered
$S_0 \rightarrow S_4$ (Eg)	2.43 (511) f = 0.000	-	$\begin{array}{ccc} H-3 & \rightarrow & L+4 \\ (e_g) & (a_{1g}) \\ & 97.6\% \end{array}$	cluster centered
$S_0 \rightarrow S_5$ (A _{2g})	2.49 (499) f = 0.000		$\begin{array}{ccc} H-2 & \rightarrow & L+4 \\ (a_{2g}) & & (a_{1g}) \\ & & 97.5\% \end{array}$	cluster centered
$S_0 \rightarrow S_6$ (A _{1u})	2.80 (443) f = 0.000		$\begin{array}{ccc} H-5 & \rightarrow & L+4 \\ (a_{1u}) & & (a_{1g}) \\ & & 93.1\% \end{array}$	cluster centered

$S_0 \rightarrow S_7$ (E _u)	2.83 (438) f = 0.000	highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow S_8$ (Eg)	2.83 (438) f = 0.000	highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow S_9$ (E _u)	2.88 (431) f = 0.000	highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow S_{10}$ (E _u)	2.88 (431) f = 0.000	highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow S_{11}$ (Eg)	2.89 (430) f = 0.001	highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow S_{12}$ (Eg)	2.89 (430) f = 0.001	highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow S_{13}$ (E _u)	2.93 (423) f = 0.000	highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines

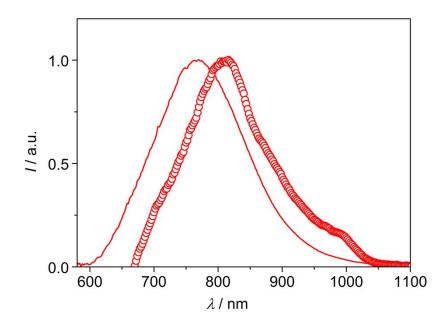
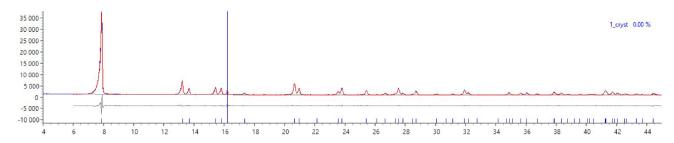

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.94 (422) f = 0.000		highly multiconfigurational character	mixed cluster centered and charge transfer nature
$S_0 \rightarrow S_{15}$ (Eg)	2.94 (422) f = 0.000	A REAL PROPERTY AND A REAL	highly multiconfigurational character	mixed cluster centered and charge transfer nature
$S_0 \rightarrow S_{16}$ (Eg)	2.94 (422) f = 0.015		highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow S_{17}$ (Eg)	2.96 (419) f = 0.094		highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow S_{18}$ (Eg)	2.96 (419) f = 0.094		highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines

Table S4. The lowest 14 triplet vertical excitation for compound 1 in vacuum. Density differences are computed as $\rho_{Tn} - \rho_{S0}$ using relaxed excited-state densities and the ground-state SCF one. Isodensities = + 0.0004 (yellow, electron) and – 0.0004 e bohr⁻³ (gray, hole). The symmetry of each excited state (and molecular orbital) is given accordingly to the ground-state D_{3d} point group.


	Transition energy [eV (nm)]	Density difference $(\rho_{Tn} - \rho_{S0})$	Molecular-orbital contribution	Nature
$S_0 \rightarrow T_1$ (E _u)	2.27 (547)		$\begin{array}{rrrr} H-1 & \rightarrow & L+4 \\ (e_u) & & (a_{1g}) \\ & & 96.8\% \end{array}$	cluster centered

$S_0 \rightarrow T_2$ (E _u)	2.27 (547)		$\begin{array}{ccc} H & \rightarrow & L+4 \\ (e_u) & & (a_{1g}) \\ & 96.8\% \end{array}$	cluster centered
$S_0 \rightarrow T_3$ (Eg)	2.35 (528)		$\begin{array}{ccc} H-4 & \rightarrow & L+4 \\ (e_g) & (a_{1g}) \\ & 97.1\% \end{array}$	cluster centered
$S_0 \rightarrow T_4$ (Eg)	2.35 (528)	A Real Provide A Real ProvideA Real ProvideA Real ProvideA Real Provide A Real Pr	$\begin{array}{ccc} H-3 & \rightarrow & L+4 \\ (e_g) & & (a_{1g}) \\ & 97.1\% \end{array}$	cluster centered
$S_0 \rightarrow T_5$ (A _{2g})	2.41 (514)		$\begin{array}{ccc} H-2 & \rightarrow & L+4 \\ (a_{2g}) & (a_{1g}) \\ & 96.8\% \end{array}$	cluster centered
$S_0 \rightarrow T_6$ (Eg)	2.60 (477)		highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow T_7$ (Eg)	2.60 (477)		highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow T_8$ (E _u)	2.60 (477)		highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines

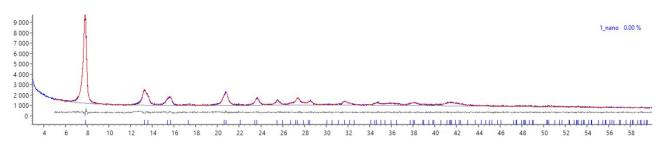

$S_0 \rightarrow T_9$ (E _u)	2.60 (477)	highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$\begin{array}{c} S_0 \rightarrow T_{10} \\ (E_g) \end{array}$	2.61 (476)	highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines
$S_0 \rightarrow T_{11}$ (E _u)	2.61 (474)	highly multiconfigurational character	charge transfer from core (mainly S) to nitropyridines

Figure S5. Normalized corrected emission spectra of 1 (as powder) from bulk solution (solid line) and from fast precipitation conditions (1n, open circles). $\lambda_{exc} = 450$ nm.

Figure S6. Pawely refinement on the powder patter of the sample 1 to determine the average crystal size with the Scherrer formula (crystal shape factor =1). An extra peak due the sample holder is observed at 2θ = 16.21°. Experimental pattern in blue, calculated pattern in red, difference plot in gray. The refinement converged at R_{wp}=4.53%.

Figure S7. Pawely refinement on the powder patter of the sample **1n** to determine the average crystal size with the Scherrer formula (crystal shape factor =1). Experimental pattern in blue, calculated pattern in red, difference plot in gray. The refinement converged at R_{wp} =2.81%.