

Comparative Performability
Evaluation of RB, NVP and SCOP

Sllvano Chiaradonnat, Andrea Bondavalli! and Lorenzo Strigini2

1 CNUCE/CNR, Via S. Maria 36, 56126 Pisa, Italy

E-mail: silvano@mammolo.cnuce.cnr.it.andrea.bondavalli@cnuce.cnr.it

2 IEI/CNR, Via S. Maria 46,56126 Pisa, Italy

E-mail: strigini@iei.pi.cnr.it

Abstract
An adaptive scheme for software fault-tolerance is evaluated from the
--~_.. -+ view 0" oerformabili , comnarinz i .. witheviously publishedpvunVL L W L~LL 111«1.1 Hy,vV' 'paL 'OH HI Pl\"VIVU31 UI.I13'

analyses of the more popular schemes, recovery blocks and multiple
version programming. In the case considered, this adaptive scheme,
"Self-Configuring Optimistic Prograrnrning" (SCOP), is equivalent to
N-version programming in terms of the probability of delivering correct
results, but achieves better performance by delaying the execution of
some of the variants until it is made necessary by an error. We discuss,
by mean of an example, the application of modelling to realistic
problems in fault-tolerant design.

1. Introduction
Software fault tolerance, that is, diverse redundancy in software design, is the only known
way of tolerating residual design faults in operational software products. The evaluation of its
effectiveness is the topic of numerous papers (most recently [1, 8, 9]). In this paper, we extend
existing work on performability evaluation to cover a different, adaptive fault-tolerant scheme,
and we discuss the application of modelling to realistic problems in fault-tolerant design.

In the fault-tolerant techniques we consider, a (fault-tolerant) software component consists of a
set of diversely implemented, functionally equivalent variants, plus adjudication
subcomponents. At each execution of the component, some subset of these subcomponents is
executed, in such a way that they may check and correct each other's results. Many such
execution schemes are possible. The best known are Recovery Blocks (RB) [12] and N­
version programming (NVP) [2]. In the simplest form of NVP, the N variant are executed in
parallel on the same input, and the adjudication consists in a more or less complex vote on their
results [6]. In RB, only one variant is executed, at first, and if its result does not pass an
acceptance test, other variants are invoked, in turn, until one passes or the available variants are
used up. Clearly, these are two extremes in a range of trade-offs between consumption of
"space" (level of parallelism) and "time" (elapsed time), and between the goals of low average
resource consumption and low worst-case response time [3]. Many other combinations are

page I

