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Abstract—In this study, we focus on the problem of managing
a hybrid, shared IoT-based monitoring system, in which station-
ary sensor devices are complemented with user-carried personal
devices embedded with sensing capabilities. The envisioned crowd-
assisted monitoring system must support the sharing of the sensing
infrastructure among multiple concurrent sensing tasks that can
have highly varying QoS requirements. In such a scenario, a
key issue is to maximise the utilisation efficiency of the physical
sensing resources and the QoS satisfaction of sensing tasks while
limiting the redundancy of collected data. As in previous research,
we advocate the use of an IoT Broker, an intermediary entity
that (i) interacts with the IoT applications to collect their QoS
requirements (i.e., spatial coverage, data notification frequency);
and (ii) coordinates with the redundant sensor deployments and
mobile devices to selectively activate and configure the data
streams that are needed to fulfil application requirements in
a cost-efficient way. Then, we have developed an optimisation
framework to jointly select the set of physical sensing resources
to activate and the data update frequency for maximising the
overall sensing performance while limiting redundant data. A key
feature of our proposed framework is to be privacy-friendly as
it only requires coarse-grained space-time knowledge of device
location. Extensive simulations under realistic WSN deployments
and real-life mobility patterns confirm the efficiency of the
proposed solution in terms of data-coverage gain and reduction of
data redundancy with respect to classical non-hybrid monitoring
systems.

I. INTRODUCTION

The number of connected Internet-of-Things (IoT) devices

continues to grow at a steady pace, triggering a massive influx

of sensory data. New market forecasts estimate that there will

be between 40 to 70 billion IoT devices, or “smart things”, by

2025 [1]. This opens the way for a wide variety of new IoT-

enabled use cases and applications that will have a significant

impact on our daily lives [2]. Smart cities are one of the most

promising use cases for new IoT solutions, as various types

of sensors and devices are now being deployed everywhere

in the urban environment to manage the city services and its

infrastructures [3] efficiently.

Smart city monitoring systems require new design ap-

proaches for wireless sensor networks (WSNs) to overcome the

limitations of flexibility and utilisation efficiency of traditional

task-oriented and application-specific solutions. In a smart-

city scenario, different devices with heterogeneous sensing,

processing and communication capabilities coexist in the same

infrastructure and eventually support multiple applications and

services. Furthermore, different IoT services might have dif-

ferent QoS requirements, e.g. in terms of data quality and ac-

curacy, geographic granularity, and timeliness of data delivery.

Two major design trends are emerging to satisfy such design

goals. The first one promotes the utilisation of virtualisation

technologies to decouple the underlying sensing infrastructure

from the services provided to applications while facilitating

the sharing among different applications of the sensed data

collected by sensors [4]. An example of such a design approach

is the concept of virtual sensors, namely virtualised repre-

sentations and combinations of different sensor measurements,

typically maintained within a cloud platform [5]. This approach

inherits the typical limitations of cloud-based technologies,

such as communication latency, network overloading, and lack

of data locality. A second compelling paradigm for collecting

sensed data in urban environments is mobile crowdsensing

(MCS), in which mobile devices of a potentially large number

of participants (a crowd) contributes data produced by their

embedded sensors [6]. The focus of existing research in mo-

bile crowdsensing is mainly on participant selection, incentive

mechanisms to increase users’ willingness to participate in

sensing tasks, and task allocation.

Recently, a number of research works have proposed hybrid
sensing platforms that combine mobile crowdsensing with

static sensing to provide more ubiquitous coverage with lower

deployment costs [7], [8]. Several challenges arise in enabling

a crowd-assisted shared sensing system (CA-SSN). The key

issues we focus in this study are: i) the coordination be-

tween heterogeneous stationary and mobile devices to pursue

improved QoS satisfaction for the sensing tasks, and better

utilisation efficiency of the physical sensing resources; and

ii) the optimisation of the sensed data streams to limit data

redundancy. To achieve these goals, we promote the use of an

IoT Broker to manage the data collection process efficiently.

Inspired by previous works that exploited a similar concept [9],

[10], [11], an IoT Broker is a logical entity that acts as a proxy

to satisfy service requests from IoT applications. Specifically,

the IoT Broker interacts with the applications, which ask for

a specific type of sensor data from a given geographical area,

and with a minimum frequency of data updates. At the same

time, the IoT Broker interacts with the sensing platforms that
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are available within the monitored area to collect the requested

information. Following this approach, in this study we propose

a QoS-aware data management scheme to enable the IoT Broker

to optimally activate the available sensing resources (either

stationary or mobile), and to properly shape the generated IoT

data traffic to maximise the overall sensing performance while

limiting the redundancy of the collected data. Note that the

IoT Broker implements a local, short-term cache to store the

collected sensory data to be able to respond to multiple service

requests using the same data. A fundamental assumption of

our system is that it can rely only on an aggregate and coarse-

grained information on device location to protect users’ privacy.

We have modelled our resource allocation problem as a mixed-

integer linear problem. Our mathematical framework explicitly

accounts for: i) data redundancy due to multiple sensing tasks

asking for similar data at similar locations, and ii) location

uncertainty of mobile devices due to the coarse-grained location

information. Finally, the proposed scheme is evaluated via

simulation considering realistic heterogeneous WSNs, deployed

IoT applications, and mobility patterns. Results illustrate that

the proposed solution is capable of outperforming the evaluated

benchmarks in terms of data coverage and reduction of data

redundancy.
In the rest of this paper, we first discuss the related work

in Section II. Afterwards, we present the system model, and

we formulate the problems of optimally activating and shaping

IoT data streams in Section III. Section IV describes the

mathematical programming framework to solve the considered

problem. Evaluations are performed in Section V. We finally

draw the conclusion in Section VI.

II. RELATED WORK

This work is related to various streams of existing literature on

the design of novel architectures for urban sensing.
There is a considerable body of work focusing on MCS sys-

tems, and we refer the reader to [6] for a comprehensive survey.

A fundamental research challenge in MCS is the optimisation

of the sensing task allocation (separately or jointly) considering

various aspects, such as spatial coverage, incentive costs, energy

consumption, and task completion time [12]. For instance,

several MCS frameworks have been proposed which aim at

either maximising the sensing quality with budget constraints

(e.g., [13]), or minimising the incentive cost while guaranteeing

a minimum level of sensing quality (e.g [14]). Other studies

focus on how to optimise the overall energy consumption

of an MCS system rather than the energy consumption of

individual mobile nodes (e.g. [15]). An important thread of

research tackles the problem of multi-task allocation, where

the interplay of multiple tasks is also considered (e.g. [16]).

A hybrid two-phased MCS system is described in [17], which

combines opportunistic and participatory sensing modes. As

to our knowledge, the problem of task allocation in hybrid

MCS system in which mobile nodes are complemented with in-

situ sensor nodes is much less investigated. The authors in [8]

formulate the scheduling problem of mobile and stationary

sensor nodes to maximise the average coverage and data

accuracy, and minimise the average number of active nodes

given the knowledge of the users’ movements. A prototype

for an hybrid MCS framework, named HySense, is described

in [7], which proposes to migrate redundant users from densely

populated areas to sparsely populated areas to balance sensing

opportunities among different regions. Differently from these

previous studies, we do not assume a fixed sensing rate for each

sensor type, but we exploit a QoS-aware, adaptive sampling

scheme to control data redundancy under bandwidth constraints.

It is also important to point out that task allocation and

task scheduling have been well studied also in the context of

shared sensor networks or virtual sensor networks (see [18]

for a comprehensive survey on the topic). However, most of

the proposals assume that sensing tasks are directly allocated

to sensor nodes. Thus, the focus of these studies is to find an

optimal mapping of application tasks on a set of heterogeneous

sensor nodes subjects to applications requirements, e.g. to

maximise the system lifetime and the number of admitted

applications (e.g. [19], [4]). The authors in [20] formulate

the allocation problem of multiple sensing tasks by assuming

that multiple sensors can collect data for the same target

location cooperatively. There is also a vast literature on adaptive

sampling in traditional WSNs. However, the focus of this

studies is how to leverage the spatial and temporal correlations

between measurements to adapt sampling frequency to improve

the power efficiency while ensuring the accuracy of sampled

data (e.g. [21], [22]. Differently from our work, these studies

do not apply application information-sharing mechanisms to

reduce data redundancy and improve the utilisation efficiency

of physical resources.

Finally, some recent research works have proposed to provide

more advanced QoS support for IoT applications by introducing

a broker entity that selects and properly shapes the IoT data

streams to satisfy application requirements. One of the first

examples of resource allocation policies for IoT brokers is

proposed in [23], to dispatch application requests to multiple

sensor nodes to maximise the lifetime of the IoT platform while

meeting the QoS requirements specified by applications. An IoT

broker is also proposed in [9] to efficiently manage and adjust

network slices assigned to an IoT platform based on aggregate

QoS requirements. In our recent work [11], we proposed an

algorithm to allow an IoT broker to adjust the polling rate of

physical sensing resources in a shared sensor network to reduce

network congestion. To the best of our knowledge, there are no

previous studies that use an IoT broker in the context of CA-

SSN.

III. MODELS AND PROBLEM DEFINITION

In this section we detail the models that are used in our

proposal, including the overall system architecture and the

application model. Afterwards, we introduce the core problem

addressed in this paper.

A. Application model

In this study, we assume that the monitored area is divided

into a set C of square grid cells. A cell is described by

ck, k = 1, . . . ,M , where M is the total number of cells .

Similarly to [8], a data type represents a physical parameter

that is measured in the reference area. Generally, complex

data types may require the composition of multiple parameters
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(e.g. a fire detection application may require CO2, temperature

and smoke). Without loss of generality, we assume atomic

monitoring applications, and each data type is associated with a

single sensor type. Formally, let D = {d1, . . . , dL} be a set of L
different sensor types that are accessible by external monitoring

applications. Each sensor type has its own characteristics in

terms of temporal and spatial resolution, maximum sampling

frequency, and resource consumption. For the sake of model

simplicity, we assume that a sensor measurement refers only to

the cell where the sensor is located. However, our framework

can be easily generalised to more complex settings in which a

sensor measurement has spatial coverage beyond a single cell.

Furthermore, we assume that a constant energy el is dissipated

by the sensor type dl when it makes a measurement (processing

load or memory requirements are not considered). A data

payload bl (expressed in terms of bytes) is needed to convey the

measured data. Then, we assume that at regular time intervals

equal to T minutes, external monitoring applications generate

a set of U heterogeneous sensing tasks S = {s1, . . . , sU} to

be served by a CA-SSN platform. The QoS requirements of

a task sj are specified through a 3-tuple 〈Cj , rj , d(j)〉, where

Cj ⊆ C is the set of target regions to monitor (expressed in

terms of cells), rj is the desired notification frequency of sensed

data, and d(j) is the data type to be collected. In a hard-QoS

allocation scheme (e.g. [4]), a sensing task would be admitted

in the system only if all its requirements are fully satisfied

(namely, all target locations are covered with the requested

sensing rate). In this study, we consider a soft-QoS model where

there is not an absolute reservation of resources, but the system

goal is to maximise the spatio-temporal coverage of the sensing

tasks (see Section IV for a detailed explanation).

B. System model
In our CA-SSN system, sensors are embedded into two classes

of nodes. Specifically, let N s = {n1, . . . , nNs} be the set

of stationary sensor nodes that are randomly deployed by

one or more infrastructure providers over the monitored area,

and Nm = {n1, . . . , nNm} be the set of user-carried mobile

devices (namely smartphones or vehicles’ sensors), which are

embedded with built-in sensors. Let N = Ns + Nm and

N = N s ∪ Nm. Additionally, each node ni ∈ N is char-

acterised by a given resource vector Oi = 〈EB
i ,Di〉, which

specifies its battery capacity EB
i , and the set Di of sensor

types embedded into that node. Note that static sensor nodes

are expected to have more limited resources that typical mobile

devices. Each mobile node has his visiting pattern of cells based

on the mobility behaviours of carrying users. Due to privacy

concerns, we assume that users are not willing to share the GPS
trajectories of their movements but only aggregate information.

Hence, to characterise the location of nodes over time, we

assume a discrete and coarse-grained space-time representation.

Formally, the time domain is divided into equally spaced time

slots with duration τ (with T = ω · τ ). Then, the placement of

nodes during time slot t is represented by an Ns×M placement

matrix P [t] = {pik[t]}, where pik[t] = 1 iff ni ∈ N S

and it is positioned in ck. Depending on the spatial and time

granularity of the model representation (i.e., cell size and time

slot duration), and the users’ mobility pattern, a mobile device

could visit more than one cell during a single time slot. To

capture this variability, pik[t] = α if ni ∈ Nm spends a

percentage α of time slot t moving within cell ck. By definition,

we have that
∑M

k=1 pik[t] = 1. Note that we assume that the

system has no control over the movement of mobile nodes, but

their location is observable and predictable, i.e. P [t] is known

at any time slot.

Stationary nodes are organised into several WSNs, each

one with a different number of nodes but, possibly, partially

overlapping sensing areas. Furthermore, each WSN is inde-

pendently managed and operated by an IoT Gateway (GW),

which is also the data collection node (or sink) to which the

data locally generated by the sensor nodes are delivered. We

assume a classical tree-like routing structure (as in 6LoWPAN-

based WSNs [24]), and each node of the tree forwards its traffic

to the IoT GW through a single parent node using short-range

wireless links. Formally, let G be the set of gateways, and Gg

the set of static nodes ni ∈ N s that are managed by gateway g.

Now, let denote with p(i) the parent node for node ni ∈ N s.

The total traffic flow (in bytes/s) that is transmitted by node

i towards its parent node p(i) during time slot t is denoted

by fi[t]. Note that fi[t] includes both the sensed data locally

collected by node ni during time slot t, and the traffic forwarded

on behalf of neighbouring nodes. We assume to know the

application-level bandwidth bwi between ni and p(i), i.e. the

maximum application traffic that can be transmitted by node

ni to its parent node with negligible message losses. Thus, it

holds that fi[t] ≤ bwi. The definition of an application-level

link capacity allows us to abstract all modelling complexities

due to interference and medium access protocols. As far as

the mobile sensor nodes, we assume that they are connected

to the network using long-range wireless communication links

(e.g., NB-IoT or LTE-M). In this case, we can assume that

a limited and predefined data quota Bm is assigned by the

communication infrastructure to the crowdsensing service (see

also [9]) to ensure that the users’ participation to the sensing

platform has a negligible impact on the transfer delays of user-

generated traffic.

To complete the description of the system architecture, we

introduce the IoT Broker component, i.e., the orchestrator that

handles the data requests from the sensing tasks by exploiting

the data collected by the different IoT GWs. Similarly to [9], we

envision that the IoT Broker exposes a northbound interface to

allow applications to request a monitoring service with specific

QoS requirements. Then, the IoT Broker interacts with the IoT

GWs to retrieve the descriptions of the data types provided by

the sensor nodes (a separate IoT GW is assumed to manage

the repository of the service descriptors for the mobile sensor

nodes in the network), as well as the current network and

resource status. Based on the collected information, the IoT

Broker can activate the data streams from the sensing devices,

and configure their notification periods to satisfy the application

requests best. It is important to point out that the data retrieved

by the IoT Broker is locally cached to facilitate information

application sharing. In other words, the IoT Broker can reuse

the cached data to respond to multiple application requests

demanding the same data type for the same target cell (but
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with different notification periods).

C. Problem definition
In our model, we assume that each sensor can be activated

individually during a time slot. Qualitatively, the goal of the

data management scheme implemented by the IoT Broker is

to dynamically negotiate with the IoT GWs an activation plan
for their managed resources, namely (i) which sensor on which

node should be activated during each time slot, and (ii) which

notification period should be assigned to activated sensors, to

efficiently satisfy the QoS requirements of the sensing tasks.

Formally, we introduce a N × L plan matrix R[t] = {ril[t]},

where ril[t] ≥ 0 is the notification frequency assigned to the

sensor of type dl on node ni during time slot t. Note that

we consider a node ni active during time slot t, if at least

one sensor on ni is active during time slot t. We can now

compute the total sensing data rate Bi[t] generated by node i
as
∑

l∈Di
ril[t]× bl.

As explained in the following, different sensing tasks could

have overlapping QoS requirements as they require the same

data type for the same cell (with a similar notification fre-

quency), which allows optimising the data flows from activated

sensors. The goals of the data-management problem could be to

reduce data redundancy or energy consumption while maximis-

ing the spatio-temporal coverage of the application. In principle,

the IoT Broker should prioritise the use of static nodes over

mobile nodes, as the latter typically need and incentive to be

enrolled in a sensing task. The allocation problem is further

complicated by the uncertainty of information about mobile

nodes, as the system can only rely on an aggregate estimate of

the time a mobile node spends within a cell. Thus, optimally

scheduling service requests can be difficult or unfeasible.

IV. QOS-AWARE DATA MANAGEMENT

With the assumptions and models we have introduced above,

we formulate the activation and configuration problem for the

sensor data streams as the following (linear) integer program-

ming problem. To simplify the notation, and when no ambiguity

occurs, in the following we use the subscript index i to refer

to a node ni, the subscript index j to refer to a sensing task

sj , the subscript index k to refer to a cell ck, and the subscript

index l to refer to a data type dl.
First of all, we introduce the decision variable xij [t], which is

a binary variable equal to one if a sensor embedded into node ni

is activated during time slot t to satisfy the notification requests

of sensing task sj . Thus, an activation plan X[t] = {xij [t]} is a

N×U binary matrix. Note that if a stationary node and a mobile

node can both satisfy the service requests of the same sensing

task, our framework gives priority to the stationary node. To

this end, we introduce the spatial impact function hik[t], which

assigns a weight to node ni located in cell ck, when contributing

sensed data during time slot t. We write that

hik[t] =

⎧⎪⎨
⎪⎩

0, if pik[t] = 0

I, if ni ∈ N s

pik[t], otherwise

, (1)

where I > 1. Basically, the impact of a mobile node on the

coverage quality of a sensing task is equal to the duration of its

presence in the cell; while the impact of a stationary node is an

arbitrary number greater than one (the reason of this choice will

be clear later in the model development). Finally, for notation

compactness we introduce the following auxiliary sets: i) Sa
i [t]

is the set of tasks j that can be served by a node i during

time slot t, i.e., i provides data type d(j) (d(j) ∈ Di) and

∃k ∈ Cj : pik[t] > 0); ii) Sb
l is the set of tasks j that requested

data type l (d(j) = l); and iii) Sc
k is the set of tasks j interested

in monitoring cell k (k ∈ Cj). We also introduce the auxiliary

binary variable xilk[t], which is equal to one iff the sensor type

l on node i is active during time slot t. We can now define the

overall average coverage obtained by sensing task j given an

activation plan X[t] as follows:

Zj [t]=
∑
k∈Cj

∑
i∈N

xij [t]× hik[t] . (2)

It is worth point out that the coverage formulation in equa-

tion (2) implicitly assumes that each active sensor generates

data at the rate requested by the associated sensing tasks. Our

formulation can be generalised to include sensing tasks that

can accept a lower notification frequency. In this case, a data

utility function needs to be specified to quantify the amount of

sensing data that is provided, and its accuracy. This extension

is left as future work.

The overall optimisation problem can be written as follows:

max

ω∑
t=1

∑
j∈S

Zj [t] (3)

s.t. xij [t]=0 d(j) /∈ Di (4)

(pik[t]− β)× xij [t] ≥ 0 ∀i ∈ Nm, ∀j ∈ Sc
k (5)

xilk[t] ≤
∑

j∈Sc
k∩Sb

l

xij [t] ∀l ∈ Di (6)

xilk[t] ≥ xij [t] j ∈ Sc
k ∩ Sb

l , ∀l ∈ Di (7)

I ≥
∑
i∈N

xilk[t]× hik[t] ∀k ∈ C, ∀l ∈ D (8)

ril[t] ≥ xij [t]× rj ∀j ∈ Sb
l , l ∈ Di (9)

ril[t] ≤
∑
j∈Sb

l

xij [t]× rj ∀l ∈ Di (10)

fi[t]=Bi[t] ∀i ∈ Nm (11)∑
i∈Nm

fi[t] ≤ Bm (12)

fi[t]=Bi[t] +
∑

h∈N s

i=p(h)

fh[t] ∀i ∈ N s (13)

fi[t] ≤ bwi ∀i ∈ N s (14)∑
i∈Gg

Bi[t]=
∑
i∈Gg

p(i)=g

fi[t] (15)

ω∑
t=1

Ei[t]

EB
i

≤ LTi ∀i ∈ N (16)

Objective (3) maximises the overall sensing coverage over the

time frame T . Constraint 4 ensures that a node i cannot be

activated if data type d(j) is not present on board. Constraint 5
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requires that an active mobile node resides in a cell of interest

for task j for at least a time βτ . This design choice prevents

using nodes that can only contribute a small amount of relevant

data. Equations (6)-(7) check if node i is used to collect

data type l in the target cell k. Constraint (8) controls data

redundancy. Specifically, depending on the mobility pattern,

a mobile node may provide only partial coverage of cell k
during a time slot t. Thus, it may be useful to have data

collected from more mobile nodes in the cell. The parameter I
is used to set a bound on the data redundancy. As introduced

earlier, a stationary node guarantees a coverage of the entire

slot duration and it should be always preferred over a mobile

node. Setting up the contribution of a static node to the

coverage quality to the maximum value I ensures that the

solution of the optimisation problem always selects a stationary

node if available. Constraints (9)-(10) ensure that the sampling

frequency assigned to a sensor type l on an active node is able

to satisfy the QoS requirements of all the sensing tasks that are

served by than node. Equations (11) and (13) specify the total

data rate in time slot t that is transmitted by a mobile node and

a static node, respectively. Note that Equation (13) expresses

the classical flow-conservation property. Constraint (12) ensures

that the total data rate of all active mobile nodes does not

exceed the data quota Bm. Constraint (14) ensures that the

total data rate of an active stationary node i does not exceed

the communication capacity bwi. Equation (15) specifies that all

sensed data generated by the stationary nodes that are managed

by the same IoT GW is received by the gateway. Finally,

constraint (16) ensures that the normalised energy dissipation

during the time frame T is bounded by parameter LTi. This

is equivalent to guarantee a minimum lifetime for each sensor

node. To compute the energy Ei[t] consumed during time slot t
we assume a simplified energy model that accounts only for the

energy dissipation due to sensing and data transmission, while

data processing and idle times are ignored. Let ebi denote the

energy consumed during the reception or transmission of 1 bit

of data by node i. It holds that

Ei[t]=
∑
l∈Di

ril[t]× el +

⎛
⎜⎜⎝fi[t] +

∑
h∈N s

i=p(h)

fh[t]

⎞
⎟⎟⎠× ebi i ∈ N s

(17)

Ei[t]=
∑
l∈Di

ril[t]× el +Bi[t]× ebi i ∈ Nm

(18)

Since we consider a multi-hop WSN, the energy consumed by

the energy transceiver of a stationary node takes into account

also forwarded traffic. On the contrary, mobile nodes do not

forward traffic on behalf of other nodes.

V. PERFORMANCE EVALUATION

In this section, we evaluate the benefit of deploying a CA-SSN

system that exploits the proposed QoS-aware data management

scheme. To this end, we compare performance with two bench-

mark cases: i) a traditional WSN without mobile nodes, and ii)
a mobile crowdsensing system in which all mobile nodes that
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Fig. 1. The deployment of stationary sensor nodes used in the experiments.
Green and blue circles depict LL and HL sensor nodes, respectively. Squares
are the sinks. Red lines represents the wireless links between nodes and their
parent in the routing tree. Dashed lines identify the cells and regions.

visit a cell of interest for a sensing task are activated during that

time slot. For the sake of brevity, afterwards, we refer to our

solution as CA-SSN, while we refer to the former and latter

benchmark cases as WSN and MCS, respectively. Simulations

are performed using a custom simulation framework written in

Matlab. Main simulation parameters are summarised in Table I.

For the baseline case, we set the time slot duration τ to one

minute, while the planning period for the resource allocation is

set to T = 1 hour. To ensure statistical soundness, the following

results have been obtained by considering 100 scenarios in

which mobility patterns and application mixture are randomly

varied.

TABLE I
BASELINE SIMULATION SETUP

Simulation Parameters Values

Cells
Number M 100

Size (length) (m) 40

Ns 64

Nodes

Nm [0,128]

Speed of Mobile Nodes (m/s) [0.5, 1]
Bm (Mbps) 2

bwi (kbps) 125

Simulation

duration of time slot t (s) 60

duration of time frame T (h) 1

redundancy level I 1.5

β 0.15

A. Sensor nodes

Sensor nodes are deployed in a 400x400 m scenario. The

stationary sensing infrastructure consists of Ns = 64 randomly

deployed nodes. Furthermore, we assume that the reference area

is divided into four equal regions as shown in Figure 1. Each

region as its one data collection point or sink (i.e. |G| = 4),

which is the root of the routing tree used to deliver the

sensed data to the wired network. Then, each stationary node is

connected to the sink which can be reached with the minimum

number of hops (we consider a default transmission range of

60 m). Similarly to [8] we divide the monitored area into cell

with side length equal to 40 m, which corresponds to a grid of

M = 100 cells. In the network shown in Figure 1, 57% of the

cells are covered by at least a stationary sensor node.
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The stationary sensing infrastructure accounts for the typical

hardware heterogeneity of sensor nodes. As in previous work

(see [25]), we consider two categories of sensor node hardware,

namely high-level (HL), and low-level (LL) sensor nodes. The

former category accounts for devices with a more powerful

processor and an energy budget of 180 KJ (roughly a 5V with

10Ah of battery supply), which can be equipped with power-

hungry sensors (e.g. a camera for multimedia applications).

The latter category are devices with a more constrained energy

budget of 32.4 KJ (roughly a 3.6V with 2.4Ah of butter

supply), which can only support low-power analog sensors.

Each stationary node is randomly assigned to one of the two

node classes. We assume that two separate routing trees are

maintained, one for each node category. This is equivalent

to envision that two separated WSNs coexist in the same

geographic area and share the same data collection points1.

Thanks to the proposed brokering framework, the two WSNs

are used as a single, shared sensing infrastructure. Note that

we use two separate WSNs to avoid that an LL node running

out of energy may affect the sink connectivity for HL nodes,

and vice versa. Finally, we set the maximum application data

rate between two stationary nodes equal to 125 kbps (i.e.

bwi = 125 kbps).

Regarding the user-carried mobile nodes, we envision a set

of 4G-enabled smartphones integrating all the sensor types

that are described in Section V-B, and a battery with capacity

Ei = 4000 mAh. To accurately model the users’ movement

patterns, we use the well-known HCMM model [26]. Basically,

HCMM is a community-based mobility model that organises

the users into communities, and mimic typical human mobility

patterns, such as the tendency of spending time in a limited

set of favourite locations (e.g. the home and working place),

and the inclination to prefer short trips. Thus, each community

is associated to a preferred region (called home cell), and the

strength of the social relationships between the users of the

same community or different communities is the key driver to

select the destination region of a movement. In the following

experiments, we have partitioned the mobile nodes into four

equally-sized groups, each one assigned to one of the four

regions in Figure 1. Then, a rewiring probability equal to 0.5
is used to create relationships between nodes belonging to

different communities. When moving, each node selects a

speed uniformly at random over [vmin, vmax]. Finally, for the

crowdsensing service, the data quota Bm is set to 2 Mbps.

B. Applications and sensor types

In this study, we assume that four different data types are

monitored in the reference area, which corresponds to sensed

data collected by simple analog sensors or more complex digital

sensors, and whose characteristics are summarised in Table II.

Specifically, we consider a temperature sensor (d1) and a CO

sensor (d2), which are analog sensors characterised by a small

data payload (127 bytes), and a limited power consumption

(e1 = 15 mJ and e2 = 85 mJ, respectively). For the category

1Note that this is easily implementable using RPL as an RPL-based border
router supports the formation of multiple DODAGs as a means to dynamically
and autonomously partition the network.

of digital sensors, we consider an embedded camera (d3),

which produces a medium data payload (2.5 Kbytes) and has

a medium energy dissipation (100 mJ) per collected frame;

and an embedded microphone (d4), which has both a high

bandwidth (192 Kbytes) and energy (2500 mJ) consumption

for each second of recorded audio.

TABLE II
PARAMETER VECTOR OF SENSOR DATA TYPES.

Data Type d1 d2 d3 d4
Sensor type Temperature CO Camera Audio

Es
l (mJ) 15 85 100 2500

bl (B) 127 127 2500 192K

Technology analog analog digital digital

In the performance evaluation we assume that four classes of

sensing tasks are to be deployed: (i) a temperature monitoring

application (appT) that require a reference sampling rate equal

to 0.5 Hz; (ii) a CO monitoring application (appG), which

requests to measure the CO gas concentration at a rate of

1 Hz; (iii) a multimedia application (appC) that acquires an

image per second; and, (iii) an audio recording application

(appA) that acquires an audio sample of 4 seconds once every

minute. Table III summarises the characterisation of sensing

applications. We set the number of target cells to be monitored

by an application equal to five for appT and appG sensing

tasks, and to three for the appC and appA sensing tasks (a

similar design is also adopted in previous works, as as [25]).

Note that the applications randomly select their target cells in

the reference area. Clearly, the greater the number of active

sensing tasks, and the higher the probability that one cell is of

interest for more than one application of the same category.

TABLE III
QOS REQUIREMENTS FOR REFERENCE APPLICATIONS.

Parameter Application class

app appG appC appA
rj (sample/min) 30 60 60 1

|Cj | 5 5 3 3

d(j) d1 (Temp) d2 (CO) d3 (Camera) d4 (Audio)

C. Results

The performance evaluation metrics that we use to asses the

efficiency of our QoS-aware data management scheme for CA-

SSNs are the following:

• Task coverage: This metric measures the average fraction of

sensor samples requested by a sensing task that is actually

received during a time frame T . We remind that a sensing

task demand a total amount of samples equal to rj ×T . The

task coverage will depend on the number of target cells that

are covered by at least a (stationary or mobile) sensor node,

and the temporal duration of the coverage.

• Data redundancy: This metric measures the fraction of sensor

samples that are received by a sensing task, which are

redundant. Depending on the I parameter, multiple mobile

sensor nodes can be activated in the same time slot for a

target cell. Furthermore, inaccurate location information leads
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(a) U = 4

(b) U = 16

Fig. 2. Boxplots of task coverage vs node mobility. Triangle points are the
mean value. The lower and upper whiskers are the 5% and 95% percentile,
respectively. Circles are the outliers.

to sub-optimal activation plans. A proper balance between

coverage and redundancy is crucial.

• Node activity: This metric measures the number of mobile

nodes that are activated during each time slot, on average.

1) Impact of Network Scale: First of all, we assess the

ability of our QoS-aware data management scheme to exploit

mobile sensor nodes to improve system performance efficiently.

Figure 2a and Figure2b show a boxplot of the average coverage

per sensing task obtained with the tested mechanisms when

increasing the number of mobile nodes. Results in Figure 2a

and Figure2b are obtained in a scenario with one task per

application category (i.e. U = 4), and four tasks per application

category (i.e. U = 16), respectively. We decided to show

a boxplot because it well describes not only how data are

distributed but also the variability of the data set. In the plotted

boxplots, the whiskers represent the 9th and 91st percentile. As

shown in the results, in WSN scenario, 25% of the sensing tasks

obtains an average coverage lower than 20% when U = 4. In

the MCS system, as the number of mobile nodes increases, we

notice that the task coverage rapidly increases. In a scenario

with 128 mobile nodes (i.e. twice the number of stationary

nodes of the WSN scenario), the median coverage is roughly the

same as in the WSN case, but there is a threefold improvement of

the lower quartile. Furthermore, the MCS system is characterised

by a much lower dispersion of the task coverage values than

the WSN case. Finally, while a MCS system is able to avoid

the occurrence of sensing tasks with very poor coverage, it is

less efficient than the WSN scheme to ensure high task coverage

when node density is comparable. On the contrary, our CA-SSN
scheme significantly outperforms all tested algorithms. It is suf-

ficient to exploit 32 mobile nodes to obtain a 25% improvement

over WSN of median task coverage. With 128 mobile nodes,

the median task coverage is roughly 90%. Similar trends have

been observed when increasing the number of sensing tasks

(Figure 2b).

(a) (b)

Fig. 3. Node activity (3a) and data redundancy (3b) vs. node mobility. Plots
show average values with 95% CI.

Figure 3a shows that the coverage gain of opt-M is obtained

by maintaining the number of active mobile nodes almost three

times lower than MCS. Furthermore, Figure 3b shows that the

use of an IoT Broker to allow information sharing among

similar applications, coupled with a smart strategy to select

mobile nodes is also beneficial to reduce data redundancy. More

precisely, data redundancy slowly increases as the number of

mobile nodes increase, and CA-SSN obtains a 25% reduction

of data redundancy when compared to MCS. All previous results

have confirmed the benefits of using mobile sensing nodes as

an addition to existing in-situ sensor deployments.

2) Impact of Node Mobility: Figure 4 shows the average

task coverage when increasing the speed of mobile nodes for a

scenario with 64 mobile nodes and U = 4. The results show that

there is a negligible impact of speed on coverage performance.

However, if we analyse the trends of node activity (see Fig-

ure 5a), we observe that node activity increases when increasing

the speed of individual nodes increase. Such behaviour can be

explained by noting that the higher the speed, and the lower

the average sojourn time of a node in a cell, and the more the

number of cells that can be visited by a node in a time slot.

Thus, more mobile nodes can be potentially activated. It is also

important to point out that the node activity is at least three

times lower in CA-SSN than MCS because our solution aims

at maintaining the node redundancy level below the threshold

I (see constraint (8) in the optimisation framework). Finally,

Figure 5b shows that data redundancy also increases with node

mobility. Again, the explanation of such behaviour is a higher

probability to visit more that one cell during a time slot, with

a potential increase of the amount of sensed traffic that is

generated when the mobile node is outside the assigned cell.

We conclude this section by observing that the uncertainties

about the location of mobile nodes can be reduced by adopting

smaller cells and shorter time slots. However, there is a trade-

off between location accuracy, users’ privacy and computational

tractability of the optimisation problem.

VI. CONCLUSIONS

In this paper, we have proposed a crowd-assisted shared sensing

infrastructure that leverage an IoT Broker to optimally activate
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Fig. 4. Box-plots of task coverage vs. speed of mobile nodes (multiplier times
v ∈ [0.5, 1.0] (m/s), Nm = 64, U = 4). Triangle points are the mean value.
The lower and upper whiskers are the 5% and 95% percentile, respectively.
Circles are the outliers.

(a) (b)

Fig. 5. Node activity (5a) and data redundancy (5b) vs. speed of mobile nodes
(multiplier times v ∈ [0.5, 1.0] (m/s), Nm = 64). Plots show average values
with 95% CI.

and shape IoT data streams from stationary and mobile nodes

to satisfy the service requests from heterogeneous monitoring

applications. Furthermore, we have formulated a mathematical

programming framework to solve the considered problem,

which accounts for data redundancy, users’ mobility patterns,

and applications’ requirements. Finally, using simulations, we

have investigated the performance gains of the proposed so-

lution when compared to conventional WSNs and mobile

crowdsensing systems.

Future work aims at exploring the impact of uncertainties

in user mobility on the system efficiency by using different

mobility prediction models. We also plan to include cooperation

between different sensor nodes to improve the quality of sens-

ing. Finally, our framework can be extended to consider elastic

applications that dynamically adapt their QoS requirements

based on general utility functions.
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