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1. Introduction

Newton’s cradle (Fig. 1) is a valuable paradigm of how physical mechanisms are concealed into
nature. It is a device based on classical mechanics that demonstrates the conservation of momentum
and energy. On the other hand, Quantum Mechanics has shown to be one of most prolific sources of
unexpected,  and  hard  to  understand,  phenomena.  Therefore,  achieving  a  machine  which  is  a
paradigm for the quantum nature of a system is an engrossing challenge.  

In the work of Ref. [1] we propose a possible experimental realization of a quantum analogue of
Newton's cradle (NC). At this aim we ask for the system to be:

(i) a one-dimensional array,

(ii) made of individual quantum objects, representing the spheres in the NC,

(iii) with a nearest-neighbour interaction between the individual quantum systems, modelling
the contacts between the spheres.

The  above requirements,  which  are necessary for  realizing a  quantum NC (QNC),  can  be
achieved with a system of cold atoms trapped in a one-dimensional periodic potential. This system
can be built by confining a Bose-Einstein condensate into a one-dimensional tube using an optical
potential  that constrains it to a strict Tonks-Girardeau regime. The first achievement of this regime
in Bose-Einstein condensates has been reached in the remarkable experiment by Paredes et al. [2],
with a set-up closely similar to the one considered here. A further optical potential of moderate
amplitude, is superimposed along the longitudinal direction, so that it generates an optical lattice
that fulfills condition (i). The dynamics of this system is effectively described by a one dimensional
Bose-Hubbard model [3] where, due to the Tonks-Girardeau regime, the strong repulsive interaction
between the atoms prevents the double occupancy of lattice sites [4]. In our proposal the condensate
is made of atoms with two possible internal states, say |0  and |1 .  Accordingly, each potential well⟩ ⟩
hosts an effective two-state system (ii) and the wave-function at each lattice site is a superposition
of these internal states.

The tunnelling interaction between nearby wells can be globally tuned by the intensity of the
optical lattice beam, and provides the required coupling which meets condition (iii). We have shown
that a local perturbation generated at one end of such a lattice propagates back and forth between
the lattice ends in a way very similar to that in which an initial momentum pulse is periodically
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exchanged between the endpoint spheres of the classical NC. In fact, in the QNC the role of the
classical  momentum  Δp  transferred  between  the  chain  ends,  is  played  by  the  wave-function
disturbance ΔΨ which is transmitted through the system. 

We start with the lattice prepared with all sites in (say) the |0  state, and the initial disturbance⟩
ΔΨ consists in changing the first site to the |1  state: the disturbance will propagate through the `sea'⟩
of |0  states (the analogy is shown in Fig. 2).⟩

Fig. 2

2. Tonks–Girardeau regime: Fermionizing Bosons 

The system of atoms with two internal states has to be subjected to a strong transverse trapping
potential  and  to  a  further  standing-wave  laser  beam  that  creates  a  periodic  potential  in  the
longitudinal direction. At low temperatures and for sufficiently strong transversal and longitudinal
potentials  the  system  excitations  are  confined  to  the  lowest  Bloch  band.  The  low-energy
Hamiltonian is then given (see [4]) by the Bose-Hubbard model for two boson species labeled by
α=0,1. In one dimension the homogeneous Bose–Hubbard model, has two remarkable limits: i) the
case of a vanishing repulsion, the model reproduces two independent ideal Bose gases on a lattice,
and ii) the case of strong repulsive interaction, that we consider here with a number of atoms equal
to the number of sites (filling one). In the Tonks-Girardeau regime, an ideal Fermi gas is found. In
fact, very high values of repulsion entail such a high amount of energy for accumulating more than
one atom in a given site, that no site can be doubly occupied. Therefore, the only observable states
are those where the occupancy of any site is equal to one.

The two possible one-atom states at a site j are |0⟩j, and |1⟩j, and correspond to the jth atom in
the internal state 0 or 1, respectively. In this way the dynamics is ruled by the only internal states
and an effective Pauli exclusion is realized. 

3. The analogy 

During an oscillation of the classical NC there are several spheres at rest and in contact with
each other, and some moving spheres. When a moving sphere hits a sphere at rest, the latter keeps
being at rest and exchanges its momentum with the nearby sphere (see video 1). In the quantum
analogue of the NC the role of the spheres’ momenta is played by the wave-functions at each site.
Rather than the transfer of mechanical momentum, in the quantum system there is a transmission
along the lattice of a disturbance of the wave-function. This is represented in video 2. Furthermore,
in the place of the spheres oscillating at the boundaries of the chain, we expect to observe the
oscillation  of  the wave-function  amplitude on the  lattice ends due to  the disturbance  that  runs
forward and back.



Video 1

Video 2

The system’s wave-function  at  each lattice site  j can be  a  superposition of  the  two atomic
internal states |0⟩j and |1⟩j. Under the analogy we propose, one can for instance associate to the
spheres at rest the states |0⟩j, and, accordingly, a moving sphere, let us say the first one, corresponds
to a state a0|0 +a⟩ 1|1 : a superposition of the two internal states. In terms of atoms this amounts to⟩
considering all sites initially populated by a species-0 atom, but for (a partial superposition with) a
species-1 atom in the first site.

This setup triggers oscillations whose dynamics essentially consists in the disturbance travelling
along the lattice: the solitary species-1 atom propagates through the chain of species-0 atoms and
migrates until the opposite end, where it is reflected back thus determining the NC effect (see video
2). 

Remarkably, this analogue of the classical propagation is described in terms of fermions: the
most ‘non-classical’ particles.

4. Bad and Good Quantum Newton’s Cradles

Uniform QNC

In the simplest case all tunnelling interactions are equal and the chain is uniform.

In Fig. 3 it is clearly shown that the initial disturbance of the wave-function travels along the
chain in the form of a wave-packet, which reaches the opposite end of the chain and is reflected
backward. However, one can clearly see a significant attenuation of the transmitted signal, an effect
essentially due to the destructive interference of the wave-function components. In other words,
after a few bounces the initial state evolves to a state where the species-1 atom is delocalized along
the chain. This is the situation that occurs in a dispersive system: the wave-function spreads over the
lattice during time and the initial wave-packet is rapidly lost. A similar phenomenon also occurs in
the classical NC if the masses of the spheres are not identical, i.e., in the non-uniform case. 

Evidently, in the quantum analogue, the uniformity of the system causes dispersion: therefore, it
is important to identify under which conditions such attenuation can be minimized.



Fig. 3

Perfect QNC
The dynamic decoherence of the uniform case, can be not only reduced but even eliminated by

letting the tunnelling amplitudes to vary along the chain with well-defined nonuniform values. In
fact,  in  the  case  of  a  system  of  M lattice  sites,  a  dispersionless  end-to-end  quantum-state
transmission can be obtained, when the Hamiltonian has nearest-neighbour couplings given by τ j

∝[j(M-j)]1/2. In this case a perfect QNC is realized, whose behaviour is illustrated in Fig. 4.  One has
to observe that the accurate tuning of each tunnel coupling, is experimentally hard.

Fig. 4

5. Two realistic schemes 

We are going to show here that it is possible to minimally modify the least demanding uniform 
lattice in order to strongly improve the cradle’s performance. 

Quasi-uniform array
A simple way exists for the actual realization of a high-quality QNC in an essentially uniform

chain,  such that  the need for  engineering  is  small.  A natural  strategy is  that  of  weakening the
extremal  τjs.  Indeed,  keeping the  requirement  of  a  mirror-symmetric  chain,  one  can  minimally
modify a uniform chain taking equal couplings, τj=τ, but for the ones at the edges, τ1=τM-1=xτ, with
x<1, and look for the best transfer conditions.   In Ref. [5] it is shown that the optimal coupling
results  x≈1.03M-1/6. As a matter of fact, taking into play also the second bonds τ2=τM-2=yτ allows



one to guarantee a response larger than 0.987 (i.e., the transmitted amplitude deteriorates of only
1.3%) when the coupling are tuned as   x≈2M-1/3  y≈23/4M-1/6, see Ref. [6].

Uniform array with a Gaussian trap
The last  configuration  we propose  can  be  also implemented  in  an  experiment.  Besides  the

uniform  one-dimensional  optical  potential,  we  add  a  trapping  potential  that  generates  a
site-dependent energy-offset with a Gaussian profile (see Fig. 5). Furthermore, we choose as initial
state  a  Gaussian  wave-packet  along  the  lattice.  Such  a  setup  appears  to  be  the  most  realistic
compared with the previous ones. In fact, in the schemes we illustrated so far, the bounce of the
disturbance of the wave-function at the lattice ends is caused by the open-boundary conditions,
while in the present setup, the wave-packet oscillates inside the trapping potential and its speed
inversion is caused by the forces generated by the trapping potential. In Fig. 6 it is evident that the
packet  never reaches the lattice ends: when the wave-packet  moves towards a lattice end, it  is
slowed down by the trapping potential, until the motion is inverted and the packet is accelerated in
the opposite direction.

Fig. 5

Fig. 6
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6. Conclusions

We have investigated an experimental  framework that  could realize a  quantum analogue of
Newton's  cradle,  starting from a Bose–Einstein condensate  of two atomic species  in an optical
lattice.  We have  shown  that  the  tunnelling  between  sites  makes  the  system  equivalent  to  a
free-Fermion  gas  on  a  finite  lattice.  In  these  conditions,  one  can  trigger  at  one  lattice  end  a
disturbance that starts bouncing back and forth between the ends, just as the extremal spheres in the
classical Newton cradle: the analogy associates the propagation of a wave-function disturbance with
the transmission of mechanical momentum.

However, in the quantum system the travelling wave undergoes decoherence, a phenomenon that
makes a uniform lattice almost useless. On the contrary, it is known that a special arrangement of
the tunnelling amplitudes can even lead to a virtually perpetual cyclic bouncing.

That's why we looked for compromises that minimized the required experimental adaptation of the
interactions and, give `almost' perfect quantum Newton cradles. Of course, the possibility to obtain
quantum systems that allow high-quality quantum-wave transmission is not only relevant from the
speculative point of view, but also in the field of the realization of quantum devices like atomic
interferometers, quantum memories, and quantum channels. Nevertheless, realizing the quantum
Newton  cradle  we  proposed  would  be  stirring  by  itself  for  the  insight  it  would  give  into  the
entangled beauty of quantum mechanics.
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