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A B S T R A C T

Kitchen and bathroom countertop is a demanding application, where high aesthetic standards must combine with
durability, ease of maintenance, and resistance to heat, stain, scratch and chipping. The hard materials and
composites used for high-end countertops usually contain crystalline silica phases that can be inhaled by workers
during drilling and cutting operations. The occurrence of silicosis and other respiratory diseases in machining
workers makes it important to know exactly how much crystalline silica is present in countertop materials. This
paper collects over 300 quantitative determinations of quartz and cristobalite in porcelain stoneware products
and compare these contents with other countertop materials. The sum of crystalline silica phases in porcelain
stoneware is on average 21 ± 5 % by weight (mostly quartz). This content is lower than granite (~30 %) and
much lower than engineered stone (~90 %). Possible ways to reduce the amount of crystalline silica phases in
ceramic slabs are overviewed and critically discussed.

1. Introduction

Various materials currently meet the demand for kitchen and bath-
room countertops: ornamental stones, including granite, marble, soap-
stone, etc. [1]; quartz-resin composites, also called engineered or
agglomerated stone [2,3]; ceramics, i.e. porcelain stoneware [4,5]; solid
surface composites, based on aluminium trihydroxide [6,7]; concrete
and wood [8]. These materials must fulfil several performance re-
quirements, the most important being the resistance to heat, stain,
scratch and chipping, along with ease of maintenance [9]. All these
requirements, combined with remarkable durability and high aesthetic
standards, are satisfied in the most demanding applications – which
include, together with countertops, floating floorings, interior and out-
door coverings, and various furnishings – by hard materials, such as
granite, engineered stone or porcelain stoneware [9,10].

The application of countertops requires, especially in the case of
high-end materials, mechanical processing for drilling, cutting,
grinding, etc. These operations are usually carried out in dedicated
processing plants or sometimes directly on site, during the countertop
installation [11,12]. Cutting and drilling operations produce dusts that,
in the absence of adequate powder abatement and extraction systems,
can be inhaled by workers, since a fraction of them have the particle size
characteristics of respirable dust [12,13].

There is growing concern about workers’ exposure to countertops
processing dusts because they contain respirable crystalline silica

[14–17]. Recently, cases of silicosis [18–21] and other respiratory dis-
eases [17] have been recorded in various countries in countertop
machining workers. In some countries this situation is leading to legis-
lative measures to limit workers’ exposure to respirable crystalline sil-
ica, that are specific for countertops and similar applications [22,23]. To
this purpose, directives on carcinogens and mutagens have been
implemented in the ceramic production lines (for example, the European
Directive 2017/2398 has been introduced into the scope of the so-called
Directive CMD - 2004/37/EC).

In 2021 the Memorandum of Understanding between the Emilia
Romagna Region - Acimac - Confindustria Ceramica and the trade union
organizations have defined criteria for the ceramic industry for the
identification of jobs involving exposure to respirable crystalline silt
generated by a manufacturing process, refering to an “exposure limit
value of 0.1 mg/m3 measured or calculated in relation to a reference
period of 8 h for the dust generated by the material processing”. For this
reason, it is important to know exactly the crystalline silica content in
countertops, especially for high-end products made up of hard materials.
In many cases, however, the composition is defined at the time of
product formulation (e.g., engineered stone) since the manufacturing
process does not reach temperatures so high as to transform the inor-
ganic phases present [2,3], in specific crystalline silica phases (quartz or
cristobalite). In the case of ornamental stones, on the other hand, the
composition is known for each igneous lithotype [24,25] or granite
deposit, as prescribed by standards (e.g., EN 12407:2007 and ASTM
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C1721-21a) and often available in inventories and databases (e.g., Refs.
[26,27]).

At variance, in the case of porcelain stoneware, the crystalline silica
content is generally not known for several reasons: at the batch design
level, it is not trivial to calculate the actual quartz content, since it is
ubiquitous in almost all ceramic raw materials [28,29]. Most impor-
tantly, quartz is transformed to a certain extent during the firing process,
because of complex reactions that depend on various factors [30,31].
Unfortunately, it is not straightforward to predict reliably how much
quartz will be melted or whether cristobalite or tridymite will be formed
[32]. Therefore, it is necessary to quantify accurately the content of
quartz (and other silica phases) in the finished product, considering that
such a determination requires a destructive technique, which is affected
by sample preparation and needs specific procedures [33,34].

The aim of this work is the critical review of crystalline silica data in
porcelain stoneware and comparison with other materials used for
kitchen and bathroom countertops. In addition, possible ways to reduce
the quartz content, their efficacy and technological readiness will also be
assessed and discussed.

2. Data collection

Data on crystalline silica content in porcelain stoneware were
collected through an exhaustive literature search, corroborated by un-
published results. A total of 206 samples of standard porcelain stone-
ware bodies were taken into consideration, of which 97 were
commercial products and 109 were equivalent batches made in the
laboratory (Fig. 1). In addition, 97 samples of innovative porcelain
stoneware formulations were considered, in which conventional raw
materials were partially replaced by strong mineral fluxes (e.g., neph-
eline syenite, diopside, or spodumene) or glass fluxes (e.g., soda-lime
cullet) or waste materials (e.g., combustion ash). Bibliographic refer-
ences of the entire set of 303 porcelain stoneware samples (including 20
unpublished data) are given in Table 1S (supplementary material).

Data refer to ceramic manufacturers (commercial products or labo-
ratory replicas) in different countries: Italy (202 samples), Turkey (39),
Brazil (24), Spain (19), China (13), India (3), Argentina (2) and South
Korea (1).

Determination of crystalline silica phases (quartz, cristobalite, tri-
dymite) was performed – according to the experimental description of
the various papers – by X-ray powder diffraction. In most cases, a full
profile Rietveld refinement of the XRD pattern was carried out by means
of specific software packages (GSAS, TOPAS, MAUD, FullProf). In few
cases, quartz and cristobalite were quantified by single peak approach
(RIR method). These analytical techniques allow to determine crystal-
line silica phases with accuracy and precision within 1 % by weight.

Unpublished data regard both commercial and laboratory porcelain
stoneware bodies, analysed by X-ray powder diffraction (Bruker, D8
Advance and LynxEye, Karlsruhe, Germany). Patterns were collected

with a Cu X-ray tube (operating at 40 kV and 40 mA) from 10 to 100◦2θ,
step size of 0.02◦2θ, counting time of 1 s per step. Every sample was
admixed with 20 wt% corundum as internal standard for the quantifi-
cation of crystalline and amorphous phases [33,35]. The XRPD patterns
were modelled by a Rietveld refinement with the TOPAS software [36].

3. Crystalline silica content

In porcelain stoneware slabs, crystalline silica is always present as
quartz [5,37–104]. At variance, cristobalite was found in approximately
9 % of samples [44,55,66,79,88] and tridymite only in one sample [88].

The sum of crystalline silica phases in standard porcelain stoneware
is on average 21.0 % ± 5.2 %. This figure substantially confirms pre-
vious assessments [61,102]. In particular, quartz is on average 19.7 %±

5.6 % and cristobalite 2.0 % ± 1.5 %. The amount of crystalline silica
phases in commercial porcelain stoneware (21.7 % ± 5.6 %) is sub-
stantially the same that in laboratory-made samples (20.3 % ± 5.7 %)
and the two populations are undistinguishable from the statistical point
of view (Fig. 2A).

Ceramic technology is versatile enough to allow the use of a wide
range of raw materials and this reflects in a certain degree of freedom in
the design of porcelain stoneware batches [4,28]. Despite this, there are
no statistically significant differences between manufacturers in various
countries (Fig. 2B). The figures relating to Italian production are robust,
as they come from a high number of industrial products, while those
from other countries have a narrower sample base and are therefore
statistically less reliable.

It is then possible to take the overall content of crystalline silica
phases in porcelain stoneware and compare it to other materials for
countertops, in particular those used for high-end applications (Table 1).
Both the average value of quartz + cristobalite in porcelain stoneware
(21 %) and its range (10–32 %, as 95 % of data distribution) are lower
than the corresponding values usually found in granitic rocks, where
only quartz occurs [24,25] and much lower than typical contents of
engineered stones, where both quartz and cristobalite are commonly
used [2,3,12–14].

Fig. 1. Sampling of porcelain stoneware bodies.

Table 1
Content of crystalline silica phases (quartz, cristobalite, tridymite) in porcelain
stoneware and other hard materials for countertops.

Material Average (%
weight)

Range (%
weight)

Porcelain stoneware (standard) ~21 % 10–32 %
Engineered stone (quartz-resin
composites)

~90 % 80–94 %

Granite (ornamental stones) ~30 % 16–42 %
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4. Reducing the content of crystalline silica phases in porcelain
stoneware

The presence of crystalline silica phases in porcelain stoneware
bodies is essential for some technological functions:

• To control indirectly (by the so-called tempering effect) the rheo-
logical behaviour of slips, the compaction of the green body and
prevent deformations during drying [105,106];

• To control (by the so-called skeleton effect) the firing shrinkage and
prevent excessive permanent deformations or breakage during sin-
tering [107,108];

• To provide a spontaneous mechanism of high temperature bulk vis-
cosity control (by the so-called buffering effect) being able to
compensate for effective viscosity loss with increased melt viscosity
in case of quartz melting [46,109];

• To increase the coefficient of thermal expansion of fired bodies,
entailing at the same time the risk of rupture during cooling due to
the β− α transition of quartz [110,111].

An overview of possible ways to reduce the amount of crystalline
silica phases in porcelain stoneware is described below. A possible
strategy to be undertaken has been defined in order to outline the
feasibility and possible obstacles to be overcome.

4.1. Decreasing the content of quartz in the formulation of the ceramic
body

Quartz is present in almost all ceramic raw materials (clays, feld-
spathic fluxes, silica sands) although its actual content is not always
considered in batch design practices [28]. Selecting the plastic and/or

flux components with a low quartz content entails the choice of peculiar
rawmaterials [112], which are presumably more expensive. In this way,
any reduction of quartz in the raw batch does not automatically result in
a corresponding decrease in the content of the crystalline silica phases
after firing. Although there is a broad positive relationship between the
silica content of raw materials and the amount of quartz in the finished
product, this suffers from strong uncertainties (Fig. 3A). This path is
certainly to be followed, limiting the quartz content at the beginning,
but does not allow an accurate prediction of the final content of the
crystalline silica phases.

4.2. Greater reactivity of quartz during firing

It is known that porcelain stoneware has a complex evolution –
starting from feldspars, clay minerals and quartz of raw materials –
which react with each other during the thermal cycle [30,34,46,71].
Quartz can be involved in the chemical transformations that take place
at high temperature [31] depending on various factors, even if particle
size and firing time are the major variables [32,61]. The fraction of
quartz that is lost during firing varies widely, without a clear correlation
with the silica content, so that for 71–72 % of silica in the body, the
reduction goes from zero to 50 % (Fig. 3B). As a matter of fact, pre-
dicting how much quartz will be melted in vitrified ceramics and
whether polymorphic phases (cristobalite or tridymite) will form is not a
trivial task. An example is porcelain stoneware bodies with a different
silica concentration, as shown in Fig. 4, where laboratory and indus-
trially prepared samples are plotted in the SiO2–Al2O3/(Al2O3+Na2Oeq)
diagram [45]. Although the industrial bodies have on average a higher
silica content than the laboratory ones, the amount of quartz remaining
after firing is substantially the same, from the statistic point of view,
even if the average value differs a little (Fig. 2A).

Nevertheless, it was often observed that the introduction in porcelain
stoneware formulations of glassy raw materials (or some strong fluxes)
can induce greater reactivity of quartz during firing [42,45,48,67,72,96,
101,113–115]. Indeed, if ordinary bodies are compared with porcelain
stoneware formulations containing glassy rawmaterials or strong fluxes,
it can be appreciated a lower quartz content in the latter (Fig. 5). These
unusual formulations give rise to peralkaline melts, where quartz ap-
pears to have faster dissolution kinetics [45,48]. However, it should be
considered that the technological properties of bodies containing glassy
raw materials are not the same as standard porcelain stoneware and that
a deterioration in the degree of densification and pyroplasticity was
observed [45,96].

The addition of residues as raw materials in porcelain stoneware
batches has become a common industrial practice [82,88,116]. How-
ever, considering waste-bearing tiles, it cannot be noticed significant
changes in the final content of crystalline silica phases compared to
standard stoneware porcelain (Fig. 5).

The role of quartz grain size in its dissolution kinetics must also be
taken into account, even though there are few specific studies on por-
celain stoneware bodies [61,111,117]. The main limitation is that most
available data concern the particle size distribution of the mixture (and
not that of quartz). This seems to be an effective approach: quartz
decreased approximately from 24 % to 20 % when particle size was
reduced from 20 to 5 μm [61]. However, such diminution is still far from
a target of crystalline silica phases below 10 %. A key issue is that
particle size distribution is an important technological constraint for
compaction and firing behaviour [105,118]. It is not by chance that
industrial particle size curves tend to draw in a rather narrow range. The
degrees of freedom for changing the grain size of quartz are therefore
limited and concern more the use of micronized raw materials than any
change in the milling schedule.

Overall, improving the quartz reactivity during firing is a promising
way to reduce the amount of crystalline silica phases in porcelain
stoneware tiles. Nonetheless, it is a solution that requires careful design,
as it involves major changes in batch formulation and affects relevant

Fig. 2. Box-and-whisker diagram of the crystalline silica content (quartz +

cristobalite) in standard porcelain stoneware: A) commercial (industrial) versus
laboratory made bodies; B) bodies from various countries.
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technological issues mentioned above, such as the skeleton and buff-
ering effects.

4.3. Search for alternative fillers

It is necessary to look for suitable materials that can even partially

replace the crystalline silica phases in porcelain stoneware bodies,
which can act as filler (ensuring the tempering and skeleton effects).
This implies that candidates must have dissolution kinetics during firing
comparable to quartz. In particular, the alternative crystalline phase
should also ensure some buffering effect, i.e., keeping the effective vis-
cosity of the ceramic body in the event of dissolution of the filler. In

Fig. 3. Content of crystalline silica phases (quartz + cristobalite) in standard porcelain stoneware (A) and fraction of crystalline silica phases reacted and lost during
firing (B) versus the SiO2 amount of the raw batch.

Fig. 4. Chemical composition represented in the binary graph silica-alumosity [Al2O3/(Al2O3+Na2Oeq)].

C. Molinari et al.
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addition, suitable fillers must have the coefficient of thermal expansion
high enough to meet the standard requirement for porcelain stoneware
slabs (that anyway was based on the thermal properties of quartz).

However, it should not be overlooked that the replacement of quartz
would lead to the disappearance of the β− α phase transition during
cooling, which involves a significant volume variation and the remark-
able risk of damaging the porcelain stoneware countertops [111,117].

A partial replacement of quartz with zircon has been industrially
demonstrated in super white porcelain stoneware bodies [44,91,119]
but it has to face limitations stemming from cost and radioactivity of
zirconium silicate [120,121]. In the literature, other opacifiers have
been successfully utilized on a laboratory scale, such as alumina [40,
122] or glass-ceramics frits [101,123]. White-firing bodies, based on
anorthite and/or diopside, have also been developed for low silica
porcelain stoneware tiles [92,124–126].

This way seems to be the most effective in reducing the content of
crystalline silica phases in porcelain stoneware countertops but must
overcome the limitation of increasing costs. From a technological point
of view, there is no overall picture of pros and cons for different can-
didates (especially for glass-ceramics) to replace quartz as filler in the
ceramic body.

4.4. Combining batch design and quartz reactivity during firing

The combination of the options described above to reduce the con-
tent of crystalline silica phases in porcelain stoneware tiles should have
greater effectiveness than individual actions. Although there are
apparently no cross-constraints to lower the initial percentage of quartz
and increase its reactivity during firing, the overall technological
behaviour of the ceramic body must be kept within the standard re-
quirements. This is a complex task, as it entails, on the one hand, to
select suitable quartz substitutes and/or raw materials with a low quartz
content and decrease the particle size (e.g., by using micronized fluxes).
On the other hand, it needs that reactive melts form (by adding glassy
raw materials or strong fluxes into the batch) where alternative fillers
should be stable.

This combination seems to be the most promising way to have a
consistent reduction in the quartz content in porcelain stoneware slabs
(and so reach the target of crystalline silica phases below 10 % weight).
However, there is not enough knowledge to predict whether feedback
from one action on the other (e.g., the buffering effect at high temper-
ature) can be minimized or represent a challenging obstacle.

More research and development is needed on the combination of the
various technological solutions to reduce the content of crystalline silica
phases in the production of countertops in porcelain stoneware.

4.5. Glass-ceramic composites

A well-known technology for obtaining vitrified silicate materials is
the glass-ceramic route, which consists of batch melting, followed by
controlled crystallization during cooling [127,128]. Although
glass-ceramics exhibit a high degree of densification and excellent
mechanical-tribological properties, descending from accurate micro-
structural design [129,130], they suffer from limitations about the
product dimension (much smaller than the market demand for coun-
tertops) and manufacturing cost (one order of magnitude higher than
ceramic tiles).

An alternative route – somewhere halfway between glass-ceramics
and ceramic countertops – is the sintering of batches consisting of
glass (as a raw material) and filler (quartz or other crystalline com-
pounds capable of withstanding at high temperature the chemical attack
of the liquid phase). This technology is less widely known than glass-
ceramics [131,132] particularly as a manufacturing route for coun-
tertop materials. Recently, explorative work was published on com-
posites consisting of waste glass (soda-lime cullet) sintered together with
quartz, albite, petalite or corundum as filler [133]. The results obtained
are encouraging – except in the case of quartz – even though the tech-
nology has so far been developed only for small sizes and at a low
readiness level [132,133].

5. Conclusions

The sum of crystalline silica phases in porcelain stoneware is on
average 21.0 % ± 5.2 % by weight, with 95 % of products within the
10–32 % range. Quartz is predominant over cristobalite (on average 2.0
%) that was found in approximately 9 % of samples. In comparison with
other materials for countertops, and in particular those used for high-
end applications, the content of crystalline silica phases in porcelain
stoneware is lower than the values usually found in granitic rocks (~30
%) and much lower than typical contents of engineered stones (~90 %).
Four ways to reduce the amount of crystalline silica in porcelain
stoneware have been discussed to outline feasibility and possible ob-
stacles to overcome:

Possibility of decreasing the quartz content in the formulation of the
ceramic body: given that quartz is present in almost all ceramic raw
materials, its reduction in the raw batch does not automatically lead to a
corresponding decrease in the content of the siliceous phases crystal
after firing. This is certainly a viable path but an accurate prediction of
the final content of the crystalline siliceous phases is not possible.

Promoting greater reactivity of the quartz during firing: improving the
reactivity of quartz during firing is a promising solution to reduce the
amount of crystalline silica phases in porcelain stoneware tiles. How-
ever, important changes must be implemented in batch formulation and
technological aspects (for example skeleton effects and buffering) must
be taken into consideration.

Looking for alternative fillers: candidates must meet several techno-
logical requirements (dissolution kinetics, effective viscosity, thermal
expansion coefficient) along with cost. White-firing bodies, based on
anorthite and/or diopside, for porcelain stoneware tiles with low silica
content can be an effective solution for reducing the content of crys-
talline silica phases in porcelain stoneware countertops, but they are
expensive.

Combining batch design and the reactivity of quartz during firing seems
to be the most promising option for obtaining a consistent reduction in
the quartz content in porcelain stoneware slabs. However, further
research and development is needed as there is not enough knowledge to
predict whether feedback from one action to another can be minimized
or represent a challenging obstacle.

Data availability

The raw/processed data required to reproduce these findings cannot

Fig. 5. Box-and-whisker diagram of the crystalline silica content (quartz +

cristobalite) in standard porcelain stoneware in comparison with innovative
formulations containing unusual raw materials.
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be shared at this time as the data also forms part of an ongoing study.
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