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London, United Kingdom
Positive interactions among foundation species play a crucial role in achieving and

maintaining a good state of the marine environment, enhancing the habitat stability,

productivity, and the whole ecosystem functioning. In this regard, macroalgal

canopies may affect the biotic and abiotic environmental features, improving the

habitat quality for the establishment of other sedentary organisms. In this study, we

investigated the effect of intertidal canopy-forming algae on the colonization

success of the central-Mediterranean vermetid reef-builder Dendropoma

cristatum (Biondi 1859) on artificial substrates produced for reef restoration

purposes. An in situ experiment was carried out along the northwestern coast of

Sicily during the breeding season of the vermetid snails, by using geopolymer

concrete settlement discs with a topographic design to facilitate the vermetid

settlement. The discs were placed on the seaward reef rim, underneath the

macroalgal canopy, and on adjacent control bare reef areas. The canopy effect on

the understory algal colonization and the environmental temperature at the

vermetid settlement substrate were also surveyed. After 35 days of field exposure,

the vermetid settlement increased by 1.7-fold on the discs underneath the

macroalgal canopy compared with that on the bare settlement discs. Moreover,

the understory algae showed a higher homogeneity and a lower percent cover on

the settlement discs underneath the macroalgal canopy. The peaks of temperature

were higher on the bare reef, and the macroalgal canopy also reduced temperature

variability under maximum sun irradiance during the diurnal low tides. The vermetid

settlement was positively correlated to the canopy cover, which, directly or

indirectly, improved the success of colonization of the reef-builder snails on

artificial substrates. The deployment of settlement discs where canopy-forming

algae are naturally present may facilitate the gardening of vermetid clusters that may

be translocated to restock the reef-builder density at degraded areas.
KEYWORDS

foundation species, macroalgal canopy, biogenic reefs, settlement, restoration ecology,
eco-engineering, Mediterranean Sea
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2023.1214252/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1214252/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1214252/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1214252/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1214252/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1214252&domain=pdf&date_stamp=2024-01-15
mailto:claudia.lamarca@ias.cnr.it
mailto:emanuelaclaudia.lamarca@cnr.it
https://doi.org/10.3389/fmars.2023.1214252
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1214252
https://www.frontiersin.org/journals/marine-science


La Marca et al. 10.3389/fmars.2023.1214252
1 Introduction

Marine ecosystems are often formed by the association of

multiple foundation species (sensu Dayton, 1972) with a conjunct

impact on the physical and biological structure of the environment.

This co-occurrence of foundation species is crucial for the creation

and stability of habitats, as well as for their productivity and the

whole ecosystem functioning, sustaining the ecosystem services

(Angelini et al., 2011).

Where foundation species overlap, their interplay may generate

positive interspecific interactions with mutual advantages for their

stability, supporting the resilience and the resistance of the whole

community against external drivers of changes (Angelini et al., 2015;

Thomsen et al., 2018). A cordgrass meadow could facilitate the

establishment of a mussel bed on the substrate (Altieri et al., 2007),

a biogenic reef may kick-start seagrass and algae recovery (Reusch

et al., 1994; Newell and Koch, 2004; Lang and Buschbaum, 2010; Guo

and Pennings, 2012), whereas a macrophyte coverage may generate

suitable abiotic conditions for the establishment of calcifying

organisms (Hendriks et al., 2014; Wahl et al., 2018).

Understanding all these processes is crucial to boosting habitat

conservation and restoration (Byers et al., 2006). The consideration of

interspecific interactions in restoration plans could enhance the

potential to recover lost ecological functions, accelerating

ecosystem-structuring processes by a multi-habitat approach (e.g.,

Lang’at et al., 2013; Derksen-Hooijberg et al., 2018). Only recently

restoration studies have incorporated the mechanisms of facilitation

among species (Halpern et al., 2007; Renzi et al., 2019).

Designated as one of the most relevant biodiversity hotspots

worldwide (Meyers et al., 2000), the Mediterranean Sea hosts many

different mixed habitats originated by the overlap of multiple

foundation species (e.g., gorgonians and erected sponges within

the coralligenous outcrops, mussel beds within the P. oceanica

meadows, hermatypic corals and other calcifying bioconstructors

within forests of erected macroalgae). Among these bioconstructors,

gregarious vermetids of the genus Dendropoma Mörch, 1861, in

association with the crustose coralline alga (CCA) Neogoniolithon

brassica-florida (Harvey), Setchell and Mason (1943) form

ecologically important biogenic structures (called vermetid reef)

along the central, the south, and the southeastern rocky coasts of the

basin. These bioconstructions may co-create a complex three-

dimensional framework with canopy-forming macroalgae (mainly

belonging to the genus Cystoseira C. Agardh, 1820), which often

fringe the seaward rim of the reef (Ingrosso et al., 2018).

The role of the vermetid reef in sustaining high levels of marine

biodiversity, coastal processes, and ecosystems is widely recognized,

because this bioconstruction magnifies the horizontal extension and

three-dimensionality of intertidal rocky platforms, protects the

coasts from physical erosion, regulates sediment transport, and is

an important carbon sink, with subsidiary benefits also for humans

(Chemello and Silenzi, 2011; Colombo et al., 2013; Milazzo et al.,

2016; Ape et al., 2018).

The active protection of this habitat and bioengineering species is

advocated in European legislation (Bern Convention European

Council, 1979; Barcelona Convention Protocol concerning Specially

Protected Areas and Biological Diversity in the Mediterranean, SPA/
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BD, 1995; Council Directive 92/42/EEC; the IUCN Red List of

Mediterranean Habitats, Gubbay et al., 2016). However, during the

last decade, living vermetid cover has drastically decreased throughout

the Mediterranean rocky shores (Badreddine et al., 2019; Rilov et al.,

2020; Bisanti et al., 2022). This collapse is hypothesized to be related to

the global climate change and to intensive human coastal exploitation,

with severe consequences for the bioconstruction maintenance and

cascading effects on the whole rocky intertidal ecosystem (Galil, 2013;

Rilov et al., 2020; Albano et al., 2021).

Experimental studies suggest that the future Mediterranean

climatic scenario (i.e., the rapid increase of the sea surface

temperature and extreme climatic events) will adversely affect the

reef-builder Dendropoma sp. at different ontogenetic stages

(embryos, early recruits, and adults) and the photosynthetic and

calcification performance of the associated CCA, leading to the reef

decline (Milazzo et al., 2014; Fine et al., 2016; Alessi et al., 2019;

Milazzo et al., 2019). At the same time, the ocean CO2 enrichment

should boost the reef-associated macroalgae with non-linear effects

on the community (Celis-Plá et al., 2015; Cornwall et al., 2017;

Milazzo et al., 2019).

Within this framework, the implementation of active and

coordinated efforts for vermetid reef conservation should be an

intergovernmental priority. Planning how to face local vermetid

decline by successful restoration strategy should also consider

biological interactions and the adoption of a multispecies

approach (McAfee et al., 2022).

With this regard, canopy-forming macroalgae are known to

influence the recruitment of sessile and reef-forming marine

invertebrates in multiple ways (e.g., barnacles, Leonard (1999);

mussels, Moreno (1995) and Bégin et al. (2004); oysters,

Shelamoff et al. (2019) and McAfee et al. (2021)). Macroalgal

canopies, indeed, represent valuable biogenic refugia for benthic

organisms, especially in highly dynamic environments as the

intertidal (Watt and Scrosati, 2013a; Watt and Scrosati, 2013b),

allowing abiotic stress amelioration, the alteration of predator–prey

interactions (Ware et al., 2019) and increasing the niche availability

for the associated biota (Bulleri et al., 2016).

This study aims to assess the effect of canopy-forming algae on the

settlement success of the central-Mediterranean vermetid reef-builder

Dendropoma cristatum (Biondi 1859) on artificial discs that can be

transferred and used to restore other vermetid reefs. We expect that

vermetid settlers positively respond to the canopy presence, taking

advantage of the macroalgal influence on the surrounding habitat.

Furthermore, the influence of the macroalgal canopy on the

temperature and understory algal colonization was also examined, to

detect eventual features at the vermetid settlement surface that may co-

vary with the canopy presence and affect the reef-builder settlement.
2 Materials and methods

2.1 Study area

A field-based experiment was conducted along the northwestern

coast of Sicily, in the locality of “Addaura” (38°11′28″N; 13°20′55″E)
during June and July 2022 (Figures 1A, B). Here, a continuous
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vermetid reef fringes the rocky coastline, covering an area of

approximately 200 linear meters. During this period, the breeding

season of Dendropoma cristatum was coincident with a dense belt of

canopy-forming macroalgae mainly represented by the genus

Cystoseira sp., covering the seaward rim of the reef and interrupted

by patches of bare bioconstruction. The average vermetid density on

this rim and the reef geomorphological details have been visually

assessed and reported by La Marca et al. (2022).

A settlement experiment was conducted across two different

habitat types along the seaward part of this natural vermetid reef:

the first habitat type was characterized by a well-developed canopy

coverage (+C) (Figure 1C), whereas the second habitat was

interspersed within the first type but was unaffected by the

canopy since it was uncovered by erected macroalgae (−C).
2.2 Settlement experiment

Artificial settlement substrates were used to test the colonization

success of vermetids in the presence (+C) and absence (−C) of the

macroalgal canopy for 35 days. These substrates were discs made of

geopolymer (La Marca et al., 2022) of 8 cm in diameter and 2 cm in

thickness, offering on their top face roughly 50 cm2 as total settlement

surface. The upper face of the discs was engineered with shelters 2-

mmwide and 3-mm deep, improving the topographic complexity for

crawling vermetid snails at the pre-settlement stage. These

geopolymer discs were produced by casting the concrete mixture

within a silicon mould obtained by three-dimensional printing

(produced by Binder Jetting 3D Printing) of a computer-aided

drafting (CAD) design (Figures 2A, B).

Overall, 24 settlement discs were secured to the seaward reef

part by galvanized screws and were randomly distributed in pairs

across the two habitat types (+C and −C), distanced from each other

by more or less 30 cm, covering a total area of 50 m (Figure 2C).

Once collected, the geopolymer discs were photographed and

stored at −20°C in the lab. The macroalgal canopy that covered each

disc was sampled, and its biomass was calculated as dry weight after

heater at 100°C for 24 h.
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The number of vermetids settled on each disc was counted

under the stereomicroscope (Leica MDG41), and only the settlers

attached to the disc top face were considered for the analysis.
2.3 Understory algal colonization and
environmental temperature at the vermetid
settlement surface

To assess the influence of the macroalgal canopy on the

understory algal colonization on the settlement discs, the

percentage cover of the vegetation established on the top face of

the geopolymer substrate was visually assessed by a photo analysis,

through the open-source software ImageJ. A taxonomic description

of the algal groups established on the settlement discs was also done.

To monitor the environmental temperature experienced by

vermetids settled in the presence and the absence of the macroalgal

canopy, temperature loggers (EnvLogger T2.4 version, Electricblue,

Portugal) were installed in proximity of settlement discs: two

underneath the macroalgal canopy and two on the bare reef. The

environmental temperature was registered at intervals of 30 min, with

a resolution of 0.1°C. Once the settlement experiment ended,

temperatures were downloaded from each thermo-logger, and the

whole dataset was analyzed and compared between the two habitat

types (+C and −C). Because the algal canopy is supposed to exert a

higher control over the substrate temperature when the reef rim is

simultaneously emerged and exposed to the direct sun irradiation, the

temperatures coinciding with the diurnal low tides were selected and

compared across the two habitat types (+C and −C).
2.4 Statistical analysis

One geopolymer disc got lost during the experiment, and its

replacement with a new one was not possible. This resulted in an

unbalanced experimental design due to the different number of

replicates among the two habitat types (n = 12 discs for +C and n =

11 discs for −C).
B

C

A

FIGURE 1

(A) Location of the study area; the white star in the map shows the experimental site; (B) vermetid reef where the experiment has been carried out;
(C) macroalgal canopy covering the seaward rim of the reef (mainly represented by the genus Cystoseira sp.).
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Firstly, a linear regression analysis was used to relate the

vermetid density and the biomass of the macroalgal canopy cover

on each disc, by using the software OriginPro 2022 (OriginLab

Corporation, Northampton MA, United States).

The vermetid density and the understory algal percent cover on

each disc were compared across the two habitat types by univariate

distance–based permutational non-parametric analyses of variance

(one fixed factor “Habitat type” with two levels: +C and –C;

PERMANOVA; McArdle and Anderson, 2001; Anderson, 2017). For

both response variables, raw data were ordinated using the Euclidean

distance, and the analyses were set with 9,999 permutations of residuals

under a restricted model, with a Type III (partial) sum of squares

(Anderson, 2001; Anderson, 2017). The statistical analyses were

performed with the Primer-E v7 statistical software package with the

PERMANOVA+ extension (Plymouth Marine Laboratory; Clarke and

Warwick, 1994; Clarke and Gorley, 2006).
3 Results

3.1 Settlement experiment

Overall, 2,221 settlers were counted on the top face of the discs,

all inside the shelters of 2 mm × 2 mm × 3 mm. A total of 1,444

individuals were counted on the substrates covered by the

macroalgal canopy (+C), whereas 777 settlers were found on the

discs placed on the bare vermetid reef (−C).

The macroalgal canopy dry biomass that covered each

settlement disc was 0 for the disc placed on the bare reef and

varied between a minimum of 4.23 g and a maximum of 8.05 g for

the discs placed under the canopy. A positive relationship was

found between the settlement success of the vermetid snails and this

macroalgal canopy dry biomass (r= 0.6571; p<0.01; n= 23, Figure 3).

The vermetid settler density significantly differed among the

two habitat types (+C and −C) (p < 0.05, Table 1). On average,

120.33 (± 15 S.E.) ind./disc and 70.63 (± 15.07 S.E.) ind./disc were

found, respectively, on the settlement substrates placed under the

macroalgal canopy (+C) and on the bare reef (−C) (Figure 4).
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3.2 Understory algal colonization and
environmental temperature at the vermetid
settlement surface

3.2.1 Understory algal colonization
Under the macroalgal canopy, the discs were consistently less

vegetated compared to those placed on the bare reef (p < 0.001,

Table 2). On average, the vegetation percentage cover was 15.19%

(± 1.78 S.E.) on the discs placed under the canopy (+C) and 31.09%

(± 3.02 S.E.) on the bare reef discs (−C) (Figure 5).

Specifically, the algal assemblage on the settlement discs was

represented by a layer of epilithic biofilm, crustose coralline algae

(CCA), small patches of erected algae (Jania rubens, Laurencia sp.,

and Corallina sp.), and algal turf. These last two taxonomic groups

were more abundant on the discs placed on the bare reef, whereas,

under the macroalgal canopy, the assemblage was mainly

represented by CCA and epilithic biofilm.

Furthermore, the erected algae settled within the refuges of 2

mm × mm 2 × 3 mm and their small frond shaded the disc surface,

whereas the CCA encrusted the disc surface and covered the

boundaries of the refuges (Figure 6).

3.2.2 Environmental temperature at the vermetid
settlement surface

The temperatures at the settlement substrate ranged between 20.50°

C and 30.30°C under the macroalgal canopy (average temperature:

25.73°C ± 0.046 S.E.) and between 20.60°C and 32.75°C on the bare

vermetid reef (average temperature: 25.86°C ± 0.047 S.E.) (Figure 7A).

The difference across temperatures registered at the same time

on the bare reef and under the canopy (measured as D
Temperature) reached the full extent of 6°C, and, most of the

time, it was higher than zero, reflecting a general cooler canopy

temperature (Figure 7B). These temperature differences across the

two habitat types were recorded during both the high- and low-tide

peaks, and they were more pronounced during the low-tide periods

(Figures 7A, B). This could be explained by a thermal buffering due

to the seawater presence over the substrate during the high tide.

Moreover, a zoom on the temperature regimes during the diurnal
A B C

FIGURE 2

Discs of geopolymer concrete employed for the settlement experiment. (A) CAD design of the discs; (B) example of produced discs; (C) discs
deployed across the two habitat types during the settlement experiment: under the canopy (in the red circle) and on the bare reef (in the
yellow circle).
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low tides (i.e., when the reef is exposed to the direct sun irradiation)

was made to assess the thermal differences between the two canopy

treatments under maximum irradiance (Figure 7C).

During diurnal low-tide periods, the temperature ranged

between 21.60°C and 30.30°C under the macroalgal canopy and

between 21.85°C and 32.75°C on the bare reef, with average values

of 26.22°C (± 0.10 S.E.) and 26.54°C (± 0.10 S.E.), respectively.

Furthermore, a higher temperature variation has been mostly found

on the substrate missing the canopy, expressed by the variance

among the values registered during each tidal period in each habitat

type (Figure 7C).
4 Discussion

In our study, the intertidal macroalgal canopy does not obstruct

the vermetid input on the artificial discs and it seems to positively

affect the settlement of the considered reef-forming species.
Frontiers in Marine Science 05
Indeed, Dendropoma cristatum settlers were found on all the

artificial substrates employed for the experiment, with increasing

abundance in the presence of a coverage of macroalgal canopy,

where they resulted 1.70-fold more abundant compared to the

uncovered settlement discs. This biological facilitation may be

explained by a habitat improvement by the canopy instead of the

occurrence of a spatial variability in the vermetid post-larvae

supply. Indeed, the experiment was conducted within an area

where the D. cristatum adult density was homogeneous,

guaranteeing a comparable local output of settlers among the sites

where the geopolymer discs were deployed.

Peculiar sub-canopy conditions may regulate the mechanism by

which vermetids positively respond to the erect macroalgae

presence. In particular, this study highlights a negative control by

the canopy on the understory algal colonization on the artificial

settlement discs and on the environmental temperature in the

proximity of the reef surface where D. cristatum settlement

naturally occurs.
FIGURE 3

Linear regression between the number of vermetids and the macroalgal canopy biomass on each disc. r = 0.6571 (p < 0.01); n = 23.
TABLE 1 Results of the univariate PERMANOVA analysis comparing the total number of vermetid settlers (no. ind./disc) among the two habitat types
(+C and −C).

Source df MS Pseudo-F P (perm)

Habitat type 1 14,174 54.452 0.0275

Residuals 21 2,603.1

22

Total 22
fr
Statistically significant values are in bold. df, degrees of freedom; MS, mean square; Pseudo-F, F-statistic; P, probability level.
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Macroalgal canopies are documented to inhibit the understory

vegetation by a multiplicity of dynamics (e.g., by reducing the

understory light, Connell (2003); by frond abrasion, Irving and

Connell (2006); by altering the local hydrodynamic regime, O’Brien

and Scheibling (2018)), and the reduction of the understory algal

coverage is positively associated with the increase in settlement and

recruitment of sessile invertebrates (Bégin et al., 2004; Shelamoff

et al., 2019; McAfee and Bishop, 2019; McAfee et al., 2021).

Interestingly, a negative association between the understory algal

colonization and the vermetid settlement emerged also from our

study. On the geopolymer discs, erected algae and turf settled within

the same vermetid shelters (with a likely antagonistic role against

the vermetid settlement), and their abundance was suppressed by

the macroalgal canopy, increasing the availability of uncolonized

refuges for the reef-builder attachment. By contrast, the coralline

algae encrustation was well-developed also under the macroalgal

canopy, where it colonized the disc surface, remaining outside the

vermetid burrows.
Frontiers in Marine Science 06
Furthermore, according to Catalán et al. (2023), the algal

assemblage under the canopy seems to be highly homogeneous,

being mainly dominated by the encrusting red algae and the

epilithic biofilm.

The slightly cooler temperature measured at the settlement

surface under the macroalgal canopy is positively associated with

the vermetid settlement. Changes in the temperature may

significantly affect the survival of organisms living in the

intertidal (Somero, 2010), especially if sedentary and sessile as

reef-builder vermetids. Furthermore, thermal stress dampening by

the macroalgal canopy has been recognized as one of the major

benefits for the intertidal biota, generating a more favorable habitat

for the community establishment and functioning (Bertness et al.,

1999; Leonard, 1999; Coombes et al., 2013; Umanzor et al., 2017;

Ørberg et al., 2018; Sarà et al., 2021).

At the reef scale, the temperature has been hypothesized as a

factor that may control the settlement of D. cristatum (Franzitta

et al., 2016), although a gap of knowledge persists about the thermal
TABLE 2 Results of the univariate PERMANOVA analysis comparing the understory vegetation percentage cover/disc among the two habitat types
(+C and −C).

Source df MS Pseudo-F P (perm)

Habitat type 1 1,451.6 21.407 0.0002

Residuals 21 67.812

22

Total 22
fr
Statistically significant values are in bold. df, degrees of freedom; MS, mean square; Pseudo-F, F-statistic; P, probability level.
FIGURE 4

Average number (± S.E.) of vermetids settled on artificial geopolymer discs placed under the macroalgal canopy (+C, n = 12) and on the bare reef
(−C, n = 11) (p < 0.05).
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sensitivity of this reef-builder over its life cycle. This information

would be essential to forecast the consequences of the expected

temperature rise on this species and on the reef persistence at the

Mediterranean scale.

Differences up to 6°C were revealed among the temperatures

registered at the same time across the two habitat types. During the

whole experiment, the highest temperature on the bare reef was

2.45°C higher than the highest temperature recorded under the

macroalgal canopy. During the diurnal low tides, the canopy

coverage reduced the average environmental temperature of 0.32°

C and modulated the temperature oscillation when the reef was

exposed to the air. This narrow temperature difference among
Frontiers in Marine Science 07
habitat types may plausibly deter the vermetid settlement. A

similar temperature variation, indeed, affects the D. cristatum

reproductive performance in terms of the size and the number of

embryos per egg capsule (Alessi et al., 2019).

The macroalgal canopy might buffer the thermal stress for settling

vermetids when the reef is under direct sun irradiance, lowering

temperature fluctuations and peaks at the substrate, as in our study.

However, this is just an aspect of the influence of canopy-forming algae

on microclimatic conditions along the intertidal vermetid reef and

additional studies should focus on other near-surface features

associated with heat. Extreme desiccation conditions documented

along the Sicilian coasts during the summer 2022, due to prolonged
A B C

FIGURE 6

Close-up view of the assemblage on the topside of the geopolymer discs. (A) J. rubens frond settled within a refuge of 2 mm × 2 mm; (B) crustose
coralline algae encrusting the disc surface and the refuge edges; (C) five D. cristatum settlers within a refuge of 2 mm × 2 mm (pointed out by the
black arrow).
FIGURE 5

Average understory algal percentage cover (± S.E.) on settlement discs placed under the macroalgal canopy (+C, n = 12) and on the bare reef (−C,
n = 11) (p < 0.001).
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reef aerial exposure, are suggested as possible triggers for vermetid

mortality (Bisanti et al., 2022). The study of macroalgal canopy as

biogenic refugia against these prolonged periods of physiological stress

needs a higher concern, weighting the full potential of natural canopy-

forming algae to ameliorate the rising climatic stress at the reef-scale.
Frontiers in Marine Science 08
Further studies on the physiology of the juvenile vermetid snails

may clarify if their settlement competence is affected by the

environmental temperature, if they undergo higher post-settlement

mortality in the hotter environment or if they selectively discriminate

among settlement sites, confirming that, in addition to biological cues
A

B

C

FIGURE 7

Temperatures (°C) recorded during the experiment by the thermo-loggers underneath the algal canopy in blue (+C) and on the bare vermetid reef in
red (−C). (A) Temperatures during the whole experimental period; the green line shows the tide level (m) reported on the secondary Y-axis. (B) The
difference among the temperature (D Temperature among −C and +C treatments) recorded on the bare vermetid reef and under the macroalgal
canopy during the whole experimental period, with the tide level (m) indicated by the green line. The red line marks the 0 value when no differences
among −C and +C treatments occur. (C) Temperatures recorded during the diurnal low-tide periods under the macroalgal canopy in blue (+C) and
on the bare reef in red (−C) and variance among temperatures for each tidal series represented by the red and blue crosses. The gray circles point
out when the variance is higher for the temperatures recorded on the bare substrate compared to the measurements collected under the canopy.
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(e.g., the presence of CCA, Spotorno-Oliveira et al. (2015), and the

epilithic biofilm, LaMarca et al. (2018)), also physical stress might drive

the settlement of reef-builder vermetids.

Although our experiment has been carried out in the field under

multiple sources of variability and did not directly test the effect of

the temperature on the settlement dynamics of D. cristatum, our

results might corroborate the role of the environmental temperature

as a limiting factor during the early life stages of different benthic

invertebrates and also foundation species (Storch et al., 2011;

Webster et al., 2011; Lathlean et al., 2013; Byrne et al., 2017;

Huggett et al., 2018; Lang et al., 2023).

The macroalgal canopy may have a control on further abiotic and

biotic factors that have not been considered at this step of our research.

It is also plausible that it protects the newly settled snails against

physical disturbances, contextually enhancing the environmental

quality for the reef-builder vermetids in multiple ways (e.g., by

shading the substrate and contrasting the development of sediment-

entrapping understory turf assemblage, Connell et al. (2014); by

reducing the competition with other benthic organisms removed by

the mechanical canopy whiplash and benthic sweeping, Beermann

et al. (2013) and Shelamoff et al. (2019)). Furthermore, extending the

spatial-temporal setup of our investigation may also reveal if the

facilitative effect provided by the canopy may depend on the local

environmental context or if it is generalizable to other reef areas and if

other biological interactions may succeed during the following stages of

the vermetid colony development.

From a practical perspective, the use of modular and relatively

small substrates (i.e., the geopolymer discs) is instrumental in

deploying these artificial settlement units where the environmental

context fits the initial step of the vermetid colonization (e.g., close to

the macroalgal canopy at their settlement stage), avoiding more

expensive and alternative solutions to artificially enhance the early

vermetid recruitment. Moreover, the implementation of these rock-

like D. cristatum colonized units is central for moving a vermetid

group to selected sites and for rebuilding a self-sustaining population

of reef-forming organisms, avoiding the transplantation of adults and

overcoming the limited dispersal ability of these reef-builder

gastropods (Calvo et al., 1998; Galil, 2013).

The efforts for the protection of the co-occurring vermetid reefs and

canopy-forming macroalgae may, therefore, represent an opportunity to

increase the effectiveness of actions focused on one single habitat,

contributing to the conservation of the intertidal ecosystem at a wider

scale. This multi-habitat approach (McAfee et al., 2022), moreover, is

fundamental to strengthening the framework for the achievement of the

UN Decade on Ecosystem Restoration goals (UN Resolution 73/284;

Waltham et al., 2020) and is in line with the recent Nature Restoration

Law (European Commission, 2022), which aims at implementing

national restoration plans through measures that support the

connectivity between habitats.
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