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Abstract 
Interactive inspection of semantically-enriched Immersive Virtual Environments (IVEs) is 
designed on top of complex hierarchies combining both semantic and rendering aspects. 
Within Cultural Heritage, multi-dimensional IVEs represent a common solution in order to 
understand, query and inspect virtual reconstructions across different time-spans. The 
contribution presents innovative experiments about how the digital heritage record is 
organized and represented. Such approaches fit several scientific requirements within the 
Cultural Heritage domain as the annotation of the sources employed and the reasoning that 
are behind a reconstructive hypothesis. The methodological implications on the use of IT 
approaches can improve both the quality of the user fruition and the scientific content, offering, 
at the same time, formalisms and tools to boost the scientific research with real-time immersive 
representation of complex CH record. Graph-databases are already employed in such 
contexts since they represent one of the best solutions to address complex and dynamic 
relationships in highly connected datasets, also in terms of performance and scalability. A set 
of formalisms and replicable models for immersive inspection will be presented and discussed, 
addressing their interplay with a graph-based formalism specifically designed for 3D 
hypothesis creation and visualization in Cultural Heritage (CH) domain, targeting 
multitemporal scenarios - namely the Extended Matrix (EM).  

Introduction 
This article presents a new way of managing and inspecting semantically-enriched immersive 
virtual environments (IVEs). To explain the approach we will use the metaphors of the Mayan 
Veil (Schopenhauer) and the Time Machine. We can describe the reality perceived in the 
IVEs as "a veil of Maya" represented by the 3D models in the various epochs while the effect 
of vitality that these virtual worlds transmit to the user passes through some original tools of 
interaction (which will be discussed in the article). These tools also allow us to have access to 
what is behind the “Veil of Maya”: a Matrix of information organized according to a natural 
language without fixed patterns (node database) and according to a specific formalism: the 
Extended Matrix [] []. This language allows to collect and organize information on a timeline 
and  to express also the lifespan of CH actors within the virtual world. The other aspect is the 



Time Machine: the user's experience is to traverse time-periods in an immersive virtual 
environment (IVE) thanks to the visual formalisms and inspection tools described in this paper. 
One complex aspect of IVEs is the maintenance of a stable connection between the scientific 
information that is the basis of the three-dimensional model (for instance the scientific 
hypothesis behind a 3D virtual reconstruction) and the virtual experience session.  
The method can be applied to all those data structures and all those virtual worlds that have 
behind them data structures organized on a temporal basis as it happens for the simulations, 
the virtual reconstructions or different 3D surveys made of a site after years. 
 
Our contributions focus on: 

● A set of reusable formalisms (blueprints) for immersive inspection of multi-temporal 
IVEs driven by graph databases, specifically the Extended Matrix1 

● Replicable and efficient techniques targeting real-time applications and immersive 
fruition (through consumer-level HMDs) and its demands 

● Multi-temporal scene-graph design to minimize memory footprint and maximize 
caching within WebVR/XR implementations 

● Interaction models and best practices for immersive validation of Extended Matrices 
● A prototype inspection tool crafted on top of such blueprints, called EMviq2 

 

Related Work 
In the last years there is and increased adoption of graph databases, especially in scenarios 
where the connections between the information is a valuable aspect. The visualization of data 
through graph-based visual structures is the main approach used in data visualization, but has 
been scarcely involved in the field of cultural heritage. Apparently in this domain the elements 
have a better and more compact representation in forms and tables. When it comes to 
representing strongly interconnected information (linked data), such as in the case of virtual 
reconstructions, visual graph databases allow for better adherence to the scientific record, 
better visual appeal, improved effectiveness (for the aesthetic principles for information 
visualization), and reduced complexity. 
 
A graph database (GraphDB) is a database that exploits graph structures for semantic queries 
with nodes, edges and properties to represent and store data. At the core of the system is the 
graph directly relating data items: such relationships allow objects to be linked together directly 
and they are equally as important as the objects themselves. Graph databases are indeed 
based on graph theory (nodes, edges and properties) directly storing the relationships 
between records. 
 
Such definition presents huge differences compared to relational databases that - through 
relational database management systems - allow manipulation of the data without imposing 
implementation aspects like physical record chains. For instance, links between data are 
stored in the DB itself at the logical level, and relational operations (e.g. join) can be used to 
manipulate and return related data in the relevant logical format. Relational queries can be 

 
1 http://osiris.itabc.cnr.it/extendedmatrix/  
2 http://osiris.itabc.cnr.it/scenebaker/index.php/projects/emviq/  



performed through the database management systems at the physical level (e.g. using 
indexes), allowing to boost performance without modifying the logical structure of the 
database. Graph databases offer simple and fast retrieval of complex hierarchical structures 
that can be difficult to model in relational systems. 
In order to retrieve data from a GraphDB, a query language other than SQL is required, which 
was designed for the manipulation of data in a relational system - thus not suitable to handle 
graph traversals. As of today, no single graph query language has been universally adopted, 
and most systems are closely tied to specific products. Some efforts to create a standard did 
lead to multi-vendor query languages like Gremlin, SPARQL [], and Cypher []. 
 
Graph drawing tools, and other tools dealing with relational data, have to store graphs and 
related data. Despite the previous attempts to create a standard, there is still lack of a format 
that is widely accepted and several tools support only a limited number of custom formats 
typically restricted in their expressibility and specific for a given application field. The Demand 
for interoperability fueled the research and motivated the definition of an XML-based format. 
An informal task group was in fact created to propose a modern graph exchange format 
suitable for data transfer between graph drawing tools and other applications: the GraphML 
format []. 
 
Interactive inspection of semantically-enriched Virtual Environments (VEs) is designed on top 
of complex scene hierarchies and combines both semantic and rendering aspects, while 
maintaining several aspects separated []. Within Cultural Heritage, multi-dimensional VEs 
represent a common solution in order to understand, query and inspect virtual reconstructions 
across different time-spans. 
 
Within such context the Extended Matrix offers a Schema-Less Database Approach. The 
Extended Matrix is a formal language with which to keep track of virtual reconstruction 
processes. It is intended to be used by archaeologists and heritage specialists to document in 
a robust way their scientific hypothesis. It organizes 3D archaeological record so that the 3D 
modeling steps are smoother, transparent and scientifically complete. The EM offers a 
standardized workflow and visual tools for analysis, synthesis, data visualization, and 
publication. Starting from a stratigraphic reading of masonry (Building Archeology), all the 
sources used in the reconstruction are provided along (and integrated) with the 3D model. In 
other words, the Extended Matrix is a semantic graph that leads to a schema-less data model: 
the reconstructed objects and their descriptive elements are heterogeneously fitted into space 
and time, in a way that better suits the incompleteness of the historical record. The descriptive 
elements are used as a modular grammar to compose the final description of the 
reconstruction process (data-driven re-construction). 
 
 
Within immersive virtual environments (IVEs) consumed through common consumer-level 
HMDs (Oculus Rift, HTC Vive, etc...) additional challenges arise when interactive inspection 
of Graph databases is performed. First of all, interactive immersive VR alone, presents several 
performance challenges: interactive rendering of a complex 3D scene (e.g. multi-resolution 
dataset) presents demanding requirements due to several factors, including stereoscopic 
rendering, larger FOVs and display resolution []. One of the very first ingredients for a smooth 
experience is in fact to maintain high frame rates (around 90 fps) and low latency using recent 
HMDs. The second macro-challenge for semantic inspection is at presentational level: how to 



extract and represent complex relationships at runtime in a suitable manner for immersive 
VR? What kind of layouts should we use? Past and recent literature [], [] already investigated 
information visualization within immersive fruition and best practices using consumer-level 
HMDs. Furthermore with the rise of WebVR/XR as a standard [] already employed by major 
commercial products such as SketchFab3, additional challenges arise on data transmission 
and how to properly handle multiple temporal representations of the scene: what kind of 
solutions can we adopt to maximize streaming efficiency? What kind of multi-temporal scene-
graph design can we exploit? 

Case Study 
The EMviq inspection tool (resulting from the formalisms described in the next section) has 
been employed on a case study drawn from the Building Archaeology domain: the ancient 
Roman town Colonia Dacia Sarmizegetusa Ulpia Traiana (a temple and a Bath building built 
in the Second century AD). These examples show the use of EMviq within two projects of 
virtual reconstruction of Roman contexts. The hypotheses of virtual reconstruction of the Great 
Temple and of the Baths (at Sarmizegetusa) have been developed starting from a 
photogrammetric survey by drone, from a bibliographic study, from an analysis of the 
architectural elements found in the site and from a comparative study with other similar 
contexts. Starting from all this information, a virtual reconstruction of the contexts was made. 
The steps of the reconstruction were annotated using the language of the Extended Matrix 
and the software tools made available by the EMF (Extended Matrix Framework), namely the 
EMTools4, a commercial freeware node editor (yEd) and finally, the EMviq. 

Semantic Inspection for Immersive VR 
This section describes and formalize blueprints that aim to create a replicable and reusable 
set of models for different semantic VR inspection contexts. The main goal is to address the 
interplay of such set with a graph-based formalism - namely the Extended Matrix - specifically 
designed for 3D hypothesis creation and visualization, specifically targeting multi-temporal 
scenarios. We define a set of operators also implemented in a VR prototype, called “EMviq” 
that’s also been applied to different case studies. At first, we may indeed observe within such 
framework that we have to deal with multiple 3D representations: an object, a context or a 
large area during different time periods. This leads to the definition of a collection of scene-
graphs, that should be properly mapped into specific temporal spans, given a specific 
Extended Matrix (EM). 

Extraction routines at runtime 
In this section we describe routines to be implemented in order to extract runtime data from a 
single EM (GraphDB). Such procedures have to be designed to create intermediate data 
structures for fast access by a real-time immersive application. Within XML-based input 
formats - for instance GraphML - this is achieved by means of fast parsing procedures 
traversing the file and producing intermediate data structures (runtime graphs). As previously 

 
3 https://sketchfab.com  
4 https://github.com/zalmoxes-laran/EMBlenderTools  



described in a previous research [] we define and formalize three different extraction steps 
applied to Extended Matrix formalism: 

● Timeline extraction 
● ProxyGraph extraction 
● SourceGraph extraction 

 
The above computational steps need to be performed only when involved GraphDB is 
modified: more precisely, it has to be performed only on the modified sub-graphs (localized 
updates). Within immersive VR contexts, intermediate runtime data generated by such 
approach has the objective of providing high framerates and low latency during query and 
inspection. 
 

 
 
By EM definition, each node ⬜ in the GraphDB has temporal property, 
so for timeline extraction we define an operator T such as: 
 

T(⬜) → ! 
 
Where ! is a specific period. We can use T to map to map each node in the GraphDB to a 
collection of time-periods (!, !’, !’’ ….). Each period has unique ID and <start, end> pair, that 
also defines its duration (centuries, years, days, seconds…). We define also a selector S, such 
that: 

S(!) → G 
 

Where G is a scene-graph associated with input time-period !. S can be employed at runtime 
by VR application to switch between different periods, by mean of user input (e.g. VR 
controller). Using a naive approach, we could simply map each time-period ! to a specific 
scene-graph representation and switching sub-graph during VR session depending on user 



input. Although a given context may present areas or portions having different temporal 
pacing: for instance, a part of the 3D scene did not evolve during multiple periods. Such 
approach may indeed result in a waste of resources and poor optimization from a memory 
footprint perspective. 
 

 

Temporal Instancing 
It’s a common scenario that a single scene-graph G may include a sub-graph that is shared 
with another time-period (thus a scene portion re-used by another graph G’). With temporal 
instancing, we describe the collection as multi-root DAG: each root acts as entry-point for 
selector S: this approach allows different time-periods to refer to the same scene-graph G or 
a part of it. 

 
 



In fig. Xxx a sample temporal instancing between two scene-graphs is shown: note the 
selector S always returns coherent scene representation with the two graphs sharing a sub-
graph that spans across ! and !’. Such cross-temporal organization allows elegant and 
compact overall scene design, and offers following major advantages due to re-use of scene 
portions: 

● Compact memory footprint at runtime during VR inspection 
● Caching for WebVR applications (sub-graphs re-use) thus providing online efficiency 

 

VR Query operator 
In order to offer smooth, consistent and efficient 3D queries for immersive VR applications, 
the application layer must provide routines to extract and automatically build from the 
GraphDB a hierarchy of semantic 3D descriptors, namely the Proxy-Graph. 
 

 
Similarly to collision routines employed in modern game engines and frameworks, efficient 
ray-casting procedures are performed on simplified geometries, in this case proxy-nodes. The 
automated realization of such runtime data structure is defined by the procedure P: 
 

P(Gdb, f!"#"$p  
 
Where Gdb is the GraphDB (a single Extended Matrix), f is an optional filtering function to 
traverse only specific edges of Gdb and Gp is the realized Proxy-Graph for interactive queries. 
 
Runtime efficiency in VR is guaranteed by performing 3D queries using common segment 
intersectors, offered by most modern frameworks and game engines (e.g. IntersectionVisitor 
in OpenSceneGraph, LineTraceByChannel in Unreal Engine 4, etc...). The VR query operator 
Q can thus be defined as: 
 

Q%&'"(!"#")"" " )"*"$p 
 
+,(-("&'("*".3 represent start and end points of the segment, while p is the returned proxy-
node (the 3D semantic descriptor). Notice the definition allows different VR interaction models 
for semantically enriched IVEs, the following are commonly used: 

● s is coincident with current head location in virtual space, and e is defined by current 
HMD orientation (depending on a given maximum distance - e.g.: 100 m) 

● s is attached to a VR controller and e defined by its current orientation 
 



The Q operator allows of course additional interaction models, although the above are 
generally sufficient to cover common scenarios (HMD alone and HMD + VR controllers). 
 

 
 
Furthermore, Q operator - together with scene collision geometries (commonly used to 
simulate physics) - can be employed to implement a proxy-driven locomotion, using common 
teleport techniques that already proven minimal motion sickness []. User input can trigger 
artificial locomotion on hovered proxy-node to a new computed location depending on 
surrounding proxy-nodes, physical tracked area of HMD, and physical constraints (scene 
colliders). Within immersive VR inspection, such approach offers interesting semantic 
locomotion models while inspecting multi-temporal IVE driven by an Extended Matrix. 
 

Peel operator 
Previous definition for query operator Q still suffer from a common issue that may occur in 
semantically complex IVEs (complex Proxy-Graphs): occlusion. A proxy-node can be in fact 
unreachable by ray-based queries (nested proxy-nodes, etc…) thus making the user 
incapable of inspecting certain spots of the 3D space. The peel operator acts as spherical 
subtractor given a center and a radius, thus allowing to carve semantic descriptors (and/or 
visible scene-graphs). The spherical carving can be also localised to specific time-periods or 
operate on the entire timeline, thus offering great flexibility in terms of VR fruition. 
 



 
Fig. AA 
 
The peel operator is also particularly useful in combination with positional tracking, including 
both outside-in (commonly shipped in consumer-level HMDs like Oculus Rift, HTC Vive, etc...) 
and inside-out tracking approaches. The operator can be in fact attached to user location or 
VR controllers, also allowing modification of peel radius at runtime. Such interactive approach 
provides the user with maximum flexibility inside the physical area A (see figure AA) for 
localized inspection during immersive sessions. 

Source-Graphs Presentation 
Within the Extended Matrix framework, source-graphs"-()-(&(/0"1/0(-/23"-4/015("&0-4604-(&"78"

&74-6(&"-(32017/&,1)&"%)2-29202!:";"&1/<3("=74-6(>$-2),"1&"(?0-260(9"8-75"2"<1@(/")-7?A>/79("

)"*"$p, as shown in the example in fig. YY. 
 



 
Fig. YY 
 
For a given EM, this leads to a set of Source-Graphs: 
 

{ Gu
1, Gu

2, … Gu
k } 

 
each associated with a specific proxy-node. Since the extraction routine from the GraphDB 
may be computationally expensive in some cases (thus not suitable for VR interaction), the 
application typically pre-computes all the Source-Graphs and indexes them. Using such 
approach, the immersive application may safely and quickly access a Source-Graph upon 
querying a specific proxy-node p. The Source-Graph extraction can thus be defined as: 
 

U( Gdb, p, f !"#"$u 

 

Where f is the usual edge filtering function and Gu is the returned Source-Graph. Once we 
accessed the graph, how can we represent such relationships in VR? In our framework and 
for the EMviq prototype we adopted a tree analogy by deploying growing 3D layouts. The 3D 
structure can be spawn in a given location (application point) in the virtual space, typically the 
queried proxy-node. Runtime generation of such 3D layouts leverages on algorithms for 
immersive graph visualization [] exploiting the effectiveness of stereoscopic perception. 
Furthermore aesthetic aspects (balance, proportion, etc…) should also be taken into account 
[] for layout generation, while maintaining robust performances. 
 



 
 
View-dependent and distance-based techniques may offer good and usable layout 
presentations taking into account also past literature and best practices for presentation of 
information in VR (also including specific fonts for readability). The 3D paraboloid layout here 
proposed takes inspiration from 2D parent-centered layouts []: it allows dynamic growth 
(including fold/unfold of local branches) of active Gu on application point. Specifically, the 3D 
layout automatically provides to: 

● Scale the overall graph depending on distance to intersection location and 3D graph 
extents (bounding box of Gu) 

● Orient the growth axis depending on look direction 
● “Embrace” the user by using incremental offsets for each graph level (L1, L2, etc…) 

 
The paraboloid 3D layout can be pre-computed during extraction routines from current EM 
and dynamically placed by means of a parent transform. This also allows the Gu (and related 
interfaces) to be attached on 6-DOF controllers or virtual spots depending on application 
requirements. Additional amplification techniques (responsive to head orientation) may be 
employed to boost Source-Graph inspection and - more importantly - support immersive 
validation of current Extended Matrix. 
 

Cloud-based Session and Workflow 
Extraction routines, the graph-based approaches and presented formalizations also allows 
crafted VR applications to exploit cloud-based scenarios. For instance the developed EMviq 
VR prototype (based on OpenSceneGraph framework and ownCloud) offers inspection of 
hybrid local/remote scene-graphs and EMs: this allows professionals to design their EM while 
remote users inspect or validate it without taking off their HMDs, providing a smooth immersive 
workflow. 
 



Conclusions and Current Directions 
In this paper we proposed and discussed a set of reusable formalisms (blueprints) for 
immersive inspection of multi-temporal IVEs driven by graph databases - in particular the 
Extended Matrix. The work investigated replicable and performance-oriented techniques 
aiming at real-time, immersive fruition by means of consumer-level HMDs. The routines are 
also discussed in terms of computational perspective, thus separating those functionalities 
that require intermediate data structures for efficient access at runtime by the immersive 
inspection tool. The paper discussed also multi-temporal design for scene-graphs in order to 
minimize memory footprint and maximize caching within WebVR/XR implementations. 
Interaction models and resulting best practices for query and inspection were described for 
different fruition scenarios, including for instance HMD alone and HMD equipped with 6-DOF 
controllers. A prototype inspection tool (EMviq) was crafted and developed on top of such 
blueprints, including collaborative perspective by means of cloud-based workflow. This led to 
novel approaches for Extended Matrices validation through immersive fruition also between 
remote professionals. 
 
Regarding current directions, the development of the EM and its related EMF will result in new 
versions with the addition of both methodological and technical improvements. The next steps 
will focus on the support for different, self excluding reconstruction hypotheses (as a 5th 
dimension for the EM). In some cases there are more than one possible reconstructive solution 
that have to be stored and organized accordingly in the EM. Another future step, already in 
progress, involves the creation of WebVR/XR component based on described formalisms for 
the new upcoming version of ATON 2.0. Such process will enable on-line 3D fruition of 
Extended Matrices on all major browsers without installing any additional plug-in or software, 
including specific touch interfaces targeting mobile deployment. Described formalisms will be 
also serve to create a drag&drop plugin component for Unreal Engine 4 thus targeting modern 
game engines and desktop-based systems. 


