

Carving Time and Space
A mutual stimulation of IT and Archaeology to craft

multidimensional VR data-inspection

B. Fanini, E. Demetrescu

Keywords: graph databases; real-time visualization; immersive VR; 3D-UI design; graph
theory

Abstract
Interactive inspection of semantically-enriched Immersive Virtual Environments (IVEs) is
designed on top of complex hierarchies combining both semantic and rendering aspects.
Within Cultural Heritage, multi-dimensional IVEs represent a common solution in order to
understand, query and inspect virtual reconstructions across different time-spans. The
contribution presents innovative experiments about how the digital heritage record is
organized and represented. Such approaches fit several scientific requirements within the
Cultural Heritage domain as the annotation of the sources employed and the reasoning that
are behind a reconstructive hypothesis. The methodological implications on the use of IT
approaches can improve both the quality of the user fruition and the scientific content, offering,
at the same time, formalisms and tools to boost the scientific research with real-time immersive
representation of complex CH record. Graph-databases are already employed in such
contexts since they represent one of the best solutions to address complex and dynamic
relationships in highly connected datasets, also in terms of performance and scalability. A set
of formalisms and replicable models for immersive inspection will be presented and discussed,
addressing their interplay with a graph-based formalism specifically designed for 3D
hypothesis creation and visualization in Cultural Heritage (CH) domain, targeting
multitemporal scenarios - namely the Extended Matrix (EM).

Introduction
This article presents a new way of managing and inspecting semantically-enriched immersive
virtual environments (IVEs). To explain the approach we will use the metaphors of the Mayan
Veil (Schopenhauer) and the Time Machine. We can describe the reality perceived in the
IVEs as "a veil of Maya" represented by the 3D models in the various epochs while the effect
of vitality that these virtual worlds transmit to the user passes through some original tools of
interaction (which will be discussed in the article). These tools also allow us to have access to
what is behind the “Veil of Maya”: a Matrix of information organized according to a natural
language without fixed patterns (node database) and according to a specific formalism: the
Extended Matrix [] []. This language allows to collect and organize information on a timeline
and to express also the lifespan of CH actors within the virtual world. The other aspect is the

Time Machine: the user's experience is to traverse time-periods in an immersive virtual
environment (IVE) thanks to the visual formalisms and inspection tools described in this paper.
One complex aspect of IVEs is the maintenance of a stable connection between the scientific
information that is the basis of the three-dimensional model (for instance the scientific
hypothesis behind a 3D virtual reconstruction) and the virtual experience session.
The method can be applied to all those data structures and all those virtual worlds that have
behind them data structures organized on a temporal basis as it happens for the simulations,
the virtual reconstructions or different 3D surveys made of a site after years.

Our contributions focus on:

● A set of reusable formalisms (blueprints) for immersive inspection of multi-temporal
IVEs driven by graph databases, specifically the Extended Matrix1

● Replicable and efficient techniques targeting real-time applications and immersive
fruition (through consumer-level HMDs) and its demands

● Multi-temporal scene-graph design to minimize memory footprint and maximize
caching within WebVR/XR implementations

● Interaction models and best practices for immersive validation of Extended Matrices
● A prototype inspection tool crafted on top of such blueprints, called EMviq2

Related Work
In the last years there is and increased adoption of graph databases, especially in scenarios
where the connections between the information is a valuable aspect. The visualization of data
through graph-based visual structures is the main approach used in data visualization, but has
been scarcely involved in the field of cultural heritage. Apparently in this domain the elements
have a better and more compact representation in forms and tables. When it comes to
representing strongly interconnected information (linked data), such as in the case of virtual
reconstructions, visual graph databases allow for better adherence to the scientific record,
better visual appeal, improved effectiveness (for the aesthetic principles for information
visualization), and reduced complexity.

A graph database (GraphDB) is a database that exploits graph structures for semantic queries
with nodes, edges and properties to represent and store data. At the core of the system is the
graph directly relating data items: such relationships allow objects to be linked together directly
and they are equally as important as the objects themselves. Graph databases are indeed
based on graph theory (nodes, edges and properties) directly storing the relationships
between records.

Such definition presents huge differences compared to relational databases that - through
relational database management systems - allow manipulation of the data without imposing
implementation aspects like physical record chains. For instance, links between data are
stored in the DB itself at the logical level, and relational operations (e.g. join) can be used to
manipulate and return related data in the relevant logical format. Relational queries can be

1 http://osiris.itabc.cnr.it/extendedmatrix/
2 http://osiris.itabc.cnr.it/scenebaker/index.php/projects/emviq/

performed through the database management systems at the physical level (e.g. using
indexes), allowing to boost performance without modifying the logical structure of the
database. Graph databases offer simple and fast retrieval of complex hierarchical structures
that can be difficult to model in relational systems.
In order to retrieve data from a GraphDB, a query language other than SQL is required, which
was designed for the manipulation of data in a relational system - thus not suitable to handle
graph traversals. As of today, no single graph query language has been universally adopted,
and most systems are closely tied to specific products. Some efforts to create a standard did
lead to multi-vendor query languages like Gremlin, SPARQL [], and Cypher [].

Graph drawing tools, and other tools dealing with relational data, have to store graphs and
related data. Despite the previous attempts to create a standard, there is still lack of a format
that is widely accepted and several tools support only a limited number of custom formats
typically restricted in their expressibility and specific for a given application field. The Demand
for interoperability fueled the research and motivated the definition of an XML-based format.
An informal task group was in fact created to propose a modern graph exchange format
suitable for data transfer between graph drawing tools and other applications: the GraphML
format [].

Interactive inspection of semantically-enriched Virtual Environments (VEs) is designed on top
of complex scene hierarchies and combines both semantic and rendering aspects, while
maintaining several aspects separated []. Within Cultural Heritage, multi-dimensional VEs
represent a common solution in order to understand, query and inspect virtual reconstructions
across different time-spans.

Within such context the Extended Matrix offers a Schema-Less Database Approach. The
Extended Matrix is a formal language with which to keep track of virtual reconstruction
processes. It is intended to be used by archaeologists and heritage specialists to document in
a robust way their scientific hypothesis. It organizes 3D archaeological record so that the 3D
modeling steps are smoother, transparent and scientifically complete. The EM offers a
standardized workflow and visual tools for analysis, synthesis, data visualization, and
publication. Starting from a stratigraphic reading of masonry (Building Archeology), all the
sources used in the reconstruction are provided along (and integrated) with the 3D model. In
other words, the Extended Matrix is a semantic graph that leads to a schema-less data model:
the reconstructed objects and their descriptive elements are heterogeneously fitted into space
and time, in a way that better suits the incompleteness of the historical record. The descriptive
elements are used as a modular grammar to compose the final description of the
reconstruction process (data-driven re-construction).

Within immersive virtual environments (IVEs) consumed through common consumer-level
HMDs (Oculus Rift, HTC Vive, etc...) additional challenges arise when interactive inspection
of Graph databases is performed. First of all, interactive immersive VR alone, presents several
performance challenges: interactive rendering of a complex 3D scene (e.g. multi-resolution
dataset) presents demanding requirements due to several factors, including stereoscopic
rendering, larger FOVs and display resolution []. One of the very first ingredients for a smooth
experience is in fact to maintain high frame rates (around 90 fps) and low latency using recent
HMDs. The second macro-challenge for semantic inspection is at presentational level: how to

extract and represent complex relationships at runtime in a suitable manner for immersive
VR? What kind of layouts should we use? Past and recent literature [], [] already investigated
information visualization within immersive fruition and best practices using consumer-level
HMDs. Furthermore with the rise of WebVR/XR as a standard [] already employed by major
commercial products such as SketchFab3, additional challenges arise on data transmission
and how to properly handle multiple temporal representations of the scene: what kind of
solutions can we adopt to maximize streaming efficiency? What kind of multi-temporal scene-
graph design can we exploit?

Case Study
The EMviq inspection tool (resulting from the formalisms described in the next section) has
been employed on a case study drawn from the Building Archaeology domain: the ancient
Roman town Colonia Dacia Sarmizegetusa Ulpia Traiana (a temple and a Bath building built
in the Second century AD). These examples show the use of EMviq within two projects of
virtual reconstruction of Roman contexts. The hypotheses of virtual reconstruction of the Great
Temple and of the Baths (at Sarmizegetusa) have been developed starting from a
photogrammetric survey by drone, from a bibliographic study, from an analysis of the
architectural elements found in the site and from a comparative study with other similar
contexts. Starting from all this information, a virtual reconstruction of the contexts was made.
The steps of the reconstruction were annotated using the language of the Extended Matrix
and the software tools made available by the EMF (Extended Matrix Framework), namely the
EMTools4, a commercial freeware node editor (yEd) and finally, the EMviq.

Semantic Inspection for Immersive VR
This section describes and formalize blueprints that aim to create a replicable and reusable
set of models for different semantic VR inspection contexts. The main goal is to address the
interplay of such set with a graph-based formalism - namely the Extended Matrix - specifically
designed for 3D hypothesis creation and visualization, specifically targeting multi-temporal
scenarios. We define a set of operators also implemented in a VR prototype, called “EMviq”
that’s also been applied to different case studies. At first, we may indeed observe within such
framework that we have to deal with multiple 3D representations: an object, a context or a
large area during different time periods. This leads to the definition of a collection of scene-
graphs, that should be properly mapped into specific temporal spans, given a specific
Extended Matrix (EM).

Extraction routines at runtime
In this section we describe routines to be implemented in order to extract runtime data from a
single EM (GraphDB). Such procedures have to be designed to create intermediate data
structures for fast access by a real-time immersive application. Within XML-based input
formats - for instance GraphML - this is achieved by means of fast parsing procedures
traversing the file and producing intermediate data structures (runtime graphs). As previously

3 https://sketchfab.com
4 https://github.com/zalmoxes-laran/EMBlenderTools

described in a previous research [] we define and formalize three different extraction steps
applied to Extended Matrix formalism:

● Timeline extraction
● ProxyGraph extraction
● SourceGraph extraction

The above computational steps need to be performed only when involved GraphDB is
modified: more precisely, it has to be performed only on the modified sub-graphs (localized
updates). Within immersive VR contexts, intermediate runtime data generated by such
approach has the objective of providing high framerates and low latency during query and
inspection.

By EM definition, each node ⬜ in the GraphDB has temporal property,
so for timeline extraction we define an operator T such as:

T(⬜) → !

Where ! is a specific period. We can use T to map to map each node in the GraphDB to a
collection of time-periods (!, !’, !’’ ….). Each period has unique ID and <start, end> pair, that
also defines its duration (centuries, years, days, seconds…). We define also a selector S, such
that:

S(!) → G

Where G is a scene-graph associated with input time-period !. S can be employed at runtime
by VR application to switch between different periods, by mean of user input (e.g. VR
controller). Using a naive approach, we could simply map each time-period ! to a specific
scene-graph representation and switching sub-graph during VR session depending on user

input. Although a given context may present areas or portions having different temporal
pacing: for instance, a part of the 3D scene did not evolve during multiple periods. Such
approach may indeed result in a waste of resources and poor optimization from a memory
footprint perspective.

Temporal Instancing
It’s a common scenario that a single scene-graph G may include a sub-graph that is shared
with another time-period (thus a scene portion re-used by another graph G’). With temporal
instancing, we describe the collection as multi-root DAG: each root acts as entry-point for
selector S: this approach allows different time-periods to refer to the same scene-graph G or
a part of it.

In fig. Xxx a sample temporal instancing between two scene-graphs is shown: note the
selector S always returns coherent scene representation with the two graphs sharing a sub-
graph that spans across ! and !’. Such cross-temporal organization allows elegant and
compact overall scene design, and offers following major advantages due to re-use of scene
portions:

● Compact memory footprint at runtime during VR inspection
● Caching for WebVR applications (sub-graphs re-use) thus providing online efficiency

VR Query operator
In order to offer smooth, consistent and efficient 3D queries for immersive VR applications,
the application layer must provide routines to extract and automatically build from the
GraphDB a hierarchy of semantic 3D descriptors, namely the Proxy-Graph.

Similarly to collision routines employed in modern game engines and frameworks, efficient
ray-casting procedures are performed on simplified geometries, in this case proxy-nodes. The
automated realization of such runtime data structure is defined by the procedure P:

P(Gdb, f!"#"$p

Where Gdb is the GraphDB (a single Extended Matrix), f is an optional filtering function to
traverse only specific edges of Gdb and Gp is the realized Proxy-Graph for interactive queries.

Runtime efficiency in VR is guaranteed by performing 3D queries using common segment
intersectors, offered by most modern frameworks and game engines (e.g. IntersectionVisitor
in OpenSceneGraph, LineTraceByChannel in Unreal Engine 4, etc...). The VR query operator
Q can thus be defined as:

Q%&'"(!"#")"" ")"*"$p

+,(-("&'("*".3 represent start and end points of the segment, while p is the returned proxy-
node (the 3D semantic descriptor). Notice the definition allows different VR interaction models
for semantically enriched IVEs, the following are commonly used:

● s is coincident with current head location in virtual space, and e is defined by current
HMD orientation (depending on a given maximum distance - e.g.: 100 m)

● s is attached to a VR controller and e defined by its current orientation

The Q operator allows of course additional interaction models, although the above are
generally sufficient to cover common scenarios (HMD alone and HMD + VR controllers).

Furthermore, Q operator - together with scene collision geometries (commonly used to
simulate physics) - can be employed to implement a proxy-driven locomotion, using common
teleport techniques that already proven minimal motion sickness []. User input can trigger
artificial locomotion on hovered proxy-node to a new computed location depending on
surrounding proxy-nodes, physical tracked area of HMD, and physical constraints (scene
colliders). Within immersive VR inspection, such approach offers interesting semantic
locomotion models while inspecting multi-temporal IVE driven by an Extended Matrix.

Peel operator
Previous definition for query operator Q still suffer from a common issue that may occur in
semantically complex IVEs (complex Proxy-Graphs): occlusion. A proxy-node can be in fact
unreachable by ray-based queries (nested proxy-nodes, etc…) thus making the user
incapable of inspecting certain spots of the 3D space. The peel operator acts as spherical
subtractor given a center and a radius, thus allowing to carve semantic descriptors (and/or
visible scene-graphs). The spherical carving can be also localised to specific time-periods or
operate on the entire timeline, thus offering great flexibility in terms of VR fruition.

Fig. AA

The peel operator is also particularly useful in combination with positional tracking, including
both outside-in (commonly shipped in consumer-level HMDs like Oculus Rift, HTC Vive, etc...)
and inside-out tracking approaches. The operator can be in fact attached to user location or
VR controllers, also allowing modification of peel radius at runtime. Such interactive approach
provides the user with maximum flexibility inside the physical area A (see figure AA) for
localized inspection during immersive sessions.

Source-Graphs Presentation
Within the Extended Matrix framework, source-graphs"-()-(&(/0"1/0(-/23"-4/015("&0-4604-(&"78"

&74-6(&"-(32017/&,1)&"%)2-29202!:";"&1/<3("=74-6(>$-2),"1&"(?0-260(9"8-75"2"<1@(/")-7?A>/79("

)"*"$p, as shown in the example in fig. YY.

Fig. YY

For a given EM, this leads to a set of Source-Graphs:

{ Gu
1, Gu

2, … Gu
k }

each associated with a specific proxy-node. Since the extraction routine from the GraphDB
may be computationally expensive in some cases (thus not suitable for VR interaction), the
application typically pre-computes all the Source-Graphs and indexes them. Using such
approach, the immersive application may safely and quickly access a Source-Graph upon
querying a specific proxy-node p. The Source-Graph extraction can thus be defined as:

U(Gdb, p, f !"#"$u

Where f is the usual edge filtering function and Gu is the returned Source-Graph. Once we
accessed the graph, how can we represent such relationships in VR? In our framework and
for the EMviq prototype we adopted a tree analogy by deploying growing 3D layouts. The 3D
structure can be spawn in a given location (application point) in the virtual space, typically the
queried proxy-node. Runtime generation of such 3D layouts leverages on algorithms for
immersive graph visualization [] exploiting the effectiveness of stereoscopic perception.
Furthermore aesthetic aspects (balance, proportion, etc…) should also be taken into account
[] for layout generation, while maintaining robust performances.

View-dependent and distance-based techniques may offer good and usable layout
presentations taking into account also past literature and best practices for presentation of
information in VR (also including specific fonts for readability). The 3D paraboloid layout here
proposed takes inspiration from 2D parent-centered layouts []: it allows dynamic growth
(including fold/unfold of local branches) of active Gu on application point. Specifically, the 3D
layout automatically provides to:

● Scale the overall graph depending on distance to intersection location and 3D graph
extents (bounding box of Gu)

● Orient the growth axis depending on look direction
● “Embrace” the user by using incremental offsets for each graph level (L1, L2, etc…)

The paraboloid 3D layout can be pre-computed during extraction routines from current EM
and dynamically placed by means of a parent transform. This also allows the Gu (and related
interfaces) to be attached on 6-DOF controllers or virtual spots depending on application
requirements. Additional amplification techniques (responsive to head orientation) may be
employed to boost Source-Graph inspection and - more importantly - support immersive
validation of current Extended Matrix.

Cloud-based Session and Workflow
Extraction routines, the graph-based approaches and presented formalizations also allows
crafted VR applications to exploit cloud-based scenarios. For instance the developed EMviq
VR prototype (based on OpenSceneGraph framework and ownCloud) offers inspection of
hybrid local/remote scene-graphs and EMs: this allows professionals to design their EM while
remote users inspect or validate it without taking off their HMDs, providing a smooth immersive
workflow.

Conclusions and Current Directions
In this paper we proposed and discussed a set of reusable formalisms (blueprints) for
immersive inspection of multi-temporal IVEs driven by graph databases - in particular the
Extended Matrix. The work investigated replicable and performance-oriented techniques
aiming at real-time, immersive fruition by means of consumer-level HMDs. The routines are
also discussed in terms of computational perspective, thus separating those functionalities
that require intermediate data structures for efficient access at runtime by the immersive
inspection tool. The paper discussed also multi-temporal design for scene-graphs in order to
minimize memory footprint and maximize caching within WebVR/XR implementations.
Interaction models and resulting best practices for query and inspection were described for
different fruition scenarios, including for instance HMD alone and HMD equipped with 6-DOF
controllers. A prototype inspection tool (EMviq) was crafted and developed on top of such
blueprints, including collaborative perspective by means of cloud-based workflow. This led to
novel approaches for Extended Matrices validation through immersive fruition also between
remote professionals.

Regarding current directions, the development of the EM and its related EMF will result in new
versions with the addition of both methodological and technical improvements. The next steps
will focus on the support for different, self excluding reconstruction hypotheses (as a 5th
dimension for the EM). In some cases there are more than one possible reconstructive solution
that have to be stored and organized accordingly in the EM. Another future step, already in
progress, involves the creation of WebVR/XR component based on described formalisms for
the new upcoming version of ATON 2.0. Such process will enable on-line 3D fruition of
Extended Matrices on all major browsers without installing any additional plug-in or software,
including specific touch interfaces targeting mobile deployment. Described formalisms will be
also serve to create a drag&drop plugin component for Unreal Engine 4 thus targeting modern
game engines and desktop-based systems.

