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Abstract
European anchovies and round sardinella play a crucial role, both ecological and 
commercial, in the Mediterranean Sea. In this paper, we investigate the distribution 
of their larval stages by analyzing a dataset collected over time (1998–2016) and 
spaced along the area of the Strait of Sicily. Environmental factors are also inte-
grated. We employ a hierarchical spatio-temporal Bayesian model and approximate 
the spatial field by a Gaussian Markov Random Field to reduce the computation 
effort using the Stochastic Partial Differential Equation method. Furthermore, the 
Integrated Nested Laplace Approximation is used for the posterior distributions of 
model parameters. Moreover, we propose an index that enables the temporal evalu-
ation of species abundance by using an abundance  aggregation within a spatially 
confined area. This index is derived through Monte Carlo sampling from the approx-
imate posterior distribution of the fitted models. Model results suggest a strong 
relationship between sea currents’ directions and the distribution of larval Euro-
pean anchovies. For round sardinella, the analysis indicates increased sensitivity to 
warmer ocean conditions. The index suggests no clear overall trend over the years.

Keywords Abundance index · European anchovy · Hierarchical Bayesian model · 
Integrated nested laplace approximation · Round sardinella · Spatio-temporal 
species distribution model

1 Introduction

Ichthyoplankton abundance and distribution serve as valuable indicators of the 
condition and well-being of a marine ecosystem. Fish larval stages are affected 
by high natural mortality rates, including the impact of predation, resulting in a 
predominance of eggs and early-stage larvae in ichthyoplankton samples. This 
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phenomenon allows us to measure the reproductive capacity of fish species such 
as anchovies and sardines, offering an index of their relative population size 
(Allen et al. 2006). Several factors affect the composition and abundance of lar-
val fish communities (Boehlert and Mundy 1993; Patti et  al. 2022). An impor-
tant factor is the spawning strategy adopted by the adult populations, which are 
linked to topographical characteristics and hydrographical, chemical and biologi-
cal conditions (Basilone et al. 2006; Patti et al. 2020). Moreover, oceanographic 
structures, such as currents, fronts or eddies, govern the formation or disruption 
of the larval assemblages and are responsible for environmental variations and 
consequently the survival rate of larvae (Bakun 2006; Quinci et al. 2022). Ichthy-
oplankton is a crucial component of marine food webs, providing a valuable food 
source for many predators (Hilborn et al. 2003). The availability and abundance 
of ichthyoplankton affect the recruitment success of the adult parent populations 
and directly influence the growth and survival of predator populations, ultimately 
shaping the structure and functioning of marine ecosystems. Thus, ichthyoplank-
ton surveys contribute to our understanding of marine ecosystems. Such sur-
veys can generate an assessment of the standing stock biomass (Ingram Jr et al. 
2017). Monitoring ichthyoplankton associated with these fish species allows for 
increases or decreases in adult fish stocks to be detected more quickly and sensi-
tively than directly monitoring the adults. Furthermore, it is generally easier and 
cheaper to monitor trends in egg and larval populations than trends in adult fish 
populations (Matarese 2003).

European anchovies (Engraulis encrasicolus, Linnaeus, 1758) and round sar-
dinella (Sardinella aurita, Valenciennes, 1847) are small pelagic fish belonging 
respectively to the families Engraulidae and Dorosomatidae. They are among the 
most important fisheries resources in many regions of the Mediterranean Sea. From 
the IREPA (Istituto di Ricerche Economiche per la Pesca e l’Acquacoltura) data of 
2009, it emerged that in Italy, the fishing of Engraulis encrasicolus represents on 
average about 26% of the total catch. The Sardinella aurita appears to be a vital 
commercial fish resource, especially for the North African countries bordering the 
Mediterranean. Furthermore, since the 1990s, its exploitation has continuously 
increased (National Statistical Service of Hellas, 1990–2002) due to its involvement 
in food preservation methods and as bait for the profitable tuna and swordfish fish-
ing activities (Tsikliras and Antonopoulou 2006). The monitoring programs of these 
species have highlighted very pronounced inter-annual biomass fluctuations (Cer-
gole et  al. 2002; Patti et  al. 2004, 2020). The causes of these oscillations can be 
multiple and linked to anthropic factors, such as the high fishing effort, and natural 
factors (Torri et  al. 2018). In particular, the biological and environmental dynam-
ics that influence the survival of the first life stages of these species and the sub-
sequent recruitment may be of fundamental importance in determining the annual 
declines and increases of the adult stock (Cuttitta et al. 2006; Patti et al. 2020; Torri 
et al. 2023). Furthermore, the knowledge of the reproductive biology of these spe-
cies gives insights into the impact of fishing efforts on the spawning fraction of the 
adult populations to avoid the risk of overfishing. The study of the ichthyoplankton 
phases and their relationship with the environment and other organisms is therefore 
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of primary importance for providing the necessary information supporting the cor-
rect exploitation of fisheries resources.

The last decade has seen a significant increase in the number of studies focusing 
on ichthyoplankton communities. These surveys are widely recognized as essential 
tools for understanding the trophic dynamics and variations of commercially valu-
able fish populations. Consequently, the results of these studies are invaluable for 
developing stock assessments and fisheries management plans (Boeing and Duffy-
Anderson 2008). This can be attributed to the significant impact of habitat condi-
tions on fish survival during the early stages of their life, from eggs to juveniles. 
These conditions strongly influence the success of recruitment and, consequently, 
the size of the adult population (Bakun 2006; Basilone et al. 2013; Patti et al. 2020). 
The study of ichthyoplankton significantly impacts economic fisheries policies, pro-
viding valuable information for effective management and sustainable utilization of 
fisheries resources. Policymakers can assess the effectiveness of conservation meas-
ures and implement sustainable fisheries management practices by monitoring ich-
thyoplankton populations.

The paper’s main objective is to estimate the spatio-temporal distribution of the 
larvae of European anchovy and round sardinella in the Strait of Sicily during the 
summer periods from 1998 to 2016. This involves utilizing available data on ichthy-
oplankton populations, environmental variables, and relevant factors to establish sta-
tistical models that can estimate the abundance of larvae in a given area and/or time. 
The analysis aims to identify the key variables influencing larval abundance, such 
as temperature, salinity, currents and others, and incorporate them into a predictive 
model. By examining the relationships between larval abundance and environmental 
factors, the analysis provides insights into the drivers of larval population dynamics 
and potential variations over time. This information can contribute to a better under-
standing of the factors influencing larval survival, dispersal, and recruitment into 
adult populations. In addition to predicting larval abundance, the analysis aims to 
develop an abundance index. This index is a quantitative measure of larval popula-
tion size, allowing for comparisons across different periods. The development of an 
abundance index provides a standardized metric that can be used to track changes 
in larval abundance over time and assess the relative health and productivity of fish 
stocks. By establishing an abundance index, the analysis aims to provide a practical 
tool for monitoring larval populations and useful information supporting the scien-
tific advice for the sustainable management of two crucial small pelagic fisheries 
resources. Hierarchical spatio-temporal Bayesian models are utilized to estimate the 
spatio-temporal distribution of the larvae and develop an abundance index. These 
models offer a robust and comprehensive framework for studying the spatio-tempo-
ral distribution of larvae, and enable an explicit stochastic framework to account for 
the underlying dependence between observations (Campbell et al. 2017). Biological 
data are often characterized by a spatio-temporal structure, as species biomass and 
availability continuously change in space over time (Zhou et al. 2019). Therefore, 
spatial and temporal correlation must be considered during the modelling process 
because observations of species in geographically close locations are subject to sim-
ilar life habits and environmental characteristics. Typically, ichthyoplankton sam-
pling data are records of a specific vessel at a specific time and place. In addition, 
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these data often show an excess of zero counts, which can arise due to various fac-
tors such as species rarity, localized distributions or challenges in detection methods. 
This phenomenon, known as zero inflation, poses additional challenges to traditional 
modelling techniques (Zuur et al. 2009; Wenger and Freeman 2008; Agarwal et al. 
2002). Spatial models using hierarchical approaches are known to work well for 
this type of nested data (Izquierdo et al. 2022; Lezama-Ochoa et al. 2020; Izquierdo 
et al. 2021; Cavieres and Nicolis 2018). Several authors have applied Hierarchical 
spatio-temporal Bayesian models using the Integrated Nested Laplace Approxima-
tion (INLA) (Rue et al. 2009) to standardize species abundance indices (Cao et al. 
2011). Hierarchical spatio-temporal Bayesian models have an advantage over stand-
ard models (e.g. GLM or GAM) as they account for spatio-temporal autocorrelation 
through spatially structured random effects and autoregressive terms, thus reducing 
the uncertainty of estimated abundance indices (Zhou et al. 2019). Furthermore, it 
is essential to highlight that the hierarchical spatio-temporal Bayesian models also 
allow for the inclusion of smoothed (non-linear) terms for environmental covariates 
(e.g. sea surface temperature, chlorophyll-a, bathymetry, etc.), which may be crucial 
in explaining the spatio-temporal distribution and abundance (Muñoz et al. 2013).

2  Materials

The data used in this analysis were provided by the National Research Council of 
Italy (CNR), and it is a collection of detailed information on European anchovy 
and round sardinella larvae obtained from sampling over time and space along 
the area of the Strait of Sicily in summer surveys from 1998 to 2016. The study 
area is the Strait of Sicily (southern Sicilian coast, see Fig. 1), covering a surface 
of about 25000  km2. It is a relatively narrow waterway that separates the island of 
Sicily (Italy) from the coast of North Africa, connecting the Tyrrhenian Sea in the 
north with the Mediterranean Sea in the south. With its strategic location, the Strait 
plays a significant role in maritime trade and transportation between Europe, North 
Africa, and the Middle East.

Oceanographic data and ichthyoplanktonic samples were collected in nineteen 
annual oceanographic surveys carried out during the summer period on board of the 
R/V “ Urania” (1998–2014) and the R/V “ Minerva Uno” (2015–2016).

Sampling, in the 19 summer surveys carried out from 1998 to 2016, was based 
on a systematic station grid of 6 × 6 nautical miles on the continental shelf (bottom 
depth ≤ 200 m) and a grid of 12 × 12 nautical miles for the off-shore areas with a 
bottom depth greater than 200 m (Fig. 2). Stations were sampled twenty-four hours a 
day to minimize bias in the catch of fish species during the larval stage, which typi-
cally may show relatively large diel vertical migration patterns. Plankton samples 
were collected using a bongo net (Bongo40, with a 40 cm opening) towed from the 
straight side of the ship at a speed of 2 knots. The Bongo 40 drops are oblique, car-
ried out from the surface to 100 m depth or 5 ms from the bottom in shallower sta-
tions, and equipped with a 200 � m mesh size net. A General Oceanics ‘flowmeter’is 
mounted in each mouth’s centre to measure the filtered water volume (Patti et  al. 
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2013). All the samples used were from the same side and cod-end collector of the 
Bongo.

Samples were immediately fixed after collection and preserved in a 10% buffered-
formaldehyde (and/or 70% alcohol) and sea-water solution for further sorting in the 
laboratory by stereomicroscope. Larvae of European anchovy and round sardinella 
were selected from the rest of the plankton and identified according to Whitehead 
et al. (1988). The larval counts are used as a measure of abundance.

Environmental factors were selected to investigate their influence on the spatio-
temporal distribution of European anchovy and round sardinella larvae. Continu-
ous vertical profiles of environmental down-cast data were acquired by a SBE 11 
plus CTD multiparameter probe at all Bongo40 plankton stations to characterize the 
physical properties of the water column. They were quality-checked and processed 
according to the Mediterranean and Ocean Data Base instructions using the Sea-
Bird Scientific Seasoft V2 software. From the available environmental information 

Fig. 1  Map of the Mediterranean Sea (upper-right panel) and the Strait of Sicily showing the study area. 
The bathymetry is reported in the scale of blue, where the darker the blue, the more deep the sea
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collected in CTD casts, the variables used in this study were “Bottom Depth”, “Tem-
perature” and “Salinity”. Most of the larvae in the Mediterranean Sea during the 
summer are mainly concentrated in the upper mixed layer (Sabatés et al. 2007); in 
this study, the average values of the measurements recorded in the first 10  ms of 
the water column were used, as  they  can be considered representative of the sur-
face conditions. Then, the Mixed Layer Depth (MLD, in m) is an additional param-
eter used in the data analysis. Its value was derived from each CTD profile using 
the algorithm based on water density calculation described in Kara et  al. (2000), 
as it is an essential factor in defining the potential spawning habitat (Planque et al. 
2007). The impact of mesoscale oceanographic features such as upwelling, cold fila-
ments and fronts on the spatial distribution of ichthyoplankton (Torri et  al. 2018; 
Patti et al. 2020) was also considered. Oceanographic structures can influence the 
distribution of chemical and physical properties of the water column (Placenti et al. 
2022), potentially affecting larval survival and development (Falco et al. 2020; Cut-
titta et al. 2022; Torri et al. 2021). Therefore, the surface circulation characteristics 
were assessed using satellite-based Absolute Dynamic Topography (ADT, in cm) 
data (daily data; spatial resolution: 0.125 × 0.125 degree) and the derived u and v 
components of geostrophic currents provided by Copernicus Marine Environment 
Monitoring Service (CMEMS, http://marine.copernicus.eu/). ADT data represent 
critical oceanographic features such as mesoscale eddies and meanders (Pujol and 
Larnicol 2005). These can influence primary production, act as physical barriers to 
larval distribution, or be responsible for offshore dispersal. Furthermore, the abso-
lute Geostrophic Current Speed (GCS, in cm s −1 ) was derived from the zonal (u) and 
meridional (v) components of the surface current and used as an additional potential 

Fig. 2  Map of sampling station locations in the 19 summer surveys carried out from 1998 to 2016, repre-
sented with rounds. Stations with a bottom depth ≤ 200 m (“ Shelf”) are represented in red, and stations 
with a bottom depth > 200 m (“ Slope”) are visualized in green. The bathymetry is reported in the scale 
of blue, where the darker the blue, the more deep the sea
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predictor in the subsequent modelling approach. Finally, information on the sea sur-
face chlorophyll-a concentration (Chl-a, in mg m −3 ) was also used, as Chl-a is a 
good proxy for primary productivity (Joint and Groom 2000) and indirectly can help 
to represent favourable feeding conditions for larvae. For this purpose, high-resolu-
tion ( 1 × 1 km) daily satellite data available for download from CMEMS was used. 
For all satellite information, available data was extracted for each plankton station 
included in the analysis based on the spatial and temporal location of the associated 
sampling hauls.

3  Methods

In marine biology research, comprehending the dynamics of fish populations and 
ecological processes is a significant goal. The spatial distribution of larval fish plays 
a crucial role in this understanding, as it directly impacts fish populations and eco-
logical interactions. The analysis of ecological data often shows an excess of zero 
counts and is complex due to non-linear relationships between environmental var-
iables and species abundance. To address these challenges, the analysis approach 
adopted for this study is based on hierarchical spatio-temporal Bayesian models.

3.1  Hierarchical Bayesian model

To estimate the abundance of larvae of European anchovy and round sardinella in 
the Strait of Sicily, we define a hierarchical spatio-temporal Bayesian model. Let 
{Yit, si ∈ D, t ∈ T} , with D ∈ ℝ

2 and T ∈ N
+ , be a stochastic process represent-

ing the number of larvae at location si and time t. We use the index i to denote the 
generic spatial point si to simplify the notation. A high proportion of zero values 
characterizes this stochastic process, suggesting a hurdle model. This model should 
accommodate zero and nonzero values as an integrated process of two levels. The 
first level presents a latent binary component Zit that generates zeros and ones, i.e.

where �it is the probability of observing one. Hence,

The second level assumes a Poisson distribution for the conditional stochastic pro-
cess Yit ∣ (Zit = 1) , i.e.

We then use a Generalized Additive Model (GAM) to relate the explanatory vari-
ables with f1(�it) and f2(�it ), where f1 is the logit and f2 is the log function.

Thus, we can define a hierarchical spatio-temporal Bayesian model as:

Zit ∼ Ber(�it),

zit =

{
1 with prob �it,

0 with prob 1 − �it.

Yit ∣ (Zit = 1) ∼ Pois(�it).
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where Eit = (depthgaugeit∕filteredwatervolumeit) is included as an offset, �′

0
 and �0 

are the intercepts, � ′ and � are the regression coefficients of the covariates Q and Q ’ 
(where Q and Q ’ can be the same set), the f � (⋅) and f (⋅) allow fitting of any possible 
non-linear relationship (of the environmental variables X and X’), as first-order or 
second-order random walk processes (RW1 or RW2). All the environmental vari-
able values were aggregated in six time knots (i.e. group increments based on quan-
tiles). Finally w′

it
 and wit = �w�

it
 represent the spatio-temporal structure of the model, 

where � is the scaling parameter for w′
it
 , which is the spatio-temporal structure con-

sidered for the presence part of the model and is also shared for the abundance part 
(Rue et al. 2009).

The hierarchical spatio-temporal Bayesian model can also be modified in at 
least two directions. Firstly, one could share the complete linear predictor of the 
Poisson process with the linear predictor of the Bernoulli distribution. This shar-
ing would imply that the higher the number of captures, the higher the probability 
of presence, and vice versa, the lower the number of captures, the lower the like-
lihood of presence (Krainski et al. 2018). On the other hand, it is also possible to 
share several elements of the latent field with a different scaling coefficient for 
each one (Paradinas et al. 2017; Krainski et al. 2018).

In this work, we first compared several models that have no covariates but only 
share a spatial-temporal component and differ from each other with respect to 
the temporal component. Specifically, three different temporal dependencies were 
considered. The first model ( Mod0iid ) assumes that the spatial random effects are 
independent of time. The second model ( Mod0ar1 ) assumes that the latent process 
changes in time with a first-order autoregressive process (AR1). The third model 
( Mod0rw1 ) assumes that the latent process changes in time according to a random 
walk of order 1 (RW1).

In the Supplementary material section, Table  6 shows the results of the first 
two models considering as response variable the European anchovy larvae abun-
dance, while Table 7 for the round sardinella larvae. These models are evaluated 
through different goodness-of-fit indices. Tables do not show the values relating 
to the model based on a first-order random walk error process (RW1) because this 
model encounters difficulties in achieving convergence.

After model comparison, we assume that the spatial random effects are inde-
pendent of time such that wit = �it , where �it is a zero-mean Gaussian Process 
(GP), assumed to be temporally independent and characterized by the following 
spatio-temporal covariance function:

Zit ∼ Ber(�it) logit (�it) = �
�

0
+

J∑

j=1

�
�

j
q�
itj
+

K∑

k=1

f
�

(x�
itk
) + w�

it
,

Yit ∣ (Zit = 1) ∼ Pois(�it), log(Eit�it) = �it = �0 +

J∑

j=1

� jqitj +

K∑

k=1

f (xitk) + wit,
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for i ≠ j , where (1) is the Matérn spatial covariance function, �2
u
 is the marginal vari-

ance of the process, 𝜈 > 0 is the smoothing parameter, k > 0 is a scale parameter, 
||si − sj|| is the Euclidean distance between si and sj and K� is the modified Bessel 
function of second kind and order 𝜈 > 0 . This choice is further grounded in the rec-
ognition that the inter-annual spatial variability in the distribution of larvae of small 
pelagic species is typically exceptionally high, as it is driven by highly variable fac-
tors such as the spawning stock biomass, the selection of spawning areas and the 
mortality of the early life stages.

Denote the parameter vector as � = (�0, �
�

0
, �, ��, f , f �,w�) and the hyperparame-

ter vector as � = (�, k, �f , �
′

f
, �) . The model just described is a three-level hierarchi-

cal Bayesian model with a latent Bernoulli structure, and a Gaussian Random Field 
(GRF) can represent the joint distribution of the model parameters. Then, the GRF, 
a continuous spatial process, is approximated by a spatial process with a discrete 
index (i.e. a Gaussian Markov Random Field (GMRF)). Thus, thanks to the sparsity 
of the precision matrix of such a GMRF, which is induced by the conditional inde-
pendence structure of the process, appropriate computation techniques for sparse 
matrices can be used. Finally, the prior parameter of the hyperparameters should be 
specified for a full Bayesian inference. Since we have no prior information on the 
hyperparameters, a vague zero-mean Gaussian prior distribution (N(0, � = 0, 001) is 
used for the parameters �, �′, �, �′ , � . Furthermore, we compare different models by 
considering three priors for the log of precision parameters �f  and �′

f
 . Specifically, 

we considered a logGamma, a flat distribution, and PC-prior with parameters u = 1 
and � = 0.01 . The model shows variations in the estimates of the precision parame-
ters �f  and �′

f
 for which the prior distribution was changed, highlighting sensitivity to 

the choice of priors. Conversely, other parameters remain stable to changes in priors. 
Finally, we opted for the logGamma distribution as it exhibits lower LCPO values, 
which are relevant to the model’s predictive capabilities. The detailed results of this 
analysis are provided in the Supplementary material in Tables 8, 9 and 10.

To summarize, for our model, a logGamma(1, 10−5) is assumed on the logarithm 
of the precision parameters �f  and �′

f
 of environmental variables X and X ’, and a 

N(0, 1) is assumed on the logarithm of the precision � and the logarithm of k. Hence, 
the posterior marginal distributions for each component of � and � can be efficiently 
estimated using INLA (for further details, see Rue et al. (2009)), and the computa-
tions can be conducted using the ���� package in R software.

3.2  Model selection

As in classical statistics, the Bayesian approach also requires indices to compare 
the goodness of fit of several models, which may differ in the  prior distributions 
of the various parameters or the explanatory variables included in the model. Two 
commonly employed criteria are the Deviance Information Criterion (DIC) and the 

(1)Cov(�it, �ju) =

{
0 if t ≠ u

�2
u

Γ(�)2�−1
(k||si − sj||)�K�(k||si − sj||) if t = u,
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Conditional Predictive Ordinate (CPO). The DIC, proposed by Spiegelhalter et al. 
(1998), represents the generalization of the Akaike Information Criterion (AIC) into 
the Bayesian domain. It comprises two components: the posterior expectation of the 
deviance, which measures the goodness of fit of the model, and the effective num-
ber of parameters, which captures the complexity of the model. Lower values of 
DIC indicate superior model performance. The CPO, introduced by Pettit (1990), on 
the other hand evaluates predictive ability by assessing how well the model predicts 
individual observations. Similarly to cross-validation, it quantifies the probability of 
observing a particular data point given the rest of the data. Empirical approxima-
tions enable its calculation without repeatedly fitting the model. The mean logarith-
mic CPO, suggested by Roos and Held (2011), summarizes all the information from 
individual CPO values. Lower values of the LCPO, i.e. the mean logarithm of the 
CPO (Gneiting and Raftery 2007) indicate a better model.

3.3  A Bayesian approach to construct an abundance index

This section illustrates  the approach used to calculate the larval abundance index. 
The abundance index of larval fish is a quantitative measure used to assess the abun-
dance, or relative density, of larval fish in a particular aquatic environment or dur-
ing a specific time. This index is a crucial tool in fisheries science, marine ecology, 
and environmental monitoring as it provides insights into the early life stages of fish 
populations and the overall health of marine ecosystems. The most straightforward 
measure of population status is an estimate or index of the abundance at any given 
time. A series of estimates through time can be used to evaluate the population’s 
trend (i.e., increasing, declining, stable) (Etienne et al. 2010).

The process of generating the abundance index involves the following steps: 

 1. Selection of a suitable spatio-temporal model for analyzing larval abundance;
 2. Estimation of the parameters’ posterior distributions p(� ∣ y);
 3. Monte Carlo sampling from the approximate distribution of the fitted model 

�(m) ∼ p(� ∣ y) , obtaining n samples and corresponding functions;
 4. Collection of the index for the linear predictor corresponding to the stack data 

of the prediction scenario;
 5. Extraction of the corresponding elements of the latent field of each sample;
 6. Projection of estimates to the centroid of an equally spaced grid in the area of 

interest;
 7. Drawn y⋆ from the posterior distribution y⋆(m) ∼ p(y⋆ ∣ y) . This is performed 

by randomly drawing from the sampling distribution with the parameter draw 
plugged in;

 8. Summation of randomly drawn values y⋆ across grid cells to generate an annual 
abundance index;

 9. Repeat the process across the posterior samples;
 10. Computation of posterior credible intervals for the abundance of each species 

in each year.
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4  Results

Here, we present the results of the analysis of spatio-temporal models based on a 
Bayesian approach implemented through the Integrated Nested Laplace Approxima-
tion (INLA). The tools presented previously are used to analyze the distribution of 
European anchovy and round sardinella larvae in the Strait of Sicily during the study 
period, to understand their interactions with the surrounding environmental vari-
ables and, above all, to calculate the larval abundance index for both species. Since 
only a few observations of fish larvae were recorded in 1999, they were excluded 
from the analyzed time series (1998–2016). Note that a data cleaning operation was 
performed to remove any potential duplicate records, ensuring accurate data pro-
cessing. Subsequently, an exploratory data analysis was conducted. This latter analy-
sis suggested an excess of zeros for both species, with a value of 59% for anchovies 
and 79% for sardines as we can see in Figs. 3 and 4.

Fig. 3  Barplot of the European anchovy larvae

Fig. 4  Barplot of the round sardinella larvae
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After the exploratory data analysis, several models were compared in terms of 
the DIC as the criterion for goodness of fit, and the leave-one-out cross-validated 
CPO score computed by the LCPO as a predictive quality measure. For both these 
measures, the smaller the score, the better the model. In addition, we worked closely 
with the biologists we collaborated with to determine the most appropriate covari-
ates to include in the models.

4.1  European anchovy larvae

The presence and abundance of European anchovy are influenced by environmental 
factors, including chlorophyll-a and u and v-components of currents. Several models 
were compared; the most significant are reported in Table 1.

These models are similar in terms of both DIC and LCPO. However, we carry 
out the analysis on Model 3 in Table 1 which, for the random variable Y (represent-
ing the abundance of the species), incorporates the linear effects for the u and v 
components of the currents and their interaction, as well as chlorophyll-a. Only the 
intercept and the random component w′ are considered for the dichotomous random 
variable Z, representing the presence or absence of the species. We also explored the 
influence of covariates on the presence probability as well. However, the available 
covariates did not show statistically significant effects on the presence probability.

Figure  5 displays the graphical representation of the selected model (2) using 
a Directed Acyclic Graph (DAG). Table  2 presents the summary statistics of the 
parameters’ posterior distributions.

Model (2) highlights that the currents (represented by the main effects u and v 
and the interaction term u ∗ v ) and chlorophyll-a have a significant effect on the 
abundance of European anchovy larvae. In particular, the analysis highlights the 
importance of the direction of the currents. The interaction between the v and u 
components of geostrophic ocean currents has a notable impact. We can say that 

(2)

{
logit (�̂�it) = �̂�

�

0
+ w�

it
,

log(Eit�̂�it) = �̂�0 + 𝛽1vit + 𝛽2uit + 𝛽3uit ∗ vit + 𝛽4chlit + wit.

Table 1  Model selection process for the European anchovy larvae (Engraulis encrasicolus) in the Strait 
of Sicily in 1998 and from 2000 to 2016

�
0
 and �′

0
 are the intercepts, w′ and w are spatio-temporal structures, v = v component of the currents, u = 

u component of the currents and chl = chlorophyll-a

Model ID Random variable Linear predictor DIC LCPO

1 Zit ��
0
+ w� 3214.624 0.532

Yit ∣ Zit = 1 �
0
+ �

1
v + w 5791.886 15.754

2 Zit ��
0
+ w� 3214.771 0.532

Yit ∣ Zit = 1 �
0
+ �

1
u + �

2
v + �

3
u ∗ v + w 5791.281 15.697

3 Zit ��
0
+ w� 3217.253 0.532

Yit ∣ Zit = 1 �
0
+ �

1
u + �

2
v + �

3
u ∗ v + �

4
chl + w 5789.400 15.676
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the abundance of European anchovy larvae increases when moving from north to 
south and west to east. Concerning chlorophyll-a, the mean posterior fixed effect on 
the abundance shows higher numbers of anchovies as the chlorophyll-a decreases. 
These results, occasionally counterintuitive when considering chlorophyll-a as a 
proxy for food availability, align with prior studies focused on the larval dispersion 
of this species in the Strait of Sicily (Lafuente et al. 2002; Cuttitta et al. 2006; Torri 
et al. 2018; Patti et al. 2020). These authors have underscored the role of physical 
forces, such as currents, gyres, and fronts, in concentrating larvae born along the 

Fig. 5  Graphical structure of model (2) by a Directed Acyclic Graph (DAG). Squares denote the 
observed quantities, and circles denote the latent variables. A probability distribution characterizes 
each parameter. The arrows connecting the nodes represent stochastic (solid) and deterministic (dashed) 
dependencies

Table 2  Posterior estimates of the parameters (mean, standard deviation (sd) and quantiles) for the two-
part model (2)

Summary statistics logit (�̂�) log(E�̂�)

�̂�
′

0
spatial sd range �̂�0 𝛽1 𝛽2 𝛽3 𝛽4 𝛿

mean − 0.749 4.235 0.357 0.155 − 1.178 0.695 8.147 − 2.128 0.627
sd 0.095 1.092 1.039 0.096 0.522 0.466 3.662 0.797 0.026
2.5% − 0.939 3.556 0.330 − 0.035 − 2.203 − 0.219 0.960 − 3.692 0.575
50% − 0.747 4.235 0.357 0.155 − 1.178 0.696 8.148 − 2.128 0.627
97.5% − 0.565 5.044 0.385 0.340 − 0.153 1.608 15.325 − 0.565 0.678
mode − 0.745 4.235 0.358 0.157 − 1.179 0.696 8.151 − 2.128 0.627
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Sicilian coast in a larval retention area positioned to the southeast, precisely in the 
Capo Passero region. In contrast to the spawning areas situated in the northwestern 
coastal zone and characterized by elevated chlorophyll-a values associated with the 
upwelling phenomenon, the Capo Passero area typically exhibits a relatively lower 
concentration of food, although characterized by higher larval densities compared to 
the other areas (Russo et al. 2021; Torri et al. 2023). The model thus encapsulates 
a noteworthy pattern concerning the distribution of this species in the study area, 
namely the presence of larval concentration areas characterized by lower food avail-
ability compared to other egg deposition areas. The fundamental role of currents is 
further accentuated by the significant effect of the u and v components of the cur-
rents. The � parameter is significantly different from zero, meaning that the absence/
presence and abundance share the same spatial pattern. Concerning the spatial ran-
dom effects, when setting the � parameter of the Matérn function to 2, the range 
can be defined as r =

√
8∕k . The mean posterior value for the spatial effect range 

is 0.357◦ , while the standard deviation is 4.235. This indicates that the correlation 
becomes almost null at approximately 0.357◦ (around 42 km).

4.2  Round sardinella larvae

The presence and abundance of Sardinella aurita are influenced by several environ-
mental factors, including salinity, temperature, bottom depth and v-component of 
currents. Again, several models were tested, and the most promising are reported in 
Table 3.

These models are similar in terms of both DIC and LCPO. Nevertheless, we carry 
out the analysis on Model 4 of Table 3, which incorporates linear effects for the v 
component of the currents, temperature and salinity for the random variable Z (pres-
ence/absence of the species). About the random variable Y (number of Sardinella 
aurita), a linear effect is considered for the v component of currents and a smoothed 
effect (RW2—random walk of second order) for the temperature. For salinity and 

Table 3  Model selection for the round sardinella larvae (Sardinella aurita) in the Strait of Sicily in 1998 
and from 2000 to 2016

�
0
 and �′

0
 are the intercepts, w′ and w are spatio-temporal structures, temp = temperature, sal = Salinity, 

v = v component of the currents and B = bottom depth. Subscript letters represent modelling effects with 
smoothed terms s1 (RW1 random walk of first order), and s2 = smoothed (RW2 random walk of second 
order)

Model ID Random variable Linear predictor DIC LCPO

1 Zit ��
0
+ ��

1
temp + w� 2533.100 0.405

Yit ∣ Zit = 1 �
0
+ fs2(temp) + w 3317.661 18.451

2 Zit ��
0
+ ��

1
temp + ��

2
sal + w� 2536.992 0.403

Yit ∣ Zit = 1 �
0
+ fs1(temp) + fs2(sal) + w 3293.980 17.848

3 Zit ��
0
+ ��

1
temp + ��

2
sal + ��

3
v + w� 2537.365 0.404

Yit ∣ Zit = 1 �
0
+ fs2(temp) + fs1sal + vl + w 3275.947 17.600

4 Zit ��
0
+ ��

1
temp + ��

2
sal + ��

3
v + w� 2535.325 0.403

Yit ∣ Zit = 1 �
0
+ fs2(temp) + fs1(sal) + �

1
v + fs1(B) + w 3274.247 17.241
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bottom depth, the model incorporates an RW1, i.e. a random walk of first order. We 
represent the selected model in (3) and via a DAG in Fig. 6.

Posterior estimates (mean, standard deviation (sd) and quantiles) of the param-
eters are reported in Tables   4 and   5. The former are estimates for the random 

(3)

{
logit (�̂�it) = �̂�

�

0
+ 𝛽

�

1
salit + 𝛽

�

2
tempit + 𝛽

�

3
vit + w�

it
,

log(Eit�̂�it) = �̂�0 + 𝛽1vit + f (bottomit) + f (salit) + f (tempit) + wit.

Fig. 6  Graphical structure of model (3) using a Directed Acyclic Graph (DAG)

Table 4  Posterior estimates of the parameters of Model (3) (mean, standard deviation (sd) and quantiles) 
for the random variable Z (presence/absence of a species)

Summary statistics logit (�̂�)

�̂�
′

0
𝛽

′

1
𝛽

′

2
𝛽

′

3
spatial sd Range

Mean  − 24.045 0.428 0.232 − 3.781 3.349 0.361
sd 6.583 0.182 0.054 0.920 1.185 1.063
2.5% − 36.909 0.068 0.128 − 5.601 2.416 0.322
50% − 24.063 0.428 0.231 − 3.776 3.337 0.361
97.5% − 11.078 0.784 0.339 − 1.989 4.717 0.409
Mode − 24.100 0.430 0.231 − 3.766 3.303 0.359
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variable presence/absence (Z), and the latter are estimates for the random variable 
number of Sardinella aurita.

Environmental variables, such as temperature, salinity and the currents (v com-
ponent of geostrophic ocean currents), have significant effects on the probability 
of absence/presence of sardinella. The parameter log(�it) is linearly related to the 
v component. In contrast, it results in an RW1 relationship with the variable bottom 
and salinity, and in an RW2 relationship with the temperature. It can be seen that 
the parameter “mean posterior fixed effect of salinity on the absence/presence of 
sardinella’ larvae” indicates that the higher the salt concentration in the water, the 
greater the probability of observing a round sardinella. Furthermore, salinity has a 
non-linear influence on sardine abundance, with abundance non-linearly increasing 
as salinity increases (Fig. 7 (middle)). This result can be explained by considering 
the concentration of round sardinella larvae in the southeastern zone (Capo Pas-
sero area), typically characterized by relatively higher salinity values. In particular, 
the non-linearity of the relationship, i.e. a greater effect for salinities above 37.6, 
highlights the fundamental role of the salinity front in controlling larval dispersion 
dynamics in this area. Indeed, this oceanographic structure arises from the encounter 
of the Atlantic Ionian Stream (AIS), typically less saline, with the water of the Ion-
ian Sea and is therefore associated with a concentration of larvae originating from 
both the Strait of Sicily and the northern Ionian coastal zone (Torri et  al. 2023). 
Concerning the temperature, the mean posterior fixed effect on the probability of 
absence/presence shows a higher probability of observing sardines as the tempera-
ture increases with a probability equal to 0.55. This is because the Sardinella aurita 
is a thermophilic species and is, therefore, more likely to be found in warmer areas 
(Ben-Tuvia 1960). Furthermore, it has a non-linear influence on the abundance. 
The v component, which represents the vertical direction of currents, has a nega-
tive linear effect on the probability of observing a sardine and the abundance. For a 
unit increase in the v component, the probability of observing a round sardinella is 
0.02. As the v component decreases, moving from north to south increases the prob-
ability and abundance. The analysis also highlights the importance of geographi-
cal location. The presence and abundance of round sardinella are more significant 
near the coast and decrease moving away from it. This is supported by the bottom 

Table 5  Posterior estimates of the parameters of Model (3) (mean, standard deviation (sd) and quantiles) 
for the random variable Y (abundance of species)

Summary statistics log(E�̂�)

�̂�0 𝛽1 𝜏bottom 𝜏sal 𝜏temp 𝛿

mean − 0.852 − 3.153 378.563 131.377 516.288 0.826
sd 0.186 0.787 174.223 29.904 116.431 0.052
2.5% − 1.190 − 4.702 144.097 82.279 324.753 0.722
50% − 0.863 − 3.151 344.412 128.100 503.646 0.826
97.5% − 0.464 − 1.613 811.692 199.446 781.010 0.929
mode − 0.893 − 3.147 284.378 121.787 479.285 0.827
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Fig. 7  Marginal smoothed (RW1) effects of bottom (top) and salinity (middle) and smoothed effect 
(RW2) of temperature (down) for the abundance (Y) of the best model. The dotted lines represent the 
approximate 95% credibility interval
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depth, which influences abundance non-linearly. As we can see from Fig. 7 (top), 
the effect of the bottom depth is more significant near the coast and decreases up 
to a depth of about 200 ms, then it remains almost constant to greater depths. This 
highlights the difference between the continental shelf and the offshore areas. Again, 
the absence/presence and abundance share the same spatial pattern as the � param-
eter is significantly different from zero. Concerning the spatial random effects, the 
mean posterior value for the spatial effect range is 0.361◦ , while the standard devia-
tion is 3.349. This indicates that the correlation becomes almost null at a distance of 
around 40 km.

4.3  Model prediction

Once we have obtained the posterior distributions, we can use them to make pre-
dictions for unsampled locations. The predictive distribution is obtained by inte-
grating over the parameter’ posterior distribution and the likelihood. It reflects 
our updated beliefs about future observations based on the observed data and 
the model. Since the sampling process partially covered the area under study, we 
decided to focus on a restricted area domain, represented in the blue polygon area 
in Fig.  8. In other words, the domain of the posterior mean maps is a polygon 
comprising the minimum area consistently sampled over time.

Predictions were based on daily satellite data of surface temperature, Chlo-
rophyll-a, Salinity and direction of currents retrieved from the CMEMS server 

Fig. 8  The blue part of the figure comprises a polygon representing the most sampled area over time. 
This part was used for making predictions and building the abundance index
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(https:// www. marine. coper nicus. eu/) and projected in an equally spaced 2.5 km 
grid within the area of interest.

The maps with the most significant results are shown below, while the complete 
maps are reported in Supplementary Fig 15.

Figure 9 shows the predicted values of the European anchovy larvae abundance in 
2005, 2006, 2009 and 2011. There was a high concentration of European anchovies 
in the southeastern area. In particular, 2006 and 2009 show a substantial increase in 
the abundance of anchovy larvae in the offshore area (at depths greater than 200 ms), 
in line with the geostrophic ocean current direction, suggesting a significant advec-
tion far from the coastal spawning areas. It is worth noting that there are some years 
in which the predictions are underestimated, for example in the summer surveys of 
2005 and 2011 in the south-east area between Capo Passero and Malta. However, 
from the analysis of the maps, it emerges that the model predictions are very close to 
the observed values. The overall trend of the predictions for the observed data dem-
onstrates the model’s effectiveness in capturing the patterns underlying the abun-
dance, thus confirming the validity of the hypotheses and methodologies adopted in 
the analysis.

The maps in Fig. 10 show the predicted values of the round sardinella larvae 
abundance in 2004, 2005, 2009 and 2014. There is a noticeable trend towards a 
greater concentration of sardines in the south-eastern area, including places such 
as Pozzallo and Capo Passero. Interestingly, in 2009 there was a significant abun-
dance of larvae in the offshore area, in line with the geostrophic ocean current 

Fig. 9  Map of the predicted values of the European anchovy larvae abundance in 2005, 2006, 2009 and 
2011. Red points represent the number of anchovy larvae in the sampling stations. The estimated number 
of larvae is also reported in a continuous spatial pattern by applying a white-blue colormap, indicating 
the estimated number of larvae per 4 km2

https://www.marine.copernicus.eu/
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direction. Furthermore, 2014 showed a greater concentration in the north-west-
ern area (Mazara del Vallo), which had shown lower quantities in previous years. 
However, we can see some areas where the predictions underestimate the real 
observed value of sardine larvae, such as in 2004 and 2005 in the south-eastern 
area near Capo Passero.

Next, we evaluate the model’s predictive capability by showing the mean pre-
dicted abundance within the defined polygon and the mean observed values of 
European anchovies (Fig. 11) and round sardinella larvae (Fig. 12).

The results reveal a similarity between the observed and predicted mean val-
ues for anchovy larvae. Figure 11 shows the trend of these values for the surveys 
carried out in 1998 and between 2000 and 2016. A considerable disparity can be 
observed, particularly evident in 2011. Furthermore, 2009 appears to be the year 
in which the mean number of European anchovy larvae is higher.

Examination of the round sardinella data again reveals a similarity between 
the observed and predicted mean values. Despite this consistency, the confi-
dence interval for sardines shows a slightly wider range. In this case, the most 
pronounced distinction occurred in 2005, as shown in Fig. 12, but it was not as 
sharp as that for anchovies in 2011. Noteworthy, however, is the remarkably wide 
confidence interval during 2009. The notable abundance of sardinella larvae dis-
tinguishes this specific year.

Fig. 10  Map of the predicted values of the round sardinella larvae abundance in 2004, 2005, 2009 and 
2014. Red points represent the number of round sardinella larvae. The estimated number of larvae is 
also reported in a continuous spatial pattern by applying a white-blue colormap, indicating the estimated 
number of larvae per 4 km2
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4.4  Abundance index analysis

This section presents the larval abundance index obtained after estimating the two 
models in (2) and (3), respectively. It allows a global perception of the abundance 
of the larvae of the two species in the Strait of Sicily in the summer seasons of 1998 
and between 2000 and 2016.

Fig. 11  Comparison between the mean posterior predicted abundance (green) of European anchovies lar-
vae within the defined polygon and mean observed values (red) for the summer surveys in 1998 and from 
2000 to 2016. The predicted abundance values are expressed as the mean number of larvae per 4 km2 . 
The dotted lines represent the approximate 95% credibility interval

Fig. 12  Comparison between the mean posterior predicted abundance (green) of round sardinella larvae 
within the defined polygon and mean observed values (red) for the summer surveys in 1998 and from 
2000 to 2016. The predicted abundance values are expressed as the mean number of larvae per 4 Km2 . 
The dotted lines represent the approximate 95% credibility interval
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Figure 13 shows the abundance index of European anchovy larvae. The annual 
fluctuations emerge, with a maximum peak in 2009, characterized by values close to 
60000 larvae, followed by 2010. In contrast, 2001 shows the lowest predicted num-
ber of European anchovy larvae. The overall analysis does not reveal a clear trend, 
motivating the selection of a model that considers the spatial component independ-
ent of time.

Figure 14 shows the round sardinella larvae’s abundance index. Once again, the 
peak occurred in 2009, with about 40000 larvae, followed by 2001. Interestingly, in 

Fig. 13  Abundance index of European anchovy larvae by survey year in the polygon. The y-axis repre-
sents the number of European anchovy larvae. The dotted lines represent the approximate 95% credibility 
interval

Fig. 14  Abundance index of round sardinella larvae by survey year in the polygon. The y-axis represents 
the number of round sardinella larvae. The dotted lines represent the approximate 95% credibility inter-
val
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2001, there was an increase in round sardinella compared to European anchovies, 
while 2006 and 2010 are distinguished by the opposite trend, with a greater presence 
of anchovies and a decrease in sardines. Furthermore, the global analysis does not 
reveal a clear trend even for sardine larvae.

5  Conclusions

The work carried out in this study addressed the analysis of spatio-temporal data on 
European anchovy and round sardinella larvae in the Strait of Sicily from 1998 to 
2016. Through a rigorous approach to data analysis and exploring different models, 
relevant results have emerged that contribute to our understanding of the distribution 
and abundance of the species under study. This concluding section summarizes the 
main findings, critically addresses some limitations of these applications, and pro-
poses suggestions for future research in this ever-evolving field of study.

One of this work’s main results was  identifying an optimal model for estimat-
ing the presence and abundance of the two fish species under consideration. Hurdle 
models have been considered as a high percentage of zero values characterizes this 
data type. Thus, two-part models were particularly suitable for capturing the spatio-
temporal distribution. They incorporate linear effects and smooth (non-linear) terms 
for environmental covariates, including temperature, salinity, chlorophyll-a, and cur-
rents’ u and v components.

Another remarkable result emerged from the analysis of the models, which high-
lighted the significant role of the geostrophic ocean current components in influ-
encing the presence and abundance of the larvae. In particular, the linear effect of 
the v components of the currents has proved crucial in explaining the presence and 
abundance of round sardinella larvae. As far as European anchovies are concerned, 
however, it emerged that the interaction of the currents’ u and v components influ-
ences the abundance. Since the first stages of fish larvae have relatively poor swim-
ming abilities, their horizontal distribution is strongly linked to the drifting by ocean 
surface current, which can also regulate connectivity with neighbouring regions 
(Patti et al. 2018; Falcini et al. 2020). This emphasizes the role of oceanic condi-
tions in influencing the presence and abundance of these species. Interestingly, simi-
lar results have been found in studies focused on larval dispersion of other species 
occurring in the same area (Torri et al. 2021; Russo et al. 2022), highlighting the 
importance of the hydrodynamics in a key area for the thermohaline circulation of 
the Mediterranean Sea, where exchange of water masses between western and east-
ern basins take place (Placenti et al. 2022).

Furthermore, the analysis showed that temperature plays a significant role in 
explaining the abundance of Sardinella aurita. In particular, the model emphasizes 
higher larval counts in correspondence to relatively warmer areas. This finding is 
in line with the biology of this species which, in the Mediterranean Sea, shows 
the maturation of gonads at temperatures above 23 degrees (Palomera and Sabatés 
1990) and allows us to recognize, for the first time on a long time series, Capo Pas-
sero as the most important spawning area in this region. Considering our results, the 
presence of an upwelling system that led to colder water in the north-west area could 
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underlie the lower larval densities observed in this zone. Temperature is thus a criti-
cal environmental factor, suggesting that climate variations can significantly affect 
the larval spatio-temporal distribution of this fish species.

Salinity was another relevant variable in the model for round sardinella species, 
with a significant positive linear effect on the presence of this species. For the abun-
dance, a more complex relationship was considered, with a first-order random walk 
(RW1) effect that accounts for the role of a thermohaline front in shaping the spatial 
distribution of fish larvae in the study area (Torri et al. 2023).

Moreover, the analysis highlighted the importance of the geographical position. 
Bottom depth was included in the model, but results indicated that it is not signifi-
cant for the presence but for the abundance of round sardinella with a first-order 
random walk (RW1) relationship. The abundance of this species is more important 
near the coast and decreases offshore. This highlights the difference between shelf 
and continental slope areas.

As concerns the European anchovy (Engraulis encrasicolus) the relevant vari-
ables included in the model were the interaction between the u and v components 
of the currents and chlorophyll-a concentration, which showed a significant nega-
tive linear effect on the abundance of this species. Thus, our model evidences an 
essential feature of the early life stages that, being passively advected by physical 
forcings, are not necessarily retained in the chl-enriched areas, affecting the mortal-
ity rates of the larval stages and the recruitment. The results of this research have 
important implications for marine ecology and the sustainable management of 
marine ecosystems. In this framework, our models can be used as predictive tools 
to monitor trends in fish species abundance in response to changing environmental 
conditions.

The prediction capacity of these models is quite good even though the model 
underestimates the observed values for the round sardinella in some areas. What 
emerged from the analysis of the maps of the predicted values of the abundance 
is that the distribution of European anchovy larvae is mainly distributed along the 
entire coast and is strongly related to the direction of the surface currents. In con-
trast, round sardinella larvae are mainly concentrated in the southeastern area of the 
Strait of Sicily, where warmer conditions are prevalent.

The analysis of the abundance indices obtained for the two species is of particu-
lar interest. For both species, significant variations were detected over the years. 
These highly variable trends reflect, on the one hand, the variability of the environ-
mental conditions that can regulate the spawning as well as the natural mortality 
of the early life stages. On the other hand, they are influenced by the fluctuations 
of the spawning stock biomass that typically characterize short-living species such 
as small pelagics. In this context, this index represents a valuable tool for the sus-
tainable management of fishery resources in this region. Its implementation could 
provide crucial information supporting fisheries management policies based on solid 
scientific evidence and insights into the processes governing the population dynam-
ics of these important pelagic fish.

A criticality of this work is linked to the temporal complexity of the data: as seen 
in the initial models in which different temporal and spatial specifications were com-
pared, the different spatial specifications do not excessively affect the computational 
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cost and the difficulty of converging the results. Instead, it seems that the temporal 
part influences the efficiency and effectiveness of the various models. In this con-
text, the high number of observations leads to a consistent increase in the number of 
effective parameters leading to approximation problems in INLA and increasing its 
computational cost.

Looking to the future, there are further exciting research perspectives to explore. 
One possible direction concerns the analysis of the eggs of these species. Eggs rep-
resent a crucial stage in the life cycle of fish, and understanding their spatio-tem-
poral dynamics could provide a valuable framework for providing insights into the 
reproductive ecology of European anchovy and round sardinella populations in the 
Strait of Sicily. Furthermore, testing the interactions between these different fish 
species and how they affect species abundance could be interesting. This could con-
tribute to a more comprehensive understanding of ecological dynamics in complex 
marine ecosystems.
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