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Abstract—A novel particle packing algorithm has been derived
basing on a simplified standard SPH scheme and is used
to initialize the particle distribution for generic SPH solvers.
Using some intrinsic features of the SPH schemes, the proposed
algorithm leads to a final particle distribution that is very
stable and is not affected by a further resettlement during the
early stages of the evolution. Moreover, the computational costs
maintain very low since the final configuration is attained very
quickly. Finally, a strong point of the packing algorithm is that
it can be easily derived using whatever SPH scheme.

I. Introduction

The matter of how initialize the particle positions in the
SPH schemes plays a relevant role. Indeed, particles which are
not initially set in “equilibrium” positions may resettle giving
rise to spurious motions which can strongly affect the fluid
evolution. Hereinafter we refer to an equilibrium configuration
as the set of particle positions which, under static conditions,
does not lead to particle resettlement.

Unfortunately, apart from few cases characterized by simple
geometries, the equilibrium configuration is not known “a
priori”. This is a major issue since the generation of spurious
currents/vorticity is particularly strong in presence of complex
solid boundary profiles (i.e. corners, bended bodies, etc.).

In the SPH literature some ad-hoc procedures have been
proposed to reduce particle resettlement. The simplest one
consists in starting the SPH simulation using a high numerical
viscosity and leaving a long enough time to make particle self-
resettle in equilibrium positions (see, for example, Monaghan
[1]). The actual SPH simulation (that is, the simulation with
the correct viscosity and the desired initial conditions) starts
after particles have reached an equilibrium configuration.
Unfortunately, the attainment of a stable configuration can
require a very long evolution, this leading to a large increase
of computational costs. Moreover, the high viscosity used
for particle initialization does not exclude that a further
resettlement occurs when the actual simulation is started with
smaller values of the viscosity.

In the SPH framework, the first attempt to define a proper
algorithm for particle initialization is due to Oger et al. [2] who
adapted the Bubble method described in Shimada [3] to SPH
solvers. This algorithm is based on the use of Van der Waals-
like forces to place particles throughout the fluid domain. This
method proves to be quite fast, applies to general geometries

and provides a regular particle distribution. One of the weak
points is that the particle positions obtained through the Bubble
algorithm may be not perfectly compatible with the SPH static
solution leading to a further resettlement.

Then, the key point to build a robust packing algorithm
relies on the capability of providing a regular particle
distribution which is compatible with the SPH scheme, that
is, that satisfies the static conditions when the SPH scheme
is used. To this purpose a novel packing algorithm has been
derived taking advantage of some intrinsic features of the
SPH schemes. Thanks to this, the proposed method allows the
attainment of a regular particle distribution compatible with the
static solution. Further, it can be easily derived starting from
whatever SPH solvers and applies to weakly-compressible or
incompressible SPH schemes as well.

The paper is organized as follows: Section §II gives an
insight of the constitutive features which are used to build
the packing algorithm. Section §III describes the proposed
algorithm and highlights some interesting aspects about its
Lagrangian structure. Finally, Section IV provides a broad
range of numerical test cases which prove the packing
algorithm to be fast, robust and reliable also for complex
geometrical configurations.

II. Some intrinsic features of the SPH
In the present paper we adopt the standard SPH scheme:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dρi

Dt
= − ρi

∑
j

(u j − ui) · ∇iWi j V j

Dui

Dt
= g − 1

ρi

∑
j

(p j + pi)∇iWi j V j + T(v)
i ,

pi = F(ρi) ,

Dri

Dt
= ui ,

(II.1)

As usual, the subscripts indicate the quantities associated with
the i-th and j-th fluid particle. In the specific, Vi is the particle
volume, ρi = mi/Vi and mi is the particle mass. The term T(v)

i
indicates an artificial viscous force per unit of mass. This term
is generally implemented in the SPH schemes for stability
reasons (see, for example, [4]). In the present work, we use
the artificial viscous term proposed by Monaghan and Gingold
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[7] but a different choice does not affect the results shown in
the following.

For the analysis which follows, it is convenient to introduce
the following variables:

Γi =
∑

j
Wi j V j ∇Γi =

∑
j
∇iWi j V j . (II.2)

Variables Γi and ∇Γi give a “measure” of the unevenness in
the particle distribution. In fact, if the particle distribution is
perfectly uniform, Γi = 1 and ∇Γi = 0 otherwise Γi < 1 and
∇Γi � 0.

Further, the use of Γi and ∇Γi helps understand the
convergence of the discrete differential operators. In fact,
two different kinds of errors are made when the exact
differential formulas are substituted with the discrete smoothed
formulas. One kind is due to the interpolation procedure
(errors proportional to the smoothing length, h) while the other
is caused by the approximation of continuous integrals with
finite summations (see, for example, [11]). In the latter case
the error decreases as the number of particles inside the kernel
domain increases. Then, if the mean number of particles in the
kernel domain is large enough, this error can be assumed to
be smaller than O(h). Denoting by 〈∇p〉 the SPH pressure
gradient and using the standard convergence results for the
SPH differential operators [9], we can write:

〈∇p〉i =
∑

j
(p j + pi)∇iWi j V j =

=
∑

j
(p j − pi)∇iWi j V j + 2 pi

∑
j
∇iWi j V j =

= Γi (∇p)i + 2 pi ∇Γi + O(h) . (II.3)

Here, both Γi and ∇Γi are responsible for a deviation from the
exact pressure operator. As shown in the following example,
this is the main cause of the particle resettlement.

Let us assume we want to start a SPH simulation with
hydrostatic conditions. Then, we assign ui = 0, ρi = ρ(ri) at
t = t0 and try to find the hydrostatic pressure. The continuity
equation is satisfied exactly while, as a consequence of (II.3),
the momentum equation gives:

Γi (∇p)i + 2 pi ∇Γi − ρi ∇Φ = O(h) , (II.4)

where Φ is the gravitational potential. This expression clearly
shows that, unless Γi = 1 and ∇Γi = 0, it is not possible to
attain any hydrostatic solution. In this context, Γi plays only
a minor role since it just causes an increase/decrease of the
intensity of the correct pressure gradient. On the contrary, ∇Γi
is responsible for an unbalance in both the intensity and the
direction of the SPH differential operator. Further, ∇Γi diverges
like 1/h when the particle distribution is strongly irregular.
Then, the only way to get a good initialization of the SPH
scheme is to reduce the magnitude of ∇Γi as much as possible.
This is the principal idea at the basis of the Particle Packing
Algorithm described in the next section.

Fig. 1. Top panel: sketch of the vector w = −∇Γ in the neighborhood of a
spatial anisotropy. Bottom panel: sketch of the solid and fluid particles in the
packing algorithm framework.

III. Particle Packing Algorithm

The Particle Packing Algorithm is built on a simple idea:
to use the SPH features highlighted in the previous section to
initialize the particle distribution and minimize ‖∇Γ‖. This is
made by observing that the vector w = −∇Γ always points in
the direction of the maximum lack of “mass” and maximum
anisotropy (see the top panel of figure 1). Now, let assume to
use it to move particles during the initialization. If the fluid
domain is bounded and particles are not allowed to escape
form the boundaries, w tends to fill all the asymmetries in
the particle distribution and, at the same time, it reduces as
a consequence of the more regular distribution of particles
themselves. Then, the final distribution would be the most
regular possible and ‖w‖ (that is, ‖∇Γ‖) would be minimized
as requested.

The first step to build the Particle Packing Algorithm is to
close the domain boundaries. As a consequence, this implies
that the free surface has to be treated as a solid boundary.
The domain boundary has to be modeled through fixed
solid particles, that is, particles with zero velocity and fixed
positions. This approach can be regarded as a special use of the
frozen particles (for details see [12]) or as a straightforward
application of the fixed ghost particle technique proposed by
Marrone et al. [8]. A sketch of this procedure is displayed in
the bottom panel of figure 1. Note that particles do not need
any specific rule to be positioned inside the fluid domain nor
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inside the solid bodies. The second step consists in assuming
the density, the pressure and the volumes constant all over the
fluid domain. We indicate them through symbols ρ0, p0 and
V0 respectively. Since volumes are constant and the packing
algorithm has to converge towards a static solution, we neglect
the continuity equation. Conversely, the momentum equation
of system (II.1) becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Dui

Dt
= − β∇Γi + T(v)

i

Dri

Dt
= ui

(III.5)

where β = 2 p0/ρ0 and Γi =
∑

j Wi j V0. The viscous force
can be chosen independently from the adopted SPH scheme
since T(v)

i is just used to ensure the convergence of the Particle
Packing Algorithm. In the specific, we choose:

T(v)
i = − ν ui with ν = α

√
β

V 1/d
0

(III.6)

where d is the spatial dimension and α is a free dimensionless
parameter. By numerical simulations we found that a good
choice for α ranges between 1 · 10−3 and 5 · 10−3. Then, the
Particle Packing system becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Dui

Dt
= − β∇Γi − νui

Dri

Dt
= ui .

(III.7)

The initial conditions for the Particle Packing Algorithm are
obtained by setting all the particle velocities to zero and
V0 = Vtot/Npart where Vtot is the total fluid volume and Npart
is the total number of particles. The time-step adopted for the
present algorithm is:

Δt = CFL
V1/d

0√
β
, (III.8)

where CFL = 1. Because of its structure, system (III.7)
tends to converge as much as possible towards a steady state
characterized by ui = 0 and ∇Γi = 0. When the fluid system is
sufficiently close to this state, the particle positions are used
to initialize the SPH simulations. Since the spatial distribution
is very regular, the particle volumes can be assumed to be
identical. Then, the volume used for the initialization of the
SPH is V∗ = V0. The initial particle pressure, p∗i , is assigned
by using the analytical expression for the hydrostatic pressure
and the particle positions. Then, inverting the state equation,
the initial density ρ∗i is computed and, finally, the particle mass
is obtained through m∗i = ρ

∗
i /V

∗. During the SPH simulations,
the particle masses are kept constant while the densities and
the volumes are updated using the continuity equation and the
relation Vi = mi/ρi.

IV. Applications

In the present section we show some applications of
the particle packing algorithm. We first deal with the
initialization of hydrostatic conditions in complex geometrical
configurations, then we show some dynamical problems, that
is, problems in which the fluid evolves after the particle
packing initialization. In all the simulations, the standard SPH
scheme has been used (see [4] for more details) and solid
profiles have been modeled through the fixed ghost particles
described in Marrone et al. [8]. In any case, the qualitative
results obtained in the following also hold true for those SPH
scheme that implement frozen particles.

Fig. 2. sketch of the trapezoidal tank.

A. Hydrostatic problems

We first consider a trapezoidal tank like that drawn in figure
2 (H is the filling height) and study the influence of the particle
initialization on the capability of the SPH of simulating the
hydrostatic solution. As stated in Section III, the first step is to
“close” the fluid domain. This means that the free surface has
to be substituted by a solid boundary and modeled accordingly.
This procedure is displayed in figure 3 where the fluid domain
has been initialized through a Cartesian grid (left panel) and
using the packing algorithm (right panel).

In the former case, the use of a Cartesian grid leads
to the generation of large spatial anisotropies along the
inclined plane. Here, ‖∇Γ‖ = O(1) and, therefore, an intense
particle resettlement is expected during the early stages of
the fluid evolution. Conversely, the particle packing algorithm
eliminates the spatial anisotropies and drastically reduces
the magnitude of ‖∇Γ‖ (whose order of magnitude is about
10−13H). Incidentally, we note that it is possible to derive SPH
schemes which intrinsically correct the spatial anisotropies
close to the solid profiles through the use of special boundary
conditions (see, for example, [13]). However, these schemes
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Fig. 3. trapezoidal tank (H/dx = 25). Initialization using a Cartesian grid
(top) and through the particle packing algorithm (bottom).
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Fig. 4. trapezoidal tank. Evolution of the specific kinetic energy during the
initialization through the particle packing algorithm.

are generally more complex than the standard SPH model and
leads to higher computational costs.

It is also interesting to give a brief insight on the
computational costs of the proposed algorithm and on its
dependence on the spatial resolution. In figure 4 the specific
Kinetic energy of the packing scheme (that is, T ) is displayed
for three different spatial resolutions versus the number of
iterations. This heuristically shows that after 2, 500 iterations,

the particle are practically motionless (the order of magnitude
of the specific kinetic energy is about 10−8β). This means that
the equilibrium configuration has been attained and that the
packing algorithm can be stopped. Obviously, the number of
iterations required for the attainment of equilibria may vary
according to the specific problem at hand, to the choice of
the kernel function (i.e., Gaussian, cubic spline, quintic spline
etc.) and to the adopted viscosity but generally range between
2, 000 − 2, 500 iterations.

When the particle initialization is complete, the hydrostatic
solution is assigned to the fluid domain (that is, hydrostatic
pressure field and zero initial velocity) and we start the
simulation through the standard SPH scheme [4].

As shown in the left panel of figure 5, the initialization
through the Cartesian grid, because of the high values of
‖∇Γ‖ near the sloping plane, leads to the generation of high
spurious currents which, on the contrary, are completely absent
when the simulations is initialized through the particle packing
algorithm (right panel of the same figure).

A global measure of the particle resettlement phenomenon
is easily obtained by inspecting the kinetic energy evolution
during the simulation of the hydrostatic solution. As shown
in figure 6, the kinetic energy of the SPH simulation after the
use of packing algorithm is at least two orders of magnitude
smaller than the simulation started on the Cartesian grid. In
the former case the dimensionless kinetic energy is of order
10−7 − 10−8 proving that the fluid particles are practically
motionless. On the contrary, the simulation started on a
Cartesian grid shows a particle motion which still persists at
t = 100

√
H/g.

As already mentioned in the Introduction, an alternative
solution to reduce particle resettlement is to start the SPH
simulation using a high numerical viscosity and leave a long
enough time to make particle self-resettle in equilibrium
positions. The actual numerical simulation starts after the
equilibrium configuration is attained. Here, we show that
such a procedure (that is, the initialization using the SPH
scheme itself) only leads to minor improvements. Following
Monaghan [1], we use the standard SPH scheme with a linear
viscous term identical to that adopted in the Packing algorithm.
In this case, the dimensionless viscosity has the same order
of magnitude of that used for the Packing simulation, that
is, O(10−3). The evolution during the particle initialization is
displayed in figure 7. Note that particles are still moving after
10, 000 iterations (the dimensionless kinetic energy is of order
10−5) while, for the same configuration, the proposed packing
algorithm reaches an equilibrium after about 2, 500 iterations
(see figure 4). Moreover, when the actual simulation starts,
particles are subjected to a further resettlement (see figure 8).
In this case the global motion is weaker than that observed
starting on a Cartesian grid but is considerably stronger with
respect to the simulation which starts after the particle packing
initialization.

As a second example, we consider a complex geometry
characterized by bended profiles with different curvatures and
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Fig. 5. hydrostatic solution for the trapezoidal tank (H/dx = 50). Evolution
using a Cartesian grid (top) and after the initialization through the particle
packing algorithm (bottom).
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Fig. 6. hydorstatic solution for the trapezoidal tank (H/dx = 50). Time
history of the kinetic energy.

by acute and obtuse solid angles (see figure 9). Because of
these features, the particle initialization of such a geometry
represents a very difficult problem.
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Fig. 7. kinetic energy evolution during the initialization with the standard
SPH scheme.

0 20 40 60 80 10010-8

10-7

10-6

10-5

10-4

10-3

10-2 Ek / ρ0 gH VTOT

t(g/H)½

after Packing Initialization

starting on a cartesian grid

after SPH Particle initialization

Fig. 8. kinetic energy evolution after the particle initialization.

Fig. 9. sketch of the complex tank geometry.

The top panel of figure 10 displays the fluid evolution under
hydrostatic conditions after the initialization on a Cartesian
grid. In this case, the generation of spurious currents and
vorticity near corners and bended profiles is very strong and
persists for long times. On the contrary, the use of the particle
packing algorithm eliminates such an undesirable behavior and
gives a uniform particle distribution which keeps stable for
long times (middle panel of figure 10) . The evolution of
the kinetic energy confirms the findings above proving that,
after the use of the proposed algorithm, particles are almost
motionless (bottom panel of figure 10).

B. Dynamical problems

Let us consider a fluid domain Ω which at the initial time is
a two-dimensional ball of radius R, subjected to the velocity
field:

{
u0(x, y) = A0 x
v0(x, y) = − A0 y ⇒ ∇u0 =

(
A0 0
0 −A0

)
. (IV.9)
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Fig. 10. hydrostatic solution for a complex tank geometry. Top: evolution
after initialization on a Cartesian grid. Middle: evolution after initialization
through packing algorithm. Bottom: time history of the kinetic energy.

The initial pressure field is derived using the Poisson equation
[14] and reads:

p0(x, y) =
ρ0 A2

0
2
[

R2 − (x2 + y2)
]
. (IV.10)

Assuming the flow to be inviscid, Ω preserves an elliptical
form during the evolution and this form can be derived
analytically (see [1] and [14] for details). This domain is
initialized using a Cartesian grid (top panel of figure 11) and
the proposed particle packing algorithm (bottom panel of the
same figure). Since the SPH is a Lagrangian scheme, particles
move along stream lines. Consequently, when particles are
initially set on a Cartesian grid, the flow evolution given
by (IV.9) leads particles to clump along straight lines (see
top panel of figure 12). This partially prevents the SPH
solution to match with the analytical solution for the domain
boundary (dashed lines in figure 12). On the contrary, the flow
evolution after the use of the packing algorithm displays a
more uniform particle distribution and, consequently, leads to
a better agreement with the analytical solution (bottom panel
of figure 12).
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Fig. 11. evolution of an elliptical drop. Initialization using a Cartesian grid
(top) and the particle packing algorithm (bottom).
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Fig. 12. evolution of an initially circular patch of fluid using a Cartesain
grid (top) and the particle packing algorithm (bottom). Dashed lines indicate
the analytical solution for the domain boundary.

As a second example, we consider a ship hull section

114



6th international SPHERIC workshop Hamburg, Germany, June, 08-10 2011

floating in hydrostatic conditions. Under such a hypothesis, the
hull section should maintain motionless. However, because of
the particle resettlement, an unphysical deviation of the ship
hull from the initial position may be observed. Similarly to
the test cases studied in the previous sections, we initialize the
fluid domain using a Cartesian grid (top panel of figure 13)
and the packing algorithm (bottom panel of the same figure).
Figure 14 display the related SPH simulations. In this case,
the spurious currents that generate in the neighborhood of the
hull because of the Cartesian grid force the ship hull to move.
Figure 15 shows the motion of the mass center (top panel) and
the roll motion (bottom panel) of the ship hull. Because of
the reduction of the spurious currents, the packing algorithm
drastically reduces the unphysical ship motion ensuring the
attainment of the correct hydrostatic solution.

-2 -1 0 1 2-1.5
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-0.5

0

0.5

1
y/D

x/D

-2 -1 0 1 2-1.5

-1

-0.5

0

0.5

1
y/D

x/D
Fig. 13. freely floating of a ship hull section. Initialization on a Cartesian
grid (top panel) and with the particle packing algorithm (bottom panel).

Conclusions
Using some intrinsic features of the SPH scheme, a

novel packing algorithm has been derived for the particle
initialization. The proposed algorithm has been validated again
several tests cases proving to be robust, fast and reliable
also for complex geometrical configurations. As shown for
the evolution of the elliptical drop, the particle distribution
obtained through the packing algorithm may even avoid the
formation of those filamentous structures that are caused by
the Lagrangian nature of the SPH.
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