

seconda serie

Pubblicazioni del

CENTRO STUDI CALCOLATRICI ELETTRODICHE

del C. N. R.

presso l'Università degli studi di Disa

118

Session 36: ACTIVE AND PASSIVE NETWORKS Paper 36.3 19CP67-1182

A TRANSISTORIZED DIRECTIONAL COUPLER

F.Denoth
Centro Studi Calc.Elettr.-CNR
Pisa - Italy

In this paper is described a directional coupler in which the analogical reconstruction of the backward wave is obtained by means of a transistor. The use of an active element has allowed one to obtain at the same time a broad band, a high directivity and a tight coupling.

The use of such a coupler in a bidirection al broad band amplifier is also proposed.

Active Directional Couplers (^)

In a transmission line the amplitude of the backward wave voltage (V_{-}) is related, at any point, to the total current (I) and voltage (V) and to the characteristic impedance (Z) of the line by the following relationship:

$$V = (V-ZI)/2 \qquad \qquad (1)$$
 According to eq.(1) the reconstruction of V can be made by picking-up both V and I and by performing operations appearing in eq.(1) in an analogic way. For the analogical reconstruction we propose the use of a junction transistor as shown in the schematic diagram of Fig.1. When $Z = (1-\alpha) \gg |Z|_{I} = \text{and} = |Z|_{I} \gg 1/g_{m}$, the circuit of Fig.1 gives an output voltage proportional to V if:

 $Z_VZ_T/Z_E = Z$ (2 In particular, the output voltage is equal to V^{-} is

$$z_{L} = z + z_{V}$$
 (3)

If we denote by ΔZ_1 , ΔZ_V , ΔZ_I and ΔZ_I the amount by which Z_1 , Z_V , Z_I and Z_I differ from a set of values that satisfies eq.(2), we obtain the following expression for the directivity at low frequency (D):

$$D_{o} = 2/(\Delta Z_{E}/Z_{E} + \Delta Z/Z - \Delta Z_{I}/Z_{I} - \Delta Z_{V}/Z_{V})$$
 (4)

The expressions of the coupling factor (C) and of the directivity (D) versus frequency are given by:

$$C = 1/(1+j\omega/\omega_c)$$
 (5)

$$D = D_o / \left[1 - D_o \left(\omega / \omega_d \right)^2 \right]$$
 (6)

where ω and ω are cut off frequencies, functions of the circuit parameters (°).

Bidirectional Amplifiers

The described directional coupler can be used in a bidirectional amplifier in a conventional way. In this use it is very important to mantain a high directivity against variations of circuit parameters. This can be achieved by

B.Pellegrini Centro Studi Elettr. e Telecom.—CNR Facoltà Ingegneria — Pisa — Italy

supplying the system with a control signal (°). A phase detector at the output of the direction all coupler gives a signal by which the value of one of the Z's appearing in eq.(4) can be controlled. We propose the use of a FET connected at the Z_T -terminals, as appears in Fig.2.

Experimental Results

An active directional coupler has been realized according to the electric diagram of Fig.2. A theoretic analysis of the circuit (°) shows that the performances can be improved by using a capacitor of proper value connected as C in Fig.2.

In Fig.3 are plotted C and D versus frequency. It can be seen that the experimental measurements agree quite well with the theoretic curves.

- (^) Pending patent by B.Pellegrini
- (°) Internal Report of CSCE and CSET.