OSIRIDE File Transfer Services and Protocol

Pacla Bucciarelli
Anna Canepa
Pausto Caneschi
Earico Zucchelli

Report CNUCE C84-=7

Istituto CHUCE
PISA
February 1984

8o

5.

L] @
® @
L)

Yalue truncation

W tw W ww e Ww
®]

b el el oD D ad el dd and end d
& L}

BB B RN R BB NN
L] &

L]
@
@

°
@
3

&
®
L]

&
°
&

L]
1
@

o
L
&

L
L
@

virtuval Pile Hodel Subset
File nanme s o s 5 = =
File password s 2 e e
Access control 1list o
History attricutes . &
File structure . » = =
File data tyre o o +

File current size o e
’ File maxipum size s »
record seguence o o @

9 Direct access .+ s +
1 BRecord size type o o
2 Record sSizZ€ .+ » o s o
3 Key position o o = o
4 Key length e s o o ®

g~ A~ R R~ - i o N S R R g -
[
I I S Vo i e s UV B o ARE S I X DURE O JESY

0 VYirtual File Protocol °

.1
5.2 State transiticns taktles
£,3 Formal Description ., .

E]

Second part . 2 = o = 2 = s e

1

2.0 PTF implementation specifications

0 Internal PTF Structure -
Design hypothesis s e
General overview of the
FTF User Services s e
FTF user interface . .

' FTF commands .« o

Parameters meaning
Parameters values
Parameters types o
Explanatory notes

Types of interruptions

FTF Structure cverview
Primary structurs . e
Primary maln progranm
FTF FroCe€duUre€s . o
»1 SEND [procedure

Table of Contents

1

2

4 Pparameter encoding
5 value of diagnostic parameter

€ Contents of protocol-definiticn agyregate
7

8

9

1

1

L]

2

k]

2

EECEIVE procedure

=3

?

States of the file transfer
States of the FTF process
FTF diaynostic for the user

-

3

@

The OSIRILDE recovery mechanisnm

?

°

@

2

2

2

?

1ypesLength/Value technique
Parameter values representation

°

) Contents of authentication
1 File data encoding

{TLV technigue)

Contents of history-attributes aggregjate
Contents of global-attributes agyregate
Contents of record-attributes agygregate
ayjregate

-

structure

»

£

26
26
27
27
29
3
32

- -~

ie
33

34

35

iR

-

3&
36
3¢
3¢
3t
37
37
37
37
37
38
38
38

39
4¢
40
41

iv

4

O o B o
e o & @
W b b B RO
& & b &

L
&

[]
B
6 & v @ ¢« ® © 8 ¢ & e U
[SE SRR S S E SR NN SR SN N SN SN
o & ¥ & © & & o & © b w

&
]

NECE ST CE R SENE SE NN SR N
W e o
n ®

(3]
3
B B B0 BRY R B RO B 0N B W W
&
Wiv Wwiv w W ww wilv w o -~ O N
&

Ny B tas

B e
$ & v & § v &8 ® B @
b & e ¥ & & B @

L2
@

Ll
®

®
9

Beferences

RESTAKT procedure

2.3 s e o
2.4 TCP procedure s s @ = =
2.5 STATUS procedure .« s » s o
2.6 CARNCEL procedure .« « = = =
2.7 DELETE procedire » s s » =

YPS Primary Procedures - s = =
3.1 SP Primary procedure . » -
3.2 SL Primary procedure . - o
3.3 CE Primary procedure - » o
3.4 RA Primary procedure . . o
3.5 CP Primary procedure .« . o
3.6 BT Primary procedure . - =
3,7 TATA Primary procedure . o«
3,8 ET Primary procedure . .
3.9 CL Primary procedur€ . . =
3,10 DL Primary procedure .
3,11 RL Primary procedure a e
3,12 ©EKP Frimary procedure o
3.13 DP Primary procedure . o
3.14 &BC DATA Primary procedure
ondary structure e a s o v s o

Secondary ®ain prcgrag . . o o

VFS Secondary Procedures o« » =
2.1 SP Seccndary procedure ., -
2.2 SL Seccndary procedure . .
2.3 CR Seccndary procedure . »
2.4 RA Secondary procedure . -
2,5 CP Seccndary procedure s
2.6 BT Seccndary procedure . .
2.7 DATA Secondary procedure
2.8 FT Seccndary procedure .
2,9 CL Seccndary procedure - .
2,10 DL Secondary procedure -
2,11 EL Secondary procedure .
2.12 EP Seccndary procedure s

Data structures
input messaje identifiers set -
Ccutput message identifiers set .
Primary CONTEXT list and description fields

L] £ 2 - 5 =2 ° “ L]

ISIDE primitives = o o o = = o o o
OPEN primitive - s + s s o o o s
CONNECT primitive e » @ e @ a =
RECEIVE primitive s s 8 v s 2 e
KEADY primitive s e 8 o s @ = =
DATA primitive o+ s s o o = = o ¢
CONTRQL primitive o s a = o o =
SYNCHRONIZE primitive o v e 3z ®
ACCEPT primitive o = o s o o o o
RESPONSE primitive . &« o s o » o

0 FLINISH primitive o v s a s = s

Table of Contents

a2

°

E

®

°

»

»

D [@ @
£ @ a £
E3 ® » ®

75
7£
75
76
76
77
73
80
89
81
82
83
84
84
84
85
8=
86
86
8¢
87
88
89
990
390
91
92
92
93
g4
94
95
98
95
96

97
97
93
98

100
100
101
103
103
104
104
165
108
106
166

108

LIST _OF_FIGURES

Pig. 1. Virtual file services Y |
Fig. 2. Protocol structures s o s a = 2 2 % s s » s s 2 » = ¢« 9
Fig. 3. Message type value . . s o &« o 5 s s o 5 s s s s s s 3 25
Fig. U, Parameter encodiNg o o o s » o o s s s » a2 s s a o o s 28
Fig. 5. Severity values s s+ o s s 8 s s s s @ s s s o 2 = s » 30
Fig. 6. Diagnostic reason valuesS . « = o o » 2 = s o = o o s = 31
Fig., 7. Protocol definition encoding =+ - « s o 2 s o s s s o » 32
Fig. 8. History-attributes enccding s o 3 2 a2 s o e = s = & e 32
Fig. 9. Glopal=-attributes encoding . . » « « s 5 « s 5 & s o o« 233
Fig. 10. Record-attributes encoding - s s s s 2 s s s s s s s o 33

Fig. 11. Authentication encoding e o s s o s o m o = = s s e o 3U
Fig. 12, Protocol HMachine States e s s s s s s » s a s s s o o #7
Fig. 13. Protocol Hachine Events s = o s & o a s a s = - o o a H2
Fig. 14, List of protocol messages s s w a s s s s 8 s o » » 2 U2
Fige 15, ConditionS o o o o o s = a @ « o o o« a s = = o s o o » H3
Pig., 16, Conmection Protocol (primary) e s s s o s 3 v s o o o 44
Fig. 17. Connection Protoccl (secondary) o 2 ® o o o @ a2 s % o H5
Fig., 18. File #anagement - File enclosure (primacy) . » « » o » U¢
Fig. 19. File Hanagement - File enclosure (secondary) s s e s s 47

Pig. 20. File management - Open enclosure (primary) - - » =» o - U8

Fig. 21. File managemeut - Cpen enclosure {secondary) . . « « » 49 -
Fig, 22. Data Transfer (sende€r) =« s = s s = s s s = a s = s o« o« 50

Fige. 23. Data Transfer (receiver) o s s v s o s 83 3 e s v s s s 91
Fig. 24, General Overview of the FTF structure e s » e o o s = 53
Fig. 25, User Interface . - s o o o s s s o s 3 s 2 s s 5 s s & 95
Fig. 26. User command format e o s o = = 5 o o » = @ s s s s a O
Fig., 27, VYFP diagnosStic .+ o s s 3 o » » » s s s s s o s s 3 o 2 02
Fig. 28. VFP diagnostics {ccntinued) =« « o « o« = o s o s 2 » o 63
Fig. 29. Local File System diagnostics s s s s s » e s s o o » Gl
Fig. 30. FTF general diagnostic =+« » = s o s 2 s s » s o s o » s €5
Fig. 31. FTF architectuUre . o « o s 2 s s s s s s s s » s o o s €6
Fig- 32. File Transfer Primary « 2 % o 4 a4 o s 8 s = s s u» o a2 59
Fig. 33. VFS Prinmary e
Fig. 34, File Transfer Frimary m s s s e v v 5 o v s = 2 o o o 1Y
Fig. 35. File Transfer Secondary s o s s s s 5 e 3 s o v s a » 87
Fig. 36. File Transfer Secondary Procedures .« o« o o« o s » s » » 89

List of figures vi

First Part

1/ 108

s oy i s s - S i A < e A I T S St e

1.1 BOLES OF PARBRTHNEERS

In a Virtual File Service VPFS connection between two VFS users, tae
dialoy is always asymmetrical, i.e. the two VFS users play differ-
ent and complementary roles. The initiator of the VIS conpection
{called the Primary) is the cne that defines the work tc e per-
formed oa the Virtual Filestore through the conpection: it acts on
a direct relationship with the end user on behalf of whorm it works.
The other VFS user {(called the Secondary) is the executor of the
work proposed by the Primary and reports to it; it resides on the
same system as the FHeal Filestore and bhas no relation with an end
user, except throuyh the Primary.

The actual direction of the data transfer is not related to the

concepts of Primary and Secondary; moreover, this direction can
vary during different phases of the sanme Filie Transier.
The concept of phase will be explained later on: at this point it
is enough to say that a distinction 1is made Letween the Sender aud
the Receiver, and that both Primary and Secondary may be Sender and
Receiver, in different phases,

1.2 DYBAMIC STRUCTURIEG OF A VFS CONNECTIOR

The VFS allows operation cn only one file at a time on a given VFS
connection. Multiple files <can be handled concurrently through
several parallel VFS connection. Furthermore, within one VFS cou-
nection, operation cn the curresnt file are executed one after the
other in the order of submittion, This is necessary +to xeer total
contrcl on the sequence of events.

The wvork performed on a VFS ~conuection can be dinamically struc-

. tured as a set of nested =enclosures, which are opened in the

hierarchical order and closed in the reverse crder. If the VFS con-
nection breaks or is abnormally terminated by one VFS user, all the
currently opened enclosures are considered as being implicitly
closeds

The enclosures are the following, in the hierarchical order,
starting from tane cutmpost one:

- Connection enclosure: the VFS connection exists (from establ-

ishement to terminaticn cf the VFS connection)

- File enclosure: a current file exists (from successful file

selection tc file release). A connection enclosure contains any
numnber of file enclosure {including noneg).

)

Service (Overview 2 7 108

- Open enclosure: the current file is ready for data access (fronm
successful file opening to file closing). A file enclosure con-
tains any number of cpen enclosure {including none).

- Transfer enclosure: file data is beiny transferred (from trans-
fer begin to normal or aknoreal transfer end). For file traas-
fer purpose, onliy cne transfer enclosure for opeun enclosure 1is
necessary.

13 COBMECTION FACILITY

The connection facility service provides for establishment and
release of the VES connection,

At connection estavlishment, there is a negctiatiom of the partic-
ular class of service to pe used and <f any user special con-
ventions that may be ayreed!. Renegjotiaticn is not provided 1in
CSIEIDE Version 1.

Connection termination is normalliy reyuested by the Primary, vhen
all work 1is completed. However, in emergency cases (e.g. systen
shutdown) , the connection can be abnormally terminated Ly either
YFS user at any point of time. The connection can alsc be acci-
dentally lost: this is reported to both users by the VIS.

fe4 FILE HABAGEHENT

The file manayement service provides to the Frismary all file serv-
ices whith the exception of file data transfer. This iucludes:

- selection of a current file, Ly designating an existing file .

- Release of the current file when all work ou it has Lbeeu con-
rpleted.

i Particular conventions may serve two Dain purposes:
- addition of specific services, file nodel or data nodel
- simplification, by assuminy implicit prenegotiation of a

number of parameters (useful for small systems cffering a
single choice for each capability).

Service {Overwiew ‘ 3 7/ 108

- Creation of a new file, with specified attributes. This file
then becomes the current file. An cption specifies what to do
if a file with the same name already exists.

- Deletion {and release) of current file.

- Retrieval of a selected attributes of the current file.

- Oopening of the current file for data access, with a specified
lock. Only seguential data access is provided in OSIRIDE ver-
sion 1: read the file c¢r write to the file (either after its
current content or overwriting it).

- Closing of the current file, with release of the lock.

Starting of the file data transfer: this enters the next part
of the service.

i« 5 FILE DATA TBANFER

The file data transfer service provides for the transfer of file
data. The data flow is ome way from Semder to Receiver. Facilities
are provided for:

orderly termination of the data transfer by the Sender (with
acknowledgement by the Keceiver).

- Abnormal termipation of the data traamsfer by either user.
- Checkpointing and checkpcint acknowledgenment.

- lumediate restart of the data transfer tc a negotiated previous
position. This form of restart can be requested by either user.

1e®6 RECOVERY

The purpose of the restart facility is to avoid complete repetition
of a transfer which was interrupted before completicn. The prinme
objective is to minimize the amount of data retransmission, while
eliminating any loss or duplication of data im the received file,

Restart may be either immediate or deferred.

An immediate restart occurs within a transfer enclosure, on request
of either VFS user., In such case, the negotiaticn of the restart
position and retransmission oCCULS immediately, without exitiang
from the transier enclosure.

Service QOverwieu 4 / 168

4 deferred rTestart occurs after the transfer enclosure has been
terminated and the file closed and potentially released. The termi-
pation can be involuntary {failuvre of netwcrk cr either nocde) or
yoluntary {shutdown or desire to execute higher priotity work). 4n
any case, all enclosures that have been closed will ©te reopened
pefore the transfer «can be resumed. All file attributes and proc-
essing attributes are set to the same values as initially. Restart
position 1is npegotiated while entering the open enclosure. A
deferred restart can occur ¥within the same cr a different VFS con-
nection. A deferred restart is initiated only by the entity which
was the Primary of the interrupted activity.

The deferred restart is the only type of restart implemented in
GS1EIDE.

i-7 OPEN IDENTIFICATION

Since a restart can be deferred, there 1is a need to relate several
successive transfer enclosures as belonging to the same file trans-
fer activity. As a result, each new file transfer reguest will be
identified by a umigue identification, which will be recalled every
time a deferred restart is attempted. This identification is sug-
plied by the Primary when entering the opes enclosure. It is uniguse
only within the Primary and has to ©be prefixed by the address cf
the primary to be globally unigue. The open identification 1is
deleted {and can therefore be reused for another activity) omce the
associated file transfer request is either successfully completed
or abandoned [(not recoverable failure).

18 BESTART POSITION BEGOTIATIOE

The restart position is designated in terms of record position in
the data flow, starting fron the beginning cf £file data transfer.
This type of desigpation is not applicable to uastructured files:
for unstructured files, it is exrressed in terms of character or
octet position in the data flow (accordimg to file-data-type val-
ne), starting from the beginning of file data transfer,

The negotiation rules are the fgllowing:

- one partner proposes a restart position

- the other can agree of specify ap earlier position.

The sender can abstain from specifying a restart positicn, since

restart is normally driven by the receiver. However, the sender pay
specify a restart positicn toc force retranspission of data.

Service QOverwiew 5 /7 108

1.9 CHECEPOINTS

As described above, checkpoints ({i.e. the parking of particular
points in the data flow) are not required for resynchronization of
the data flow., However, they are useful whenever context informa-
tion {i.e. information necessary to properly restart data transfer
after a recoverable failure) is saved: checkpoint acknowledgment by
the receiver allows the sepder to purge its context information
{thus avoiding an ancontrollied growth). Restart at a pcsiticn
before an acknowledyed checkpoint is allowed, but might involve
full retranssission of the data, depending on the implementation.

Checkpointinjy is not isplemented in OSIRIDE Version 1. This sec-

tion has been introduced for completeness with respect to the stan-
dard ECHA-85.

1. 16 VIRTUAL FPILE SEBVICES

Pig. 1 pag. 7 lists all the services of the VFS., For each service,
its type, the user who can initiate it , and its purpose are speci-
fied.,

The meaning of types is:

1 Service structure w¥ith a reguest prigitive and indication
primitive
2 Service structure with request, indication, response and con-

firmatican primitives.
3 Service structure with two indication primitives.
The initiators are:
PR Primary
sC Secondary
SH Sender

BC Receiver,

Service COverwiew 6 / 108

L] k] 4
Service jtypelinit. |Description
3 3 2

CONNECTICN FACILITY

H L)
{ PR |Establish VFS comnection

ww“mwﬁﬂmjnwm

E
F-COHNECT 12
F~RELEASE | 2] PR |Clean release of VIS connection
F-DISCONNECT i1 |PR,S5ClUnclean release of VFS connection
F-ABORT i3 | - |Loss of presentation connection

3 2 3.

FILE MANAGEHMENT

E

F-SELECT-FILE PF |Establish current file

PR |Release current file
PR iCreate new file
PR |Delete current file
PR |Read attributes of curreat file
PR JOpen current file for data access
PR JClose current file
PR |Start transfer of file data
A

]
!
F-RELEASE-FILE i
F-CREATE-FILE]
F-DELETE-FILE i
F-READ-ATTRIBUTES]|
F~CPEF~-FILE i
F-CLOSE~-FILE i
F-BEGIN-DATA i

LS

(NSRS S IR I S I I NS IA
s tomim e Ghos llomss G sowe o G g

FILE DATA TRANSFER

s own i e (0 oo o B s B e G e e o G Gt G foen B g G G oo Gl e o

nmumquwﬁ-mmmwmm&.m“q—w-}

K] K]
F~-DATA i1] SN |Transfer file data
F-END=DATA 12 | SN |End transfer of file data
F-ABORT-DATA i2 |SN,EC)Abort transfer of file data
3] 2
Fige 1» yirtual file services

Service Overwview 7 7 108

e o S s S - e R N £ D T S L S R

2.0__PROTIOCOL QVEBVIEER

2.9 ROLES OF VFS ENTITIES

The asymmetry of the VFS is reflected in the protocol: the two VES
entities play different and complementary roles corresponding to
the roles played by their respective users; Frimary and Secondary
outside of a transfer enclosure, sender and Beceiver within a
transfer enclosure {see "1.0 Service Overwiew'" pags 2).

2.2 DESCRIPTIVE HBODEL

The Virtual File Protocol is modelled as an abstract machine with
protocol structures between the two VPS entities. A protocol struc-
ture is an elementary dialogue for the purrcse of an indivisikle
operation. As such, it is totally successful or totally unsuccess-
ful, never partly successful. It is composed of a regquest, issued
by one VFS entity, and for most {but not all) types of structure,
of a respomse, issued by the other VFS entity. Each response CE
reguest is a single protocol message.

There are two types of protocol structures:
- Type 1 structure: request without response€.
- T1ype 2 structure: request with response

A protocol message contains protocol control information (i.e. one
or more parameters) and may in some cases also contain file data.

Dynamic executicnm of the Virtual ~File protocol results in an
ordered seguence of protocol structures. To describe the protocol,
it is sufficient to separately describe each of its structures (orL
' messages), plus any precedence relationship ©Letween structures
(state transmission).

protocol overview 8 7 168

-
Structure typelinite.
E

o s 4

Description

i kS

| |

o 1 f }

i | i {

| Select Protocol | 2} ER | Initiate VES connection

{ Release protocol { 2] BR | Release VFS connection

| Disconmect Protoccl] 1 |PE,SC| Abnormally terminate a VFS connecti

| |] |

| End group?] 2 1 PR |} Delimit a structure groug

| Select File | 2 |} PR | Establish current file

| Release File] 2 | ER | Belease curreat file

] Create File { 2§ BR | Create new file

| Delete File] 2 | PR | Delete curreant file

{ Read Attributes } 2 | PR | Bead attributes of current file

] Open File | 2 | PR | Cpen current file for data access

!} Close File] 2} BR | Close curreat file

{ Begin Data] 2 { PR | Begin transfer of file data

i |]]

} Data | 1] SN | Transfer file data

{ End Traasfer } 2 | SN | End transfer of file data

} Abort Transfer | 2 |SN¥,RC} Aport transfer of file data

| Restart Transfer | 2 |SK,EC] Resyanchr. transfer in progress

| Checkpoint | 2] SN | Reguets acknowledgenment

] i 3 2 -
FPig. 2» Protocol structures

2.3 PROTOCOL DESCRIPTIOR

2.3.1 Hotation

This clause provides a narrative descriptiom cf protocol.
The formal descripticn is provided in "5.3 Formal Descriptioan" pag.

4i.

Tach message is defined by the following itens:

- Sender of message
- Function

- List of parameters

2 Not supported in CSIRIDE phase 1

Protocol overview

9 / 108

- Resulting states transition({s)

- Relationship with service primitives (sending/receiving)

Bote:s

sion 1.

The "groupiamg optioms™®
are not described because they are

and "special comventioas" parameters
not implemented in OSIRIDE Ver-

2.3.2 Select_ Protocol reguest_ (SP)

Sent by : Primary

PFuanction

Content

Parameter description

fransition
Sending

Beceiving

e

Initiate a VFS connectioa (reguest opening
of a VFS connection enclosure)

filestore-nane
authentication
protocol definition = {Protocol~identifi-
er

{Protocol-version
{class-of-filestore
{class=of-service

see ¥2,3.28
20

Parameters description" padgs

Dormant ==> SP pending
on F-CONNECT request primitive.

generate a F-CONNECT indication primitive.

2.3.3 Select Protocol respobse_{(SER)

Seat By : Secondary
Fumction

Content

paraseter description

Fransition

protocol overview

The espected ontcome is a F-CONNECT
response primitive.
response to SP
diagnostic
protocol definition = {Protocol-version
{class-of-filestore
{class-of-service

see "),3,28 Parameters
20

description® pag.

SP pending -=> NO file {successful)

10 7 108

»

Sp pending ==> Dormant {rejected)

Sending on F-CONNECT respoase primitive. 5
Beceiving generate a F-CONNECT confirmatior primi-

tive.
2.3.4 Belease Protocol reguest_{(BP)

Sent by :

Fanction

Content

Frapsition

Sendinq

Beceiving

Primary

request normal termination of VFS con-
nection enclosure

none

SE No-file =-=> RP-pending
SPp pending --> Dormant {rejected)

on F-RELEASE requets primitive.
generate a F-RELEASE indication primitive.

The expected outcome is a F-RELEASE
response primitive.

2.3.5 BRelease Protocol_response (BPR)

Sent by :
Functioa
Content
Iransition
Sending

Beceiviag

B o Gt s s s waee i i i) i e 5.

Secondary
response to BFP

none

RP pending --> Dormant

on P-RELEASE response primitive.

generate a F-RELEASE confirmation primitive,

2.3.6 Discompnect Protocol reguest {DP)

Sent by :

Panction

Content

Primary/Seccndary

Request abnormal termination of VFS con-
nection enclosure

diagnostic

Protocol overview 11 / 168

Parameter descrigtion see n2,3,28 Parameters description® pag.

20
Traasition Any state --> Dormant
Seading on F-DISCONNECT reqguest primitives
Receiving ggneratﬁ a F=-DISCONNECT indicaticn primi-
ive.

2.3.7 Select File reguest {(SL)

Sent by = Primary

Function establish an existing file as current (re-
quest opeaing of a file enclosure)

Content filestore-nanme
file-password
Parameter des¢riptien gge w2, 3,28 Parameters description” pag.
fransition No file ==> SL pending
Sending on F-SELECT-FILE reguest primitive.
Receiving ggnerate a P-SELECT-FILE indication primi-
ive.

The espected outcore is a F-SELECT-FILE
response rrimitive.

2.3.8 Select File respomse_(SLR)

_Seat by : Secondary

Fanction response to SL.

Content diagnostic

Parameter description see w2, 3,28 Parameters description® pag.
20

fransition SL pending =-=-> file-selected {successful)

SL pending =--> no-file {(rejected)

Seading on F-SELECT-FILE response primitive.
. Beceiving generate a F=SELECT-FILE coafirmation priam-
itive,

Protocol overview 12 7 108

Seat by : Primary

Fonction

Content
Fransition
Sending

Beceiving

2:3-10

Sent hy : Secondary
Punction
Content

Parameter description

Fransition
Sending

Beceiving

2:3.11

i v -«

Sent by : Prinmary

Function

Content

Protocol overview

release the current file, {requests clos-

ing of a file enclusure)

noos

File-selected -=-> RL-pending

on F-RELEASE-FILE request primitive.

ggnerate a F-RELEASE-FILE indicatiom primi-
ives

The espected ocutcome 1is a
response primitives

F-RELEASE-FILE

Belease File_response_ {(SLE)

response to RL.
diagnostic
description” pag.

see "2,3,28 Parameters
20

BLepending -=> pno-file
on F-RELEASE-FILE response primitive.

generate a F=-RELEASE-FILE confirmation
pripitive.

The espected cutcome 1is a
response primitive.

F-RELEASE-FILE

Create_file reguest (CR)

Create and establish a new file as current
(request opening of a file enclusure)

file-name
file-passvord
clash-options
reversible-mapping

13 / 108

file-attributes = {global attributes
{record-attriktutes
{key=-attributes
{field-attrikutes

paraeeter description see w2, 3,28 Parameters description" pag.
29

Trapsition No-file ==> CR-pending

Semding on F-CREATE-FILE request primitive.

Beceiving generate a F-CREARIE-FILE indication primi-
tive.

The espected cutcose is a F-CREATE~FILE
response primitive.

2.3.12 Create_File response_{CRB)

R s i <> ey S SR G D D AT

semst by : Secomndary

Function response to CR

Content diagnostic

parameter description see "2,3.28 Parameters description" fags
20,

Fransition CR-pending =--> File-selected {successful)

CR-pending =-=-> No-file {rejected)

Sending on P-CREATE-FILE response primitive.
Receiving generate a F-CREATE-FILE confirmation prim-
itive.

' 2.3.13 Delete_File reguest_ (DL)

e . i~ e e e D D T D TN T T

Sent by : Primary

Punction delete and release the curreat file.
: {this reguest closes the file enclosure)

Content none

fransition File-selected =--> DL-pending

Sending ' on F-DELETE-FILE request primitive.

Beceiving ggnerate a F-DELETE-FILE indication primi—
ive,

Protocol overviey 14 / 1068

The espected outcome is a F-DELEIE-FILE
response primitive.

T B o < i i e S e i T

Semt by : Secondary

Panction response to DL.
Content diagnaostic
Parameter description égee "2,3.28 Parameters description™ pag.
framsition Di=-pending --> no-file
SL peprding --> no-file ({(rejected)
Semding on F-DELETE-FILE response primitive.
Beceiving ' gigerate a F-DELETE-FILE confirmation prim-
itive.

2.3.15 Bead attributes reguest {B3)

a4 —net £

Sent by : Primary

Puaction retrieve specified attributes of the cur-
rent file,

Content none

fransition File-selected ==> RA-rending

Sending on P-READ-ATTRIBUTES request primitive.

Beceiving generate a F-READ-ATTRIBUTES indication
rrimitives

The espected outcome is a F-READ-ATTRIBUTES
response primitive.

2.3.16 Bead Attributes resposse {(RAR)

Sent by : Secondary
Fanction response to RA.

Content diagnostic

Protocol overview 15 7/ 108

parameter description

gransition
Seading

Beceiviag

{history-attributes
{glokal-attributes
{record-attributes
{key-attributes
{files—-attributes

file-attibutes

see 932,3.28
20.

Parameters description® [pag.

RA-pending =--> File-selected
on F-READ=-ATTRIBUTES response primitive,

generate a FP~-BEAD-ATIEIEUTES confirmation

primitive.

2.3.17 Open_File_reguest {0P)

Sent by : Primary

Punction

Content

Parameter description

fransition
Sending

Beceiving

seast by : Secondary
Fuaction

Content

Protocol overvied

Initiate of current
file.

{request opening an open

processing of contens
enclusure)

access-node
processing-mode
lock

failure-option
open-identification
restart position

see "2.3,28 Parameters description® padg.
20,

File-selected ==> OFP-pending
on F-CPEN-FILE request primitive.

generate a F-CPEN-FILE indication primi-

tive.
The espected outconme is a
response primitive,

F-OPEN-FILE

2.3.18 @pen Pile response (GER)

response to CP

diagnostic
restact-position

16 s 108

Paraseter description

Framsition

Sending

Beceiving

2.3.19 Close File regue

Semt by : Primary

Puaction

Content

Fransition

Sending

Beceiving

see 12,3.28 Parameters descrigption® rage.

20

OP-pending =-=-> File-cpen (successful)
OP-pending ~-=-> File-selected (rejected)

on F-QOPEN-FILE response primitive,

generate a F-CFEN-FILE confirmation primi-

tive.

st_(cL)

contens of current
enclusure)

Terminate processing of
file. {reguest closing an open

none

File-open --> Cl-pending
File-aborted -=> Cl-pending

on FP-CLCSE-FILE request primitive.

generate a F-CLOSE-FILE indication pripi-
tive.
The espected outcose 1is a F-CLOSE-FILE

response primitive.

e > =

2.3.20 Close_file response_(CLRB)

Seat by : Secondary
Function
Content

Parameter description

Transition
Sending

Beceiving

Protocol overview

respecnse to CL

diagnostic
see "2,3,28 Parameters descriptiomn”™ Egadg.
20.

CL-pending =--> File-selected
on F-CLCSE-FILE response primitive.

generate a F-CLOSE-FILE coafirmation primi-
tive.

17 , 108

2.3.21 Begin

T o D i i o <G i R < S T T D R T <} T

Seat by : Primary

Famnctioa cause transition to file data transfer lev-
els {reguest opening a transfer enclusure)

Content none

Transition Pile-open =--> BT-peading

Sending on F-BEGIN-DATA reguest primitive.,

Beceiving ggnerate a F-BEGIN=-DATA indicatiom primi-
ive,

The espected outcome is a F-BEGIN-DATA
response primitive.

BB BRI E SR e 5w i o i o e < I o w00

2.3-.22 Begin Tramnsfer_response_ {BIR)

Seat by : Secondary

Fuaction response tc BT
Content _ none
framsition ET-pending =--> Data

BT-pending --> File open {(rejected)

Sending on F-BEGIN-DATA respcmse primitive.
Beceiving generate a F-BEGIN-DATA confirmation primi-
tive.

2.3.23 Data_regquest_ {DATA)

e et o> e Ao s i i i

Semt by : Sender

Punction transfer a file data and / or delimiter.
Content file-data

Parameter description 2§ee n2_3.28 Parameters description®™ p[page.
Tramsition Lata --> Data

Sending on FP-DATA reguest prieitive.

Beceiving generate a F-DATA indication primitive.

Protocol overvies 18 7 148

2.3.24 Bpd Transfer_request_(ET)

Sent by : Sender

Function specify teramimation cf the tramsfer without
loss of data (reguest closing the transfer
enclosure)

Content none

framsition Data ==-> ETI-pending

Sending on F-END-DATA request primitive.

Beceiving generate a F-END-DATA indication primitive.

The espected outcome 1is a F-~END=-DATA
response primitive <¢r a F-RESTART or F-a-
BCRT-DATA reguest primitive.

2.3.25 End_Tramsfer_

e

Semt by : Receiver

Puaction response to ET

Conteat) npone

fransition ET-pending -=-> File=oren

Sending on F-END-DATA response primitive.

Receiving : ggnerate a F-END-DATA confirmaticnm primi-
ive.

BRI K S o s i o s i i B < <R S <D L) D T UL D WD) e

2.3.26 Abort Tramsfer_reguest_ {(AT)

Ssent by : Sender/Receiver

Function specify abnormal termination of the trans-
fer, with [possible destruction of data in
transit. (this reguest closes the enclo-

SULe) s
Content Diagnostic
Parameter description see ¥2,3,28 Parameters description® pag.
20,
fransition any other data transfer state --> AT-pend-
- ing

Protocol overview 19 7 108

Sending on F-ABORT-DATA reguest primitive.

Receiviag generate a F-ABCRT-LATA imdication primi-

tive,
The espected outcome 1is a F-ABORT-LATA

response primitive.

2.3.27 BAbort Transfer response {AIE)

Sent by : Sender/Receiver
Fumction response to AT.

Content diagnostic

Parameter descriptiosn see "2,3.28 Parameters description.®

fransition AT-pending =--> File-akorted

Sending ‘ on FP-ABORT-DATA response primitive.

Beceiving generate a F~ABORTI-DATA confirmation primi-
- tive.

2.3.28 Parameters_description

B St S Ll D e et s e i <y G Ve S S < < B

The parameters used im the prrotocol messages are described in this '
section.

Filestore-name global title necessary %o establish a connection
with the applicatiom entity supporting the filestore,
There is no default value, because it is provided by the
FIF user.

Buthentication nmanagement information necessary for security aad

accounting of the comnection (user identificaticn and
password, account identification).

protocol-identifier applicatle value is "FTE".

protocol-version designates the VFP version. Negotiable, applica-
ble value for this version %1%,

class-of-filestore specifies the class of virtual file model which
vill be used on this connection, negotiated. See Fig. 7
pag. 32 for values.

Class-of-service specifies the class of the virtual TFile Service
which will be used on this connection, negotiated. See
Fig. 7 page 32 for values.

Protocol overview 206 s 108

Biagmostic is the parameter that provides for error reporting
appearing in response and confirmaticn primitive. It also
‘appears in a number of reguest and indication priamitives
{(for disruptive services). The diagnostic parameter con-
veys up to three elements of informationm, corresgonding
to three levels of error analisys:

- severity
- reason
- diagnostic supplement

BEach element can be supplied only if the preceding (more
synthetic) elements have been supplied. A separate diag-
nostic parameter is used for each detected error. Limita-
tions specific to some services are indicated within the
description of these services.

Pile-password specifies any password({s) to te used subsquently for
protection of the file. The passwords attribute depends
on local naming policies. So the Virtual Filestore has to

allow any types of passwords.

Special-inforsation ‘Transparent data obeying special conventions
between VFS users, It is not used in OSIRIDE.

File-nase specifies the identification of the (file. Fach file
within a given Virtual Filestore 1is identified in an
unambiguous way by means of its name. As the neaming pcl-
icy depends on the local operating systen, the Virtual
File Service allows any types of names.

File-attributes specifies the value to be assigned to file attrib-
utes other then name and password. They can rbe:

Global attributes

file-structure Defines +the internal structuring of the
file. Two models are supported: umstructured
and flat. Cther models of file structure may
be considered in future versions. AD unstruc-
tured file has no visible internal structure:
it is composed only of a seguence of cctets or
‘characters (see file-data-type). A flat file
is composed of records, without any relation-
ship between records other than seguencing.
This category includes most conventional files
and the relational model.
The valne is symbolic (flat/unstructured)

file-data-type This attrbute describes the type of data
stored in the file,
The wvalue Beterogemeous [means that field
description are provided im the file attrih-
utes. Otherwise the file contents are consid-

Protocol overview 21 7/ 108

- ered as homogeneous and field descripticas are
not supplied.
The value character means that the file data is
- entirely composed of characters.
The value tramsparent means that the file data
is entirely composed of octets, whose contents
are undefined.
When the file structure is unstructured, this
attribute cannot have the value heterogeaeocus.
The value is symbolic (character/ traaspareat/
heterogeneous)

file-current-size This attribute specifies the approxi-
nate amount of user data currently in the file.
The value provided at creation tine indicates
the minimum amount of space to be allocated to
the file. After creation, the value of this
attribute is updated locally every time the
file grows. The unit of measure is kilo-octets
if file-data-type is transparent, kilo-charac-
ters if file-data-type 1is character, and
records if data-file-type 1s heterogeneous.
The value is numeric.

file-maximun-size This attribute defines the @maximun
' size to which the file <can grow. Crossing this
boundary my cause an errcr. The unit cf measure
is the same as for the file-current-size.
- The value is nuseric. /

Becord attributes

record-sequence This attribute describes the order of
the records when the file 1is sequentially
accessed. Not applicable to unstructured files.
The value is symbolic (by position/by key).
Since different systems may adopt different
data syntaxes, it is not possible to guarantee
that the Xey seguence is preserved in a file
transfer.

direct—-access This attribute describes by which means
the record are direcly accessible. It is not
applicable to umstructured files.
The value is symbolic {by no means/by posi-
tion/by key)s

Becord sequence and direct access together com-
prise the so called file orgamization. The
table below shows the egquivalence between some
well known organizations and the value of these
attrikutes.,

Protocol overview 22 7 108

record sequence

i 3
| |
T T 4
| direct access] by positicn | Ly key i)
= + i 4 w
{ by no means | seguential] - }
| o % t 4
| by position | relative i - i
1 4 E % |
& 3 k] 8
{ by key { randon { index 1
|] | seguential]
1)] 3

T+ has to be noted that the 'by key?! value is
not supported in OSIRIDE.

record-size-type This attribute defines whether all
records have the same size or not. Not applica-
ple to uastructured files.

The value is symbolic (fixed/variable).

record-size This attribute defines the maximum or fixed
record size. It is applicable only if the file
structure is flat and the file data type is not
heterogeneous. 1f the file structure 1is flat
and the file data is heterogemesus, the record
size is deduced from the field descriptions.

The unit of measure is octets if file data type
is transpareat and characters if file data tyre
is character

The value is numeric.
Clash-options specifies what tc do if the supplied
file-name corresponds tc an already existinag

file. The legal values are:

Beject the existing file is kept; diagnostic
severity is failure.

Reep the existing file is kept and
selected; diagnostic severity is suc-
CesSe

RBeplace the existing file 1is replaced by the
newly defined file; diagnostic sever-
ity is success.

Reversible-nmapping specifies that the mapping Letween
yirtual and real file must be such that all the
attributes supplied with the F-CREATE~-FILE are
returned unchanged on any subsequent F-READ-AT- -
TRIBUTES {unless changed by the user)s

protccol overview 23 s 108

. If reversible mapping is requested, the
F-CREATE-FILE will be rejected if the Secondary
does not implement it.

Legal value: Ies/no

- Protocol overview 24 / 108

3.1 GEBERAL CONYVEBCIIOHS

The bits of an octet are identified b1, b2, +»s..,b8, being k1 lef-
most and most imprortant bit. The same convection applies to striag
of more than one octet, the rightmost bit becomiag bi16, 524 or b6,

3.1.1 Hessage_structure

st i e S R < < D

Each message of the VFP is composed of twc parts:

1. a one octet message header

2. a variable length message content

The message header contains a 8-bit message type. The legal type
yalues are listed im Fig. 3.

The message is composed of the message parameters, in any order.
The representation of parameters is described in Fig. 4 pag. 28,

SER

7 ¥ 1
] 1 SP |2 {
{ 3 5L | 4 SLE |
{ 5 0P | 6 OPR]
{ 7 CL | 8 CLEk |
i 9 RL] 10 CLR i
|} 11 BT | 12 BTR i
{ 13 ET | 14 ETE i
i 15 DATA | 16=-31 unassigned |
] 3Z RA | 33 RAR]
| 34 cRr | 35 CER |
i 36 DL } 37 DLE 1
} 38-255 unassigned] i
L 1 3
Fig. 3s Message type value

3.1.2 Parameter_encoding

s v St T i T D D S VA i T Y D T

3.1.2.1 %Type/Length/Value techmique (TLV techaigue)

The TLV technique is a -method for coding am Information Unit.
Every informaticn unit is enmcoded as a triplet, made of:

1. a type {1st field)

Protocol Encoding 25 7 108

2. a length (2nd field)
3. a value {3rd field)
- fype field {1 octet)
® t1 = 0
® b2 - b8 = type value {1 to 127, 0 reserved)
- leagth field ({1 or 2 octets)
| b1 = 0 the lenqgth is specified on 7 tits ({b2-b8)
e b1 = 1 the length is specified on 15 bits (b2-b16)
® b2-b8 or bi16: binary numker of octets of the value field.
- yalue field (0 to B octets)

& all octets: data

3. 1o2.2 Parameter values representation

The following value types are needed to represent the various

parameters of the VEP:

C character string. Characters are coded in ASCII

B numeric. Unsigned binary integer, with 4 possible sizes:
8, 16, 24 or 32 bitss

5 symbolic. Unsigned binary integer, yhose value has spe-
cific meanings. Size is 8 bits.

| bit map. Bit string in which each bit encodes a specific
meaning. Size is 8 or 16 bits. Any bit whose role is not
defined must be encoded as 0. For Lits representing spec-
ified opticns, the bit is set to 1 if the gption 1is
requested, 0 otheruise.

D date {and optionally time). Encoded as specified in the
standard 1S0,/2014 and 1IS0/3307: TYYHAEDD{(hhmmss}, where
yy=year, mg=nonth, DD=day, hh=hour, =mm=pinute and

ss=second. It is enccded as a character string (see
above), with a size of either ©& octets {date cnly) or 12
octets {date and time)

p & transparent, encoded by VIS user.

A aggregate. Composed of a field (sometimes smaller than 4
bits)of the above types.

protocol Encoding 26 7 108

3.1.2.3 Value truncatioa

For economy reasons, the minimum variable length striag is used to
express values. ’

- character strings do not contain unnecessary sSpaces.

- for pumeric or symbolic, all unnecessary octets from left con-
taining omly zero bits are removed.

- for bit maps, all unnecessary octets fros right containing only
zero bits are regoved.

- for transparent strings no truncation is applied.

3. 1-2-.4 Parameter emcoding

For each parameter of the protocol (see Fig. 4 pag. 28) the follow~-
ing description is given:

- paraaeter type {unique identifier)
- maxisum length of value field ("-" means unlimited)

- Type of value representation ({C, ¥, S5, H, D and T, see Figs. #
rage 28).

- encoding of all possible values ({for S and M cnly)
The parameters which are directly mapped onto presentation service

parameters do not appear iam this table. These are : filestore-nane
and checkpoint-identification.

Default Yalues

The existence of a default value, to be used in case the parameter
_has not Dbeen explicitly specified, depends only on the parameter
yalue type, see Fig. 4 pag. 28:

- for value types S and M, there is always a default value,
equal to zero {0)

- for value types C, N, D and T, there is no default value.

Aggregates

A few parameters contain, instead of an elementary value, an aggre-
gate of values. This aggregate is encoded as a fixed data structure
when most elements are always present and there 1is no need for
extendability. Otherwise, it is encoded recursively as a set of
TLY items. In this latter case, the range of T's internal to

protocol Encoding 27 ;7 108

aggregate can overlap the range of T's defined in Fig. U4 pag. 28,
since this represents ascther level of encodings

The internal encoding of aggregate parameter is specified in the
clauses starting from ¥3.1.2.5 Valne of diagmostic parameter® pag.
29, up to %3.1.2.9 Contents of record~attributes aggregate® rag.
3.

& f E]] H 3
| typel paraumneter jvalue }(value] value encoding |
] ! jlengthjtype | !
o 3 } 4 1 1
] 1 Ibiagnostic P iy = | aggregate i
i 2 |Protocol-definition| = i = | aggregate I
i ¥ |JFile-nane p 64 1 € l
i 4 |(File-passyord } 32) C H
i 5 {Access-control-list] 1 | S | O=no0; 1=yes i
I 6 |Ahccess-rode | I i1 S 1 0 = In sequence |
i 7 iProcessing-nmode [i S { 0 = read, i
i | H i 1 1 = urite,]
! { { ! | 2 = append !
i 8 JLock i 1 I S | B = exclusive i
i 3 ! j | 1 = shared read §
i i » i i | 2 = shated update |
] 9 jPailure-ocption | } ¥ | b1 = rollback |
! 11 jAuthentication | I] = | aggregate §
| 16 iOpes-identificationi 4 | I I i
} 17 jRestart-option }]4] B i
| 24 jClash-option i1 i1 § | 0 = reject, }
! }] i I 1 = keeg, i
i i | i i 2 = replace i
{ 25 jReversible-mapping | 1 | 5§ } 0 =no0, 1= yes 1
] 26]Reguested-attribues| 1 { % | b1 = history }
i i] | 1 b2 = global |
i 3 i i i b3 = record |
| } I i | b8 = key !
i i i i 1 5 = field i
i 28 |History-attribues | i = | agygregate |
i 29 iGlobal-attribues] - i = | aggregate i
.} 30 jRecord—attribues] = { = | aggregate i
!} 31 }Key-attribues | } = | aggregate i
{ 32 jFPield-attribues Po- I = | aggregate {
i 63 }special-informationj 2 | S | i
i = |JPile-data 1 - i T 13 i
H 3 3)] 3
Fig. H4, parameter encoding

3 No +type is defined for File-data. See "3.1.2.11 File data
encoding¥ pag. 34. . ‘

Protocol Encoding 28 / 108

3.1.2.5 Value of diagnostic parameter

The value field of the diagnostic ©parameter is a structure defined
as follows in BHNF:

<diagnostic valued> ::= <seve£ity> <reason> {<DS5>}
<DS> 2= <DS type> <DS value length> <DS value>

The termipal elements are encoded as follows:

{severity>

4=bit unsigned binary dinteger (bl-bl of first octet of the <diag-
nostic value>. The values are reported intc Fig, 5 pag. 30. When
the diagnostic parameter is omitted, the default value of <severi-

ty> is success (0).

{Leason>

12 bit unsigned bimary integer (b5-b8 of first octet of <diagmostic
valoe>, followed by b1-b8 of second octet). For values see Fig, 6
pag. 31. The table also indicates the corresponding severity (or
severities) and the messages where each —reason value can appear
{except for values applicable to the most messages). When the diag-
nostic parameter is omitted the default value of <reason> 1is no
reason provided (0)-

<DS type>
3-bit wunsigned binary dnteger (b1-b3) of first octet of <DS>.

legal values :0 - 2.

<DS value lengthd>
5-bit unsigned binary integer ({(bi-b8 of first cctet of <D5>.

<DS value>
Depends on <DS type> value, as follows:

0 character string, up tc 31 characters

9 one octet containing a parameter type or 2 octet contain-
ing an aggregate type and a parameter type, in the case
of parameters recursively encoded within aggregates.

2 one octet containing a message type.

BXCEPTION:

A special encoding is defined for the diagncstic parameter when it

is supplied as user data in a P-DISCCNNECT for compatipility with

ECHA-85, which offers only 3 octets of user data.

In this special case, the following field are omitted: parameter

type, parameter length, DS type, DS value length. Only 3 octets are

encoded as follows:z

- first 2 octets: severity reason (standard encoding)

- third octet: message type (standard value field of DS tyre 2).,

Protocol Encoding 29 s 108

I

[3
! § = success |
] 1 = success with warning |
i 2 = recoverable failure 1
| 3 = recoverable |
1 4
Fig. S. Severity values

Protocol Encoding 30 , 108

4 N1
lvaluelsev, | reason i messages
i i 3

4 1
| I B ;ﬂo reason provided]

11 } 1231H0 standard reason i
! 2 1 3 1Uﬁs€t parameter value |
{ 3 1 3 11llegal parameter value ‘
14} 3 |OUnsuprorted parameter value !
{5 | 3 }Illegally duplicated paza@eteg {
§ 6 3 }J1ilegal parapeter type]
{ 7 | 3 jUnsupported parameter type i
} 8 } 23 11/0 error { AT,ATH
{ 9 {1 23 }File space error | AT,ATE
| 10 | 23 jIrapsmission erroL I AT,ATK
i 11} 23 }Becord size errot | AT,ATH
{ 12 | 23 |Presentation error {formatting) i AT,ATR
| 13 | 23 }Presentation error {compression) | AT,ATE
] 14 } 23 |Presentation error {encrypticn)] A1,ATE
] 18 | 3 |VF protocol violation { YF conn. abort
{ 16 I 3 |Time=-ount expiration { DP
1 17 3§ 3 1Shut-dowun i DE
i 18 | 3 JFile does not exist | S8L&, OPR
1 19 ¢ 3 tinsufficient permission i
} 20 | 3 |Isufficient resourcs i
i 211 3 [File nct mountakle i SLE, CTRE, OPR
{ 22} 3 |File busy | SLR, CEE, DLE, OFK
| 23 4 1 JHore testrictive lock } OPR
| 24 } 3 JRollback not supported | OPR
I 25 1 3 (File already exists { CRR
I 26 | 1 JExisting file kept | CRER
1 27 1} 1 jExisting file replaced | CER
| 28 | 3 }File mapping not teversible | CRR
I 29 | 3 {Local filestore <€rror]
] 30} 3 jlocal filestore restriction i
] 31} 3 |password collisico ! CHER
i 32 | 1 {input file empty | OEmQ
} 33§ 3 |Spec. error c¢n lccal filestore i
{ 34} 3 |Illeg. param, value duplic, i
{ 35} 3 |Conflicting parameter value i
| it | 3 §File not prepared for restart I CPR
i 37 4 3 |File waiting restart ! OPR
i 38§ 3 |Open-identification not unique } OFK
] 39§ 3 |Cpen-identificaticn not £found { OPK
2) 3

When no mpessages are specified, the reascn code is lccally
generated

Fig, 6. Diaynostic reascn values

Protocol Bncodiag 31 /7 108

Qo domints o W et g PO .
o S i o s S s o o i o o s e e Gt e O £t e i S st ot 20 ol s

3.1.2.6 Comtents of protocol-defimition aggregate

parameters of this aggregate are encoded as a structure containing
a fixed number of elements in the specific order. This structure is
described in Fig. 7- '

T L k] 1 7 9
jtypel parapeter jvalue jvalue| value encoding i
! ! flengthjtype | |
F 1 —+ + + 1
] - | Protocoi-identifier | 1 S t 0 = VFP |
| =] Protocol-version H 1 ¥ | bl = version 1 |
| = | class-of-filestore | 1 M | b1 = unstructured files]
] i i | | b2 = field description |
| =] Class-of-service H T ¥ { b1 = basic file myt]
i | | | | b2 = restart {
[l 4 8 5 1 3
Fige 7. prcotocol definition encoding
N 3.1.2.7 Contents of history-attributes aggregate
parameters of this aggregate are recursively encoded as a set of
. TLV's which are defined in Fig. &
] K] K] g 3
jtypel parameter jvalue | valuejvalue encodiny]
! | jlength] type | I
?~ E { t 4 4
| 56 | Creaticn-date i} 1z | D | i
} 57 | Creatioa-user-id] g 1 C] |
| 58 | Last-access-pode | 1z { D |]
59	Last-access-user=-id] g	C 1	
66	Last-modified-date)} 1z VD i		
61	Last-nodified-user-id] &€	C	
62 } Total-number-of-accesses } 4	N i Ji		
] 63 | Total-number-cf-nmcdifications] g | N |]
[l 4] i | 2
Figs. 8s History-attributes encoding

3.1.2.8 Contents of global-attributes aggregate

parameters of this aggregate are recursively encoded as a set of
TLV's which are shown in the table of Fig. 9 pay. 33.

Protocol Encoding 32 /7 1038

¥ K] H k] B 3
jtype] paranmeter | value | value| value encoding |
| i | lemgth{ type | |
F 1 t } i 1
{ 1] File-stiructure l 1] 5 | & = flat |
| |] i | 1 = unstructured |
{ 2 | File-data-type } 1 1 S | & = character]
] i i] | 1 = transparent |
] i ! | | 2 = heterojen¢ous |
] 3 | File-curtent-size | 4] N |
| 4 | File-maxinum-size | 4 i oo |
i i 3 i ;- 3
Figs. 9. Global-attributes encoding

3,1.2.9 Contents of record-attributes aggregate

Parameters of this aggregate are recursively encoded as a set of

TLV®s which are defined in the takle of ¥Fig. 10,
i R} g T T D |
jtype] parameter i value | value} value encoding |
] ! | length| type | |
F } i + + 1
] 5 | Record-size-type | 1] S | 0 = fizxed]
] | | | | 1 = variakble |
| 6 | Record-size i 4 |) i |
{ 7 | Record-segquence { 1 i S i 0 = by position |
| | | H I 1 = Ly key* l
| 8 | Direct-access | 1 { S | 0 = by nc means |
] i i !] 1 = Ly seguence |
| | | ! I 2 = by key® I
1 1 i 1 i]

Fig. 10a Record-attributes encoding

3.1.2. 10 Contents of auvthentication aggregate

Parameters of this aggregate are tecursively

TLV's which are defined in Fig.

11 paga

U,

4 Not implemented in CSIKIDE Version 1.

Protocol Encoding

encoded as

a

set of

33 , 108

¥] T ¥ b
jtype{ paraaneter | value | value] value encoding |
J | | length| type | I
i i 3. 3) *
L 1 § £l L E

| 1 | User-identification | 8 i C | i
} 2 | User-passucrd i 8 | C i |
{ 3 | account-identification | 8 { C | |
i 2 i 3 3 g

Fige. 11s Authentication encodiny

3.1.2.11 Pile data encoding

Because the encoding of file data for the tranfer is provided by
the OSIRIDE Access Method, the length of this data may vary fros
one VFS to the cther, due to differences in local syntaxes. There-
fore, this length cannot be specified in the file-data parameter
encoding, which is to be considered as a special type of paranme-
ter. Since the file-data parameter is the only parameter of the
DATA message, it is encoded as transparent data of the VFP,
whithout any parameter Header. File data occupy the totality of
the DATA message, with exception of the message header.

Protocol Encoding s 108

e D, K i e i T, D BRI e e T S s it i 5 v i i . D ST el Gy e

The first OSIRIDE imnlementation is based on the subset named "ker~-
nei", with the "unstructured" extention. The attributes and the
attributes values which describe the Virtual File in these subsets
are:

- file-name

- file-password

- access=control-list

- history attricutes

- file structure

- file—-data-tye

- file=current-size

- file-maxinum-size

- record-=sequence

- direct-access

- record-size-type

- record-size

- key-position

- key-length

‘4.1 FILE NANE
This is a mamndatory parameter, which consists on a string of char-
acters transferred transparently.

It is used to identify the file,

Yirtual File tHodel Sulkset 33 s/ 108

4.2 PFILE PASSHORD

This is a non mandatory parameter, which is supported in OSIRIDE.
In OSIEKIDE it is used poth for carrying security dinformation and
for other systenm dependent information which <can be useful for the
file access.

4,3 ACCESS CONIBOL LIs%

This is a nom mandatory parameter, which is not sugported in OSIR-
IDE.

B,4 HISTORY ATIRIBUTES

These are momn Bandatory parameters, which are not suppcrted in
O0SIRIDE»

8,53 FILE STBUCTURE

This is a mamdatory parameter, with value "flat" in the kernpel sub-
set. The value "unstructured”" 1is also sugpported, for all cases
when files with a complex structure are transritted betvween homoye-
neous systems,

4.6 FILE DATA TIPE

This is a mamdatory parameter, with symbolic values ®character” and
wtransparent" in the kernel subset. Both values are supported in
GSIEIDE,

virtual File #odel Suiset 3¢ / 108

4,7 FILE CURBRREHRT SIZE

This is a nom manmdatory parameter, which is supported in CSIEIDE.

4.8 FILE HAXIHUH SIZE

This is a mandatory parameter,

4.9 RECORD SEQUENCE
This is a mandatory parameter, as value "by position®, and an
optional parameter as value "ty Kkey".

The value "by key" is nct supported in CSIRILE.

4. 10 DIRECT ACCESS
This is a mandatory paraumseter, as value "py ao mpeans®™ and an
opticnal one as values "by position" and "by key".

The value "by key" is mot surported.

8, 11 RECOBRD SIZE TYPE
This is a mandatory parapeter, as value "fixed", and an optional
one, as value "variable®,

Both values are supported.

Virtual File HModel Sulset 37 , 168

8,12 RBRECORD SIZE

This is a mamdatory parageters.

4,13 KEY POSITION

This is a nom sandatory parameter, which is rot supported.

4,14 KEY LEHGTH

This is a non mandatory paraseter, which is not supported.

virtual File Model Sukset 38 s, 103

T o o < o i e S e S S i U < R N D < S

The Virtual File Protocol defined in "2,.0 Prctocol overview" paj. 8
is subsetted into three sulbsets:

1, Kermel, with the following service primitives:
- F_COUHNECT
- F_RELEASE
- F_DISCONKECT
— F_ABCET
—~ F_END_GROUP 5
- F_SELECT_FILE

— F_RELBASE_FILE

F_OPEN_FILE

F_CLOSE_FILE
— F_BEGIN_DATA
— F_DATA

— F_END_DATA

— F_ABGRTI_DATA

2. PRasic file manajement extention, with the focllowinyg service
primitives:

- P_READ_ATTHIBUTES
- F_CREATE_FILE
- F_DELETE_FILE

. Restart extention, with the following service primitives:

Lad

- F_RESTARTI
- F_CHECKPCINI
The OSIRIDE File Transfer Erotocol is based c¢n the first two suc-

sets, 1i.e. the kernel and the basic £file management extention,
although a recovery mechanism has Leen studied. In what fcllowus,

5 Support for this primitive is optional and mot supported in
OSIRIDE.

Virtual File Protocol 39 s, 108

the implications of the CSIRIDE recovery mechanisa in chocosing the
Fiie Transfer Protoccl cptions and subsets are explained.

5.1 THE OSIRIDE RECOVERY MECHANISH

According to the Z2CMA File Transfer prctocol, when f£lat files are
transamitted, the transmissicn is periormed on a record=-ty-record
pasis, i.2. only one record is sent a time.

This means that, in case of network failure, the previously inter-
rupted transmission may Dbe easily restarted, 1f the nuscer of the
last sent record has been recorded. There is no need, therefore,
for an explicit checkpointiug mechauise, which is isplemented Ly
the F_CHECKPCIWIT service primitive.

Moreover, the service provided by the F_BESTART vrimitive 13 not
needed too, at least in the first OSIRIDE implementation.

This led not to implement the Restart extention subnset.

On the other hand, the recovery mechanisp must use the open-identi-
fication and restart-positiom parameters of the F_OPEN_TILE service
primitive, which are supported only if the Restart extention is
supporteds.

The choice that has been made for OSIRIDE is:

1. All three subsets are formally supported in CSIBRIDE, that is,

support for all three of thenm is indicated in the I _COXNNECT
service primitive,

. The implementaticn of the service rrimitives which constitute
the Restart extenption, i.e. F_KESTART and F_CHECKPGINT, is not
gandatory in CSIZIDE.

3. The GSIRIDE File Transfer will nmever use such priaitives.

5.2 STATE TRANSITIONS TABLES

This section is the formal description of the OSIKIDE Virtual File
Protocol, that means the state tables cf ECHEA-ES reduced according
to the choices and the subsets selections which have Leen made in
this document.

The tables which fcllow come from ECMA-85 Appendix D, and adopt
the same formalism as there. It has to be ncted that there are no
tables for what grouping and restart subset are concerned, Lecause
those functions/subsets are not implemented is OSIRIDE.

Virtual File Protoccl 43 s, 198

5.3 FORBAL DESCERIPIIOH

Fig. 12 lists the states which are used in the formal description.
For each entry there is a state code and a brief descripticn.

Fig. 13 lists the events which are wused in the rormal descriptiou.
For each entry there is a state code and a brief description.

Fig. 14 lists the acronyws which are used in the formal description
to identify messages sent.

Fig. 15 lists the conditicans which are used in the formal
description. For each entry there is a condition code aand a brief

description.

b e o e o e o e il o - — ——— s s W s o e b e gl e e e b e @l e

§) k3

iSTATE-code 1 State description] State tables
) 1 i

& §)

JCFs. | Ccnnection states |

i 2)

1 B 4 1 -
ICFQ1 |Dormant |Fig. 16,Fig. 17
JCFO2 |SP-pending {Pig. 16,Fig. 17
{CFO3 |RP-pending 1Tig. 16,Fig. 17

H kR i

s + L.

jFPHi. . | File Kanagemeunt states |

2 + + e
1FHO1 |No file JFigs. 16,Fige 17

i | |Fig, 18,Fig. 13
JFI02 | SL Pending jFig. 18,Fiy. 19
{FM0 3 jCk Pending |Fig. 18,Fig. 19
[FROU |File selected | Figy. 18,Figs - 19

i , | |Fig, 29,Fig. 21
JFHOE JPL Pending |Fig. 18,Fig. 19
{FH06 | DL Fendiny |Fig, 13,7ig. 19
}FHO7 |RA Pending jFige 18,Fig. 19
{FHM08 jOP Pending |Fig. 2U,Fig. 21
IFNCY |File cren 1Fije 24,Fige. 21

[FH10 {CL pendingy JFig., 29,71y, 21
[FH11 BT pendiny |Figs 29,Fig. 21

1 1 "}

& H 1 -
IDTI.. |Data Transfer states]

1 i L

4 1] 1

IDT31 |Data JFigye 22,F1Gge. 23
1DT02 |ET Pendiny |Fig. 22,Fig. 23
}DTO 4A |47 Fendinyg {Sender) |Figs 22,Figs 23
{DIOUB |AT Pending {(Receiver) |Fiq, 22,Fig. 23
{DTOE {File abcrted }Fig. <¢0,Fig. 21

i 1 1

Figa 12. Protocol Machine States

Virtual File Protocol 41 /7 108

Event Code

Event Descripticn

§ | 3
H 1]
b H 4
} XX | X% request pessaje |
] X&R | A% response messaye |
i XX=-RQ i Eeyuest primitive associated to XX]
] LX=-1IN | Indication primitive associated to XX |
i £X=RP | xesponse primitive associated to XX]
] L¥=-CF] Counfirmaticn primitive associated to XX |
H] 4
Figs. 13» Protocol HMachime Events
F 3 T 3
{ Acronynm i Message name | State tables]
t + + : |
i sp | Select protocol {Fig. 1€¢,Fig. 17 {
i RP | Ekelease protoccl | Figa 1€,Fige 17 |
{ A8 1 Abort |Fig. 1€,Fig. 17 i
- | Dp | Disccnnect protocol JFig. 16,Fig. 17]
k } + 4
i SL | Select file jFig. 1&,Fig. 19 j
N | RL | Release file | Fig. 18,Fig. 13 |
] CR | Create file |Fig, 1€,Fig. 13 I
| DL | Delete file |Fig. 18&,Fig. 19 |
] RA | Read attributes JFig. 25,Fig. 21 |
| op | Oren file |Fig. 2G,Fige. 21 I
] CL } Close file jFig. 234,Fig. 21 {
] BT | Begin transier |Fig. 20,Fig. 21 I
— 1 } 4
i DATA | Data |Fig, Zz,E1g. 23 |
i ET] End Transfer | Fig. 22,Fig. 23]
i AT | Aport Traasfer |Fig, 2z,Fig. 23 |
4 i = 4
Fige 1ds List ¢f protoccl amessages
s There are only two events related to the acrcaym AB:
4Bz Presentation connection abort indication from layer 5
N AB-IN: VFS Connection akort indicaticn

Yyirtual File Protoccl

42 /s 198

I) B] i w
i Condition | Meaning |
} 4 4
{ +] Value of diagncstic severity is "success"|
| | or "success wita varning" |
i kY

r 1 - * . - * .i
i - | yalue of diagnostic severity is "failure®|]
+— ¥ : : , 4
i pr | YyFS entity 1is Mprimary"™ {
F + 1
| sc] VFS entity is "secondary" |
F *r : 1
§ CONDV: cond] This intersection i3 valid cnly if comd |
|] is true |
L i 4

Figs 15. Conditicos

yirtual File Protocol 43 / 108

....ll!ls‘l..441!-!‘A..Alﬂc..li..ilil.lql..lll.lgiliiiiilisiiiliind

|
oW ™ = e = o
B O+ @ lH © |- o
fu e Bt 24 §2g [} <5] by
I e Wl 0oL
O wn ce [} ve [re
e i I e ol B Bt il...!.-].!.z..aAriic‘irliiilsjilllilj
@
-) A o RS
o e o o L o - o
.O 132 L] e (28] b § B t (o]
=1 bid w (o) [2 O n (]
e Q LR o se 1 LX]
Tii:}i}iitliiliif}l!li?i 33333333 R B A
L3
e
jou] = Rand Lol e L e Land
o~y @ O [] L] +— L] - <
Lo (a7} t Lxy] fro i e l} et
b4] [2¥] &) (@] =¥} |) m |
L) [=¥] 1 v ae [~ ° Lo LX
o
bp e ey e s ey oy Gy R oy TG T o T oy e ey g ey ffey T o oy e ey T e
@«
o]
o » [0 R e L) L]] b o
=] =] §OED [a¥ ey } e 1 e
@] 8 Qg By O () @] [a¥)] s8] (@)
g U2 em ee a o] 2o [0
wn L
ﬁ, iiiiiiii I e i R L R e B ATla‘llAT\ltliiilﬂilixL
43
L d fon [
Loed [} [SF) <>
e = 0] frq
| @] -3 | &
o] e
-]
f!l.....i(lLl.!l.ll\....li31110131111331134311131 llllll
& (o] (&
o [2=] x3
0 oa § [ae] § o
[s¥) 04 [=¥) Ay ¥} [a¥} 28
n [%p] 5 o [(& <
I I S N WU I R

by s 158

(primary)

Connecticn Protocol

16,
File Protocol

Figc

Virtual

[D) . s o S W s W o) o] T oy D o) s TR g oS D o oo] ey R e oy

[SR A e = 2 kel
by) [-y < = o
oo Q Fzq }] 9 £
< PP [L 5% & m &)
< 0 [X3 o] o9 <3 3
TiiilTi]iL!!l«ll’iﬁ-li:!'jitxliilvll.lllulli lllllllll -
@ =
e = oy Aaed “Z T it A
Rt -rd H o L 4 <o 4 <O
o e (S =] £] § i 1] [R&]
= 2] [o | &) [=¥] [@] jods] | S
g Q X Y] [a0 e ¢
sl
s Ty e TS D gy e sy e]l!jiiilil(iiijiliii iiiiiiiiii
L3
, el
o Lot o 2 Lo = A
o Q <o ¥ o | aal o>) [
o M Mmoo o 1 [g fru
29 L Q4 [(@] =¥} (@] 28] [
[) (& a8 [[} [[X
i
bt o W VD vefjwy s TR vy Oy ey e ey i wweww oweegy e G e R ey e W] i) L N W e W) D oy
«
el
oy 3 o A prnd Ane = -
Pry =¥ [S=- a1 0y b2 § g] £
] g 24 =4 O o] (] 04 &) 2] G
o w LT X3 [P oy
93] + 1
iiiii Il...-..ll.l.ilT..\.l|l.|....41t‘!ill!gltliiil]lt’llll!l!’l
do?
o« o3 &3 [
o e} 4 <2
oy & § [
- b B4 Q
Q 2} 7
@]
. T o T T p—— S T T T — g g T WD ——— —y R gy iy MY iy D L =y
[a ¥ a5} &)
o o (2]
] ¢ §
ja¥] [»¥] j=¥) &3] [aT1 04 2]
92 w 82 &3 {4 (4] -
ﬁill_.l..!llrlla.]...!..iwlli‘l‘i(illlr;ijlriiilrlliil

45 , 108

{secondary)

Connection Proctocol

17.

Fig.

Yyirtual File Prctoccl

J‘li(‘lﬂl!il‘J‘.\l‘l!lﬁu‘l..ilJd-lalllvl!ii!iijjiii{ii‘J‘iilil;iJ
fea ¥
O s
§ £
] s
[==] e
i I Rt . — e o wery T e TR WA e e WG WO NS e P SRR B R A Y e o w— iy — GG WD " oy S
[[l
(o) (=]
L] =
=3 fag
& (3
o e s s o o e ey s) o oo oy oo o g et gy vl S — e R o~ ol o) dpen - — o e T D — Ty w— oy T
j =) g
(& <
§ =
o fe
o3 ee
Tliii::ai?!l«l-.\!n:&lliili!lll.!iif lllllllll I S . Ll i i
[Fa]] ~
L] < <
-] ko) =
ool (] =3 g o5 (2]
[l eQ [} ®e X eg

L i 4
B D
[s=B8-a R 5
b P by
0% ea 8w
(G I
D oy TS D Ao} oo T G ooy WD oot T RS st WG T D ann T e W WD . o O e TRt WD R oo R e el WO o G
™ =y
frg €2
) = E
Vo fy
o 09 F9
42 IR K.
iiiiiiiii s Ty D by) oy) VD iy o iy D GO) Oy V) Sy W iy WD ST) W AR s S iy T SO g g R o o
o~ (]
< L]
P &3 % o
mn B & Py
3] (L]
(g iy oran Yy e ST WD (TR wemn G e li“)‘!i‘!’l}liiil!ll!iiliiilri}iii iiiiiiii P
= 5 a1 2 2] o] 23
! = § 5 s s ? i § =
-l ~d o & o w3 3 -l 5 <Q
©n ﬁ v 1 o= x5 &3 0o o %
bap iy sy 3‘3‘!!ﬁ iiiii ﬂiiilﬁli;lﬂ!f.j;i!fjiiir;‘ozlllilif]llll

File Management - File enclosure (primary)
46 ,/ 108

18.

Fig.

virtual File Protocol

| WD -0 ot T o T e) D WD e S oy TR ey Sy WS o) o o) i WS WS o ceen wws WA]) WD) WD WS we ey WG W ey wewy
L =5
&~ o] [
W= o =
o = =
By 025 R4 2] Ll
D) VR WRED WY emon wmmme e w0 ome wwar wwosy W) R T . L prees e TGN WU —" T WO D IR} RN VWD WCID DN GRS mmwns e sy O
-3 A d
D -] <
[T] ol =
T owed 1 L e
e £ e [o
D o v o oty v oy by T s -y s ot W Gy oy Dy WOTE sl W v gy iT!illiliT-ili‘sz llllllll ol — — —
@ L ad
Y o ()
oo o= a1 =
ol B 3 b
Py OF Q4 o~ I
lllllllll Sy e ey) VAT e - —" il T) Y W s w0 T G TP gy WD W men) W e WOR WER s e S oy e o) WD et o v 5
ﬁn ® P 0wy = [¥e] =+ ™~
1 Qo L) < 4 <D — <
fe g SSS] it ¢ = H =
[JESE PO = (& 4 ty - Frq
2l S [22] [o] L33 2] L1
B P 2
R R I D I Tnl!I.lalllT.li!l3111!3171‘1]..11,.11jiiiTliilTi“lll"iLTiixl
Ll
[[
] =
Lo o -1 g fre Fre
w3] se 9
fu B S
llllllllll T.-.l#.al..l.l]I....l.|4.IlJﬁ.il..l.\l..:aIli.l.sx.-l1731315}3]1'1’11!‘1"3]1‘91l_li
® Lt~
N~ @O
0o = &= o
= = 0 P Py
2] (o1 -y a2 9
<2 I B
iy WO ey WD ey e o -y L - D iy —0 X7 [e ey e Sl Sy A) o) - oy WO woloy o woomr sy SR T wr O] iy o o ooy WA A - g
=] o~ = ~
= | By 4 L) ~ <«
o0 g 1 i =
o b ed Pt m S
2y Rrg vI se | & "9
by iy TR oy DD T s e) D oy WD WA D D oy R WD iy WD W R I e T s R I VT s oy - —— oy WD ws D oy T - s
o 0) [o
¢ i L]]]
-3 3 0 == =4 3 i - ol =2
%]) © () o 2~} &2 =) o=}
f!li]tilr.saii.a!lll‘a.l..llri!iilfilltii;jlfiilihilln‘lhll‘l‘lf‘ll!l

47 ,/ 108

File Management - File enclosute (secondary)

19,

Fig.
¥irtual File Protocol

0]
L)
Lol
™~
o
b 8
P~
[Lo T g
(RN s Bt L I
e O = =
£ 4 0 3 5 s
[=] &) L1} 4
. 4
]33141313‘?213!!1!1lTiiiiiiﬂj!ii!iii S
(VAN we
® e] @
A £ L 4
o § & § P L2 =
B3O B es ag [¥9]
frg 003 Qe ST A o
i
ST ewewiny SR mam) OSSR qenoqp VIR WISR e wES ype R T aeey GO RN GMON) T e wgne RST ateeem s iTIIl‘liI'IA C
=
. by @
< = [& o>
Ll I § o) 3
oed B] P Q
frq L0 4 L&) kA o
&)
Bt s s oy WO o o o D s Wt) e) S o o oy T R o o
]
P} L
T b P -)
fae S RS2 fon) = o]
Ao - <] B £ o
xRy By O [LT [sn] op =]
@
iiiiiiiii s — FOIR s <ol WO s} ARD WUTH G WO D S s cpy OO WA samdn W oo g
=)
] B D 2 =
o] o] O o o —d
oo I B § ixg Pra =] o]
onR s X B4 ey we 3}
Foa O [2 IS @ o
4 4
(0 o ot e il O) o p e reTy TR oy eeews weRR ewem o —0) T R ey W W amny mwa@ e a0 - _.l O
@ Py §4
LIS} < [=¥]
= A]
< pd 3 a0 @
b ol B [0 oy 4
e By U3 jo a9 e vosd
[} (2]
s e i IR I I e e Ty o e s e T el] iy -~ o o) (o]
[&] o o
2] 2] 2] ® o]
§ [} § o~ § L] o)) Pt
4 =4] e &4 B] L
(] o (8] @)) o=} P fed
rlil.ul.l..tfilillilf iiiii bip men) ooy R el vy WD ooy SRS D iy woon h

= o>
o R
i =
3 =]
(@] (1]
ll:l!l.i-lr.!li.!ailll..ljllaJT!’!!‘A]!}‘!!%.}I!‘!«‘)I:‘A;!
[o2 N aal
o O
=0 e
e
E4 o
sl
i.lll..l.l.!l-lx..i.l3313]33§11!i!!‘11317i1“1
= o
o
o &l
- b2
[LL]
POy W oy o) oy TS oy S s oy T gt W W e T
ped < = L
4 — [L
8 = 4 s
o Feq &4 Bry
(@) (3] jas] 09
llllll D I Ll e Sl B I e TR i Sl B e I
o Oh
Lo e }
= o
0 W kg
2y re ee
Qo+
n oy ey MO iy o o—— i!il“lLﬁni‘Ii‘!IiI‘
= jae]
L] o
g ko]
4 fee
Q e
ey — — oy Ty oy SR I Wep—————— S i e
O) =¥
& 2] 5]
[}] §
2 R o] w3 &4 il
@ &} = &) = @y
hl‘.}!invlrll|1I|ihllllilfj%lllf}ll]ﬂl(il«a;1

File management = Cpen enclosure (secoadary)

21

Fig.

49 s, 108

Yyirtual File Protoccl

T o G iy T W) e) T W it Y O o e D D) awd R D D o -0 sy
@ o
(SR
R g
oo i
[acps U
g4 1 4
o s R
£5
el IR I e IR i I Ll e dh T adis b dhsta R Sl dhanaiend oy R ey WP ow
0)
[Rt
=g W UY
b S I £ Vs
[BRSO I 2] [8 [
s M § Bt
€ B4 2 [[
g g oe
iiiii G D e KD WA) T oy oy D oy D Ty W ey o
L]
¢
=
(& =3 (2 el
fov] 8] |6 <2
£t i i "
= et e b
=3 §23 aw
iy W e oRs e Y s Y wilet e e) DA o) D AP o ooy S D oy LS
=
e] Lo o3 =
< 4 =L - <)
£ g £ £ £ £+
£y) < o] & jon [} 3
[ey =3 ng [1]
hio ooy T o ool D T) oAby o e Ay O R D ampy mi TR WUR) e SR TG Ry
(&
o]
! o] @]
L] o] [2=]
- § 8] l &)
"< gl (o £ Ll
& =4 = «2 g
bov oz T e R s iy S iy iy D s v KD R ey D by oy S oy vk

SRS ——

AT-BP

NI W —

Data Transfer {sender)

22a

Figs

50 , 108

yirtual File Protocol

[s G) T o W |) S} oty) T P S T ey e W 9 e e D o e v
L
P o~ wy
[
= =G 90
A] P by [F9]
I 04 £ - OO (O o]
o T e b B = § N
e o o Q
s LB oL ee (J X °p
D oy e et A~y xiﬂl:ll.l.!l-lll.!rci.la.l-}1‘331{!!134—11‘51111‘10‘1
@ o~
o =
= 0
<5 = i "y
=F g B o
<)o a3 o
B4 B 22 [l =
2w =5 e
I IR T el e B B afbandieandi sl o VD s AL D oy T vy e D oy W G W D e iy WS w68
”
o}
a3 as]
=3 (oA =5
o™ &Y o o2
< [} 03 = &t
[&t g 2] [l]
(&) =3 £=3 an (= £y
T . K e I S I i alhadi s Bt o s iy) T ey ey e R SR e | W o
=
ted =t jsa]
§ i] o~] Fe =
R = » <@ L] < -4 < Lo
L) &4 £ £t [o] Bt 4
£ X =t [} g4 o]] [i} o]
o o (= 0 =3 1]] T =g 00
f}jiiéiiilriiiirié lllllll by sy o) oy D e W WD oy W
=¥ 2y @]
3 3 el 2]
) 8 i § w5
= w4 3 =q]]]
f!jilhilll[il‘l‘lf-ii‘lllh‘iiliiﬁllll!ilf;ilii

{receliver)

Data ‘iIransfer

23e

Figae

51 , 108

yirtual File Protoccocl

Second part 52 ; 108

B e = B B IR SN TR e S T St S S i T R e i i

1«1 DESIGH HYPQIHESIS

The following design specifications have Leen Written assuming soae
implementation choices which are pot particularly restrictive and,
if necessary, cab be easily removed and substituted with similar
solutions. The choices are:

1. L new instance of FTF Primary process 1is activated for each
user request of SEND or RECEIVE and a new instance of FIF Sec-
cndary process is activated for each incoming Connect reguest.
FTF terminates and is de-activated at the normal O aktnormal
termination of each transfer.

2. Shen PTF Primary terminates, it stores the result in a record

(disk context) of a disk file {context tatle). The user can
delete a disk context with a CANCEL operation.

1.2 GENERAL OVERVIE® OF TBE FIF STRUCTURE

|] i 3 i 3 | S | | R |
|] | | H | G | ! ! }
I | i i I 1 i S I ! |
] U | { FI1ILE i)] S | I] S l | FILE |
] S J<=>]TRANSFER |<=>] I | {==2R<{==>] 1 }<=>}TRANSFER |{
| E | {PRIMARY | } D 1 I l o]SECONLARY |
I R | } i S b { E | l |
] | !] 1] E | | { |
1] i 2 1 ;| £ | i .]
Fig. 24 General Overview of the FTF structure

The FIF is achieved through the cooperation of two different proc-
esses, the Pripary and the Secondary, which generally reside c¢n
different machines and play complementary roles:

- the Primary, local to the user, interfaces the user requests
and is the ®master® of the +traasfer operation, as it activates
the secondary and sends commands to it, The copmunication
between the user and the primary task is established by the

routines of FT User Imterface see "1.4 FIF user interface" pag.
[

-t B

Internal FTF Structurce ‘ 53 s/ 108

- The secoandary, local to the dccessed file 7, executes alli com-
mands issued by the PBrimary. It communicates only with its o¥un
file-system and allows the Frimary to access this file-systen
through the VFS primitives. These primitives refer to a virtu-
alized format of the "Virtual File' model wich has Leen pre-
sented in the first part.

Note that the Primary generally cooperates sith a Secondary which
is remote with respect to it, i.e. which resides cn another
machine., The ocnly case in sxhich the Secondary could te local to
the Primary is when the accessed file is local to the user. In this
case, the File Transfer happens locally: the Primary dialogs with
the Secondary and both are on the same machine. This is always
possible because the ISIDE services8® can be used also tc perfors
local inter-process comgunication. Therefore, it is important to
point out that both Primary and Secondary should be implemented on
each system to achieve the counplete File Transfer functionality.
The complete functiomality consist of being atle +to initiate a
transfer operatiocn on behalf of a local wuser and to respond to a
transfer proposal coming from a remote systes. The tasks c¢f Prima-
ry and Secondary on the same systen do not interact each otker
except when they provide a lccal transfer.

ie3 PTF DSER SERVICES

The FTF can pe used either by a projgram or a terminal application
and offers the following services:

- FTF performs the tramsfer of a file: this <can occur either
petween two different systems or leccally tc the systern which
requires the cperation. The user resides on the system where
the request is generated and must be lccal to one gf the two
systems invclved in the requested transfer. Two types of
transfer are possikle:

s send a file
® receive a file

These operations can -~ be successfully terminated or interrupted.
Interruption of a file transfer can be either reversikble c¢r nat.
In the former case a restart operation will ke possible. In the
latter case, both parties purge any inforpaticn related tc the
transfer ({(CONTEXT) and the transmitted data also, 1i.e. they try to
re-establish the conditions as before the file transfer was initi-
ated.

7 The 'accessed file! is the one which the transfer is addressed
to. It is accessed to te read in case of a BECEIVE opera-
tion, or accessed to be written in case of a SEND operatione.

8 ISIDE is the OSIRIDE network access method

Internal PTF Structure 5y s 108

PTI allows:

- stopping a running transfer operaticn;

- cancelling an interrupted transfer operation;

- restarting an interrupted restartable transfer operation;
- waiting for the transfer operation completion;

- monitoring the status of the transfer, tc provide information
concerning the progress cf the transfer;

- deleting a file on the remote system.
For each service the FTF returns a diagncstic to the user. A

detailed description ¢f diagnostic fields 1is in #1,8 FTF diagnos-
tic for the user™ pag. 61.

fo4 PTF USER IHTERFACE

Ey 3 £ 3 T b}
i 1 i | | }
] | | User | | File]
] User j<==>] Interface }j<==>| Transfer i
| |]] i Primary }
i] | } | |
3 nd i » L . |
Fig. 25, User Interface

The user interface here described consists of a set of logical com-
mands with related parameters. Each command is used to invcke one
service. The specification provided here is indipendent from anjy
specific implementaticn of the teal user iunterface, from the user
environmeant and the used prcgramming lamguage.

1. 4.1 FZF commands

D2y R i o i e D <D < <D

To use FTF services, the user wmust invoke the coummands listed in
Fig. 26 pay. 56, with the associated parameters.

For each command, the 1list of the associated parapeter is given,
together with the farameter returned from the FTF. The meaning of
the parameters is explaned in "1.4.2 parameters meaning" pag. 56.

internal FTF Structure 55 7 1038

| k] T]
| cosmand | parameters | returas i
k i } 4
| SEED | local file nane | transfer identifier]
i | host nane | return code i
] } remote file nane i]
] | effect | |
i i passyord (s) | |
1 1 3 _i
L] T

| BECBIVE | local file nane | transfer identifier i
] | host nake¢ | return code]
! | remote file name | !
| | effect] |
| | password(s)] I
t 1 + 4
| BESTART | traumsfer identifier | return code i
= 4 + .|
| CABCEL | tramnsfer identifier | return code |
| o } 1 1
| DELETE | host name] return code 1
| | remote file nane | {
} '} password{s) |]
t } + 14
i ST0P | transfer identifier | return code |
L i 4 }
&] R} 3
| STATUS | transfer identifier | return code 1
1] i 4

Fig. 26 User command fcrmat

The meaning of the parameters is explaned in the following list:

‘local file nane identifier c¢f the local file, both in SEND acd
FECEIVE operaticn.

khost name name of the remote host invclved in the opera-
tion.
resote file naae identifier of the remote file, both 1in SEND

and RECEIVE operation.

effect indication of the operaticm type which the
user wants to execute on accessed file%. The

Internal FIF Structure 56 s 108

admitted destination effects are listed in
nq,4,3 Parameters values" pag. 57.

passvord {s) key word for accessing the remote file

transfer identifier jdentifier of the transfer reguest, it 1is
assigned by the FI tc the SEND cr RECEIVE
pser reguest. Xo algorithms are descrited for
the assignement of the 1identifier, the only
restriction being that it must be unigue. It
must Le isswed by the wuser for any cther
request concerning the sanme transfer (€s9-
CANCEL, RESTARTI , etcs)

return code result of +the user reguest. The 1list of ail
possible values of return cades is provided in
w1.8 FTIF diagnostic for the user" pag. 61.

1.4.3 Parameters values
The parameters legal values are descriped in the following list.

Y¥P fixes the

LOCAL FILE ERASBE The only restriction is th
is par tc 64 charac-

maximum length for this f
tE€Ers.

h
e

I
= M
o ot
ry (D

e

BOST BAHE The only restriction is that the VFP fixes the
maximum length for this parameter to 16 charac-
ters., This however, has to Le a Dnane known in
CSIRIDE. ,

REHQTE FILE BAHE The only restriction 1s that the VFF fixes the
max lenqth for this parameter to o4 characters.

BEFFECT may assume the following values:

HAKE if the destinpationm file does not
exist, it will be created, with the
specified file name, the contents and
attributes of the source file, as a
copy of the source.
1f the file exists, an error will be
returned.

BREPLACE if the file exists, the wentire file
is rebuilt, according to source file

9 No effect on scurce file can be specified. The source file is
always just read and released at the end <f transfer.
) Sipultaneous access in reading is allowed by the protocol and

should not bpe prevented Ly the igplementation,

Internal FTF Structure 57 , W8

orjanization, attributes and con=
tents,

1f the file does not exist, an errcor
is returned.

APPEHND if the file exist, a set of records
is added to it.
If the file does not exist, an error
is returned.

If no effect has been specified, the default
value is HAKE,

PASSHWORD {S) The only restriction 1s that the VFP fixes the
max length for this parameter to 32 characters,

1o 4.4 Parameters_iypes

e i s i T i e i 4 >

local file name striny ¢f characters
host npane string of characters
resote file panme string ¢f characters
effect string c¢f characters
password (s) string of characters

transfer identifier intejer numter

return code string of characters

1.4.5 Ezplamatory_notes

Bestart of a tramsfer

One of the above presented services is the pcssibility tc restarti?®
an interrupted file transfer operation. To achieve this service,
the Primary stores all inforration permitting the re-establishement
of transfer, so that each interrupted transfer is univocalliy iden-
tified. For this purpose, the Primary associates with each trans-
fer a particular set of information (the CCNIEXT), which survives
to the recoverable transfer interruptions 1in order to allow future
resumpticn. For each transfer a CONTEXT exists in main mencry (me-
mory CONIEXT) and a copy of it on the permanent amenmory (disk CGHh-
TEXT), The CONTEXT contents are descriked in "3.0 Data structures®
pag. 97a The CONTEXTs {both *'disk?' and 'memory') are created at

10 The RESTART facility is not defined on [ELETE, CANCEL, STATUS.

Internal FTF Structare 58 s 108

the beginning of a SEND or RECEIVE operation. TIae disk CCNTEXT 1is
used for RESTART, STATUS!t or CANCEL operation, whereas the menory
CONTEXT is examined when a STATUS regquest is issued during a run-
ning tramster. The assignment of CONTEXT name, *disk?® and 'memory?,
are local implementation chcices.,

The CONTEXT is identified Ly means of the Transfer IDdentifier,
mpIp", which is an intejer number represented Ly characters, The
TID generation is provided by the file transfer Primarys: it is
returned to the user tc be specified in a RESTARI, STATIUS, SICGP or
CANCEL user rejquest. Through this identifier the FTF can retrieve
the CONTEXT of the transfer to Le restarted, cancelled, tested or
stopped. The list ¢f disk CONIEXT names, local to the File Trans-
fer implementation tasxs, is stcred in a file and referred here as
"disk CONTEXTI TABLE", Its name is known only tc the local imple-
mentation of the FIF.,

Type of services

Two types of services are provided:

- not suspensive services

- suspemsive services

On the request for not suspensive service 1like SEND, HECELVE or
RESTART, the FIF responds immediately with local acceptance or
refusal. The results c¢f these operations may be obtained Ly meaxus

of the STATUS primitive.

in the case when a suspensive service was requested, like LELETE,
CANCEL and STOP, the diagnostic directly indicates the result,

1.5 TYPES OF IHNTEBREUETIONS

Three different types of interrugption may hajppen:
1. Voluntary interrupticn crdered by the user during the fdata

transfer enclosure! (see "2.2.2.4 STOF grocedure® pag. 75)

2. Voluntary interruption Dby FTF itself «caused by some €LLOL OL
abnormal condition diagncsed during the interaction with:

11 In the following two different types cf STATUS reguest (see
2,0 FTF implementation specifications" pag. 66) are described:

- STLTUS reguest issued ducing a active FTF process

- STATUS request issued after the termipnaticn cf FIF process

Internal FTF Structure 59 s, 148

- local user
- local operating systen
- local file-systen

i.e. protocol errors or VFS ercors sig-

- the remote TITF
gh the protocol)

nalled throug
3. Loss of connection signalled by lower layers.

As far as restartability of the +transfer is concerned, the follou-
ing rules apply to the above interrupticn types:

type 1 amd 2: not restartabie. Any trace of the File Transfer is
cancelled by both parties aad the conditions preceding
the transfer are re-established (except when "replacing®
or “appending" a file).

type 33 restartable by the Primary on user request. The partially
transferred file is available to the user, therefore the
restart may be not possicle 1if wmodificaticng have

occurred in it.

L power failure occurring on the remote systen is Xnown as a loss
of connection.

Bote: to cancel a restartable transfer it is sufficient to cancel

its CONTEXT and delete the partially transferred file (which can be
local or remote with resgect to the user).

1«6 STATES OF THE FILE TRAHNSFER

Five different states are admitted for a file transfer, i.e. at any
pmoment of its activity, the transfer must Le in ome of the follow-
ing conditionsi2;

NOT ACTIVE traunsfer not 1in f[rogress.

RUBNING transfer in ProOgress.

SUCCESSFULLY TERHINATED no abnormal condition during the transfer
has occurred,

RESTARTABLE a transfer interruption of type 3 has occurred.

i2 These listed 'transfer states' should nct be confused with the
opes of the VFP ECHMA-85, wmentioned din "ES,0 Virtual File Proto-
col?of "First Part® and in Fig. 12 pag. U41l.

Internal FIF Structure £0 s 108

BOT RESTARIABLE a +transfer interrupticn of type 1 or 2 has
occurreds

1.7 STATES OF THE PTF PROCESS

The PTF process can be in two states:

ACZTIVE FIF pIocess is active, i.e. rumraing or vaiting for
request

DISACTIVE FTIF process is not active, i.e. not ruaning and unable
to receive requests.

1.8 FTP DIAGEOSTIC FOR THE USER

The FIF diagnostics are listed im the tables of Fig. 27 pag. 62,
Fig. 28 pag. 63, Fig., 29 pag. 64 and Fig. 30 pag. 65,

Internal FTIF Structure 61 7 108

1
fype of |

]

Iypel geaning FPTF Prisitive which
i can retara it intercupd
}

0 |Transfer STATUS:3 /
}success fully
jterminated
+

1 { Request SE¥D, RECEIVE, BESTARI
jlocally
jaccepted and

jin progr<ss

]
}ruﬁning STATUS 7/
4

3 ;Stop down 35T0P, STATUS
2

g ;Cancel dowan CANCEL /
2

5 ;file success. | DELETE 7
jdeleted
E: |

| |
6 jloss of. STATUS, DELETE

jconnectioni®

2. .

E]
7 {Power faill®
2

STATUS

huqn”“a‘nwwv‘bu—qu—wh\—-“—r&w&w“u.ﬁwuw“q,—mh—uﬂ
U e el Mo G i Gioo boae N s oler g e e B o Guie e e Gl Guws ud oouwe G Weer oume e
e A o . T e o el S I Sl

wad
b onn bes gume mun oo cue suve @do G e oo @IS Ben adn o cew G s obe oms g s e

Figes 27. Y¥P diagnostic

13 The diagnostic returned by the STATIUS is referred to the oper-
ation identified by the TID parameter {(transfer or restart).
The STATUS operation itself is supposed always successful.

14 These errors cam be also returned by an operatiom on which
the restart is not defined, like the delete operation.

Interpal PFTF Structure 62 / 108

Iype| peaning

H

3

PTF Primitive which
can returm it

) R
| Type of |
} imterrupd

10

E |
{interface
jerror

STATUS,

DELETE,

CANRCEL

2

11

Protocol
violation

ol e g S

STRATIUS,

BELETE,

CARCEL

12

j¥rong status
jof protocol
2

STATUS,

DELETE,

CARCEL

13

E
| Paraneters
jconversion

jerror
N ,

STATUS,

DELETE,

CABCEL

i

E)

jiDiagnostic
jreturned froanm
}Secondaxry

]

STATUS,

DELETE,

CABCEL

15

! .
jConnection
jfailed

5 1

STATUS,

DELETE,

CARCEL

16

‘wamﬂmwwauw»“ﬁnmwuu‘umw ‘u—_q»ma—-qn»wj

] "

}End of data
1fron
jPrimary

8

P”mwm)&“m—ﬂhwmwumm“wuwmwu%ma——-h»wwnh—‘-—m—um

STATUS

v
b Bowe s DU06 Guin Gue Uees Sl s boe diws Gule Geoe Qb See e b G g dmse SO G S Geee S

b v e s e G0 oo e G e Son e o i i il o Duse G G owe Gl S . b

Pige

28. yFP diagnostics {continued)

Internal FTF Structure

63 / 108

E

o 3 T N

1 Typel geaning { BTF Primitive uhich] Type of |
i i | cam returm it | imterrupd
— % t + : |
i 17 jAattempt to 1] STATUS] 2 i
i JOPEN a not i i i
| jexisting i i i
| ifile } i H
t § % 1 4
i 18 JAttempt to } STATUS 1 2]
| jCREATE am i I i
i jalready i i }
{ jexisting i] }
i jfile } i |
4 % + + x|
} 19 jPrivilege i STATUS } 2 j
| jvioclation i i i
} { } . |
i 20 | File } STATUS | 2 {
} jstructure i i i
i linvalid ! i i
i 2, 2 3]

Fig. 29. Local File System diagmostics

Internal FTE Structure 64 , 108

k]

£ & R] k3

| Zypel seaning | PBTF Primitive which | Type of |
] i | can returm it { interrup!
'S 3 +- t 4
iy 21 |Local user | ALL PRIMITIVES i 2 }
1 A] E a
4 | é] k1
| 22 }Invalid { SEND, RECELVE { 2 |
i jdestination | | i
i jeffect i i |
F 4 4 t 4
{ 23 jsource file | SIATUS i 2]
{ jdoes not i 3 §
i jexist] i i
b 3 } t 1
i 28 jContext not | STATUS, CANCEL,RESTARI i 2 i
i jfound {] i
k ¥ + i 1
| 25 |Sintax error | ALL PRIBITIVES | 2 i
i jin the FIF] i]
i Jrequest 1]]
b % } } 4
] 26 |Hissing | ALL BRIMITIVES i 2 !
i iparaneter i i i
F } % % 4
! 27 1sT0P refused | SICP] 2 l
i j {too late) { 1 i
i E 3 3 3

Fig. 30. F1F general diagnostic

internal FTF Structure 65 7/ 108

2.0 _PTF_IBPLEHEETATIOE_SPECIFICATIOHES

s S S < S S S > S R R SR am e e e < e 505 S i s R i < T

Fig., 31 shows the detail of the FIF implementation. The Prisary is
driven by the user?s reguests, which arrive through the user inter-

face.

user task primacry seccndary
[R 3 &] ¥ ¥ 1 i L] ¥ L
i u §jou | | H i v | i i | v H
| 1 s | i | I | 0 | | l F }
i s | e |] i | SEND 1 5 1 | i } I S |
H | D S I o | | 1 i] 5 b i} d i |
1 e |} | } t | RECEIVE | 1 |] | i { P]
] !] Il e | Il p | 51 i 1 s | S ! L]
1 ¢ } i | | £ | CANCEL | £ |} } i } E i o |
] I o]<=>] i 1 o | i 1<=2<=>] 1 | a } c |
] ¢ | &t | } r© | RESTART | < |} i i i t § e i
| i e] I e | e 14| i [c i d]
i o | ¢ |] t | DELETE | 4 | } i i h] u]
i I £ I e | o e | d | e | € | r |
1] 4 1 a i } © | STAfUs | © | I | i r] e }
| } ¢ 1 | i 1 e | | € | | 1 s i
I e | e | ! i j s | | | i i i
Fig. 31, PTF azrchitecture

The following are the recognized user interface procedures:

SEED activate FTIF process
transfer request for SEND
wait for the immediate result
retura

RECEIVE activate FITF proecess
transfer request for RECEIVE
wait for the impediate result
retura

RESTART activate F1F process
transfer request for RESTART
wait for the immediate result
return

CAECEL access the disk CCOHNTEXT TABLE
If the TID does not exist then
return the diagnostic ?context not found?
else
cancel the row corresponding to TID, only if the
1¢transfer status' indicates a termination status

DELETE activate FIF process
transfer request for delete.

FTP implementation specifications 66 /7 108

Hait for operaticn completion

STAZUS if FPTF is RUBEING thean
transfer *transfer status’?
vait for respounse
return :
else -
access +the disk CONTEXT and get the diagnostic of
trapsfer whose TID has been specified

sgge if FTF is HCT ACTIVE then
return the diagnostic 'stop refused (too late)' else
transfer request for STCP
wait for operaticn completion

2.1 PTF STROUCTURE OVERVIE®

The Primary and Seccndary tasks bave a modular structure. The fol-
lowing is a first, schematic descriptiosn of how the Primary snd the
Secondary modules bebave. After a FIF user reguest, either through
a application program or a termimal operator (see FIF interface in
Fig. 31 pag. 66) the Primary task executes the followimg actions:

1. get user command from the interface routines and examine the
syntactic-semantic aspects of the parameters.
2., according to the reguested operation, call the procedures which

bandle the specific operation.

i, the above-mentioned procedures interact with the local
file-syster and call the VFS Primary procedures,

4. -the VPS procedures perform the following functions:

- checking and updating of the protocol status.

- encodingts,
- interfacing ISIDE services tc send/receive the
reguest/resgcuse.

The 5@&@&&&13 task functions {see Fig. 31 pag. 66) are the follow-
ing:z

1. check the received message and call the corresponding VFS pro-
cedures

2.. the VFS procedures

- test and update the protocol status.

FTF implementation specifications 67 /7 108

- map input parameters.

- perform the appropriate actions, according to the received
pessage.

- call ISIDE services to send the responses

Each one of the above listed items will be developed in the next
paragraphs.

2.2 PRIBARY STRUCTURE

The Pile <Transfer Primary is 1local to the user, handles his
requests and returns the related responses (see #1,2 General over-
view of the PTIF structure® pag. 53). The Primary task provides for
different funmctions, by using the set of procedures described in

the following paragraghs:

- interpretation of the user command string as received Dby the
interface, and -activation of the proper rodule, The interpret-
er module is the 'main' program of the Primary.

- All YFPS procedures, which constitute the VFS Prismary, ccmmuni-
cate with the Seccndary task by using the ISIDE services.

i3 The FTF performs two differemt type of encoding/decoding oper-
ations:

- encoding/decoding to/from the TLY encoding to rprotocol
message procedures. This operation 1is be called 'encoding?®

function.
- interfacing the 1local file-system by executing a ‘'mapping

function' between the real file parameters and operations
and Virtual file-system attributes and protocol reguests.

FTF implementation specifications . 68 / 108

I 3 3
i | l i |
i I1] i]
i H i ' i }

1 N | } E |

i ! i { i

| T | SEND i | R i

i i | i !

i E | RECEIVE | i G i

i l |] |

i E i RESTART i i Y C i

] | i i 1

| P} CAHNCEL | £== == - = E i

i i i i }

| R 1 STATUS] ~ y ¥ D |

} i i i }

i j A | DELETE i i U]

i i] } {

i T 4 STOP | | I R 4

i } } | i

! E |) i E |

) i | l i l
i R | i i s |

i i } i }

) L A 3 e ed

Fig. 32. File Tramsfer rrimary

2.2.1 primary_sain_ progral

The main module, called IHTERPRETER i Fig. 32, executes the fol-

jowing set of operaticns:

- analyze the compand line coming from the user interface, cob-
taining tbhe requested cperation and parameters {see "l.4 FTF
user interface® page 55) s ‘
e get the cperation code
® assume default options
» get the cptions
® get the host nane
2 if the regquired service is SEND or RECEIVE

— then get jocal and remote £ile naume

® if the requested service 1is RESTART , CANCEL, STQP or STATUS

FIF implementation specificatiens 69 s/ 108

-— get the transfer identifier
@ if the requested service is DELETE then

— get the remote file name to be deleted.
® For all reguested types, check the supplied gparameters
1f there is an error then returns a diagpnostic and EXIZ.
1f operation is RESTART then
® search the disk CONTEXT identified by the TID:

- If it does not exist, return a diagnostic and EXIT

— else return a diagnostic indicating operation locally
accepted and continue

1f operation is SEND or FECEIVE then

& .initiate all global variables of the task

® generate the TID value for the reguest 1o

® create a memory and disk CONTEXT {(identified by that TID)
and set the transfer status with a value indicating local
acceptances

if amy error occurs in the previous phases then

® return a diagaostic aad EXIT

else

@ return a diagnostic indicating local acceptance and CONTIN-

UE

call the procedure corresponding to the user reguest (SEND,
RECEIVE, RESTART, STATUS, SIOP or DELETE) and <receive the
results of the invoked procedure.

if the operatioa was STATUS or DELETE then

® return the result tc the user.

else

i%

The TID value has to be unique in the system among all the
TIDs in the CONTEYT TABLE. A simple solution is to use the TID
as the numeric key for a record in CGNTEXTI TABLE and increase
the last key to generate a new TID. This solution may regquire
further considerations in case of indipendent <copies ¢f FIF
shariag the same CCNIEXT TABLE.

FTF implementation specifications 70 / 108

® Wwrite the result im the related disk CONTEXT, wupdate the
TRANSFER STATUS field, £ill ia the DAZE OF TERMIBATION
field and EXI1
- if the operation wuas SIOP

» the result is both communicated to the user and stored in
the disk CONTEYT.

2. 2.2 FIP Procedures

Hote: All operations on the local system reguire tc be interfaced
with the local file-systien.

2.2.2.1 SEED procedure

The SEND procedure issues the VFS operations necessary to send a
file.

- Fill the disk and memory CONTEXT with all transfer informatioas
(see #3.3 Primary CONTEXT 1list and description fields"™ ©pag.
98) , except the %transferred record nuebers?, to bLe computed
later ons ‘

- Try to open the local file

- If an abnormal condition occurs {for example, the local file
does not exist) then

® returs a diagnostic with the reason of failure and EXIT
» set the conditicn to "not restartable®

- Establish a connection with the remote: call the VFS procedure
SELECT PEOTOCOL {see %"2.,2.,3.1 SP Primary procedure® pag, 79).

- Set parameters to act on the remote file, according to the des-
tination effect specified by the user by disk CONTEXT in case
of RESTART.

—~ .If destination effect is MAKE then
® Set the parameter CLASH-OPTION to KEEP

- I1f destination effect is REPLACE then
N Set the parameter CLASH-OPTION to REPLACE

- If destination effect is APPEND then
2 Set the parameter CLASH-OPTION to REJECT,

- map file attributes from real to virtuwal format

FTF implementation specifications 71 / 108

If destination effect is APPEND then

® select the resote file by calling the VFS procedure SELECT
FILE (see "2.2.,3.2 SL Primary procedure™ pag. 80).

e else try to create the remote <file Ly calling the VES pro-
cedure CREATE FILE (see %2.2.3.3 CR Primary procedure® pag.
80)-

prepare parameters to continue the action on the remote file:
set the parameter PROCESSING-HODE to LCAL or APPEND

try to open the remote file: call the VFS procedure OPEN FILE
{see "2.2.3.5 OP Primary procedure® pag. 82). The restart posi-
tion is specified only if the SEND procedure has been invoked
by a RESTART compand. In this case, the positiom is negotiated
with the Secondary.

set the TRANSFER STATOS in the memory and disk CONTEXT with the
value RUNNING.,

begin the data transfer: call the VFS procedure BEGIN TRANSFER
{see %2.2.3.6 BT Frimary procedure® pag. 83).

get records from local file and send a record a time until end
of file is reached: call the VFS procedure DATA ({see "2.2.3.7
DATA Primary procedure" rag. 84).

start the transfer from the record indicated im the CONTEXT
after OPEN procedure, and increase a reccrd counter. At the end
of the data transfer, this value will ke stored in the field
't ransferred record numbers? of the memory amd disk CONTEXT.

send end of transfer: call the VFS procedure END TRANSFER (see
#2,2,3.8 ET Primary procedure® pag. 84).

close the repote file: call the VFS procedure CLOSE FILE (see
12,2,3.9 CL Primary procedure® pag. 84)a.

release the remote file: call the VFS procedure RELEASE FILE
{see "2.2.3.11 RL Primary procedure” pag. 85).

close the local file

release the protococl conmection: call the VFS procedure RELEZASE
EROTOCOL {see "2,2.3.12 BP Primary procedure" pag. 86)-

set the TRANSFER STATUS field in the disk CONTEXT to SUCCESSFUL
TERHINATION.,

return a diagnostic indicating successful terminatioan.

If during the execution of this procedure, an error of type 1 or 2
{("1.5 Types of interruptions” pag. 59) occurs, then:

FTF implementatica specifications 72 ;s 108

disconnect with a suitable reason code: call the VFS procedure
DISCCHNNECT PROTCCCL ({see %"2.2.3.13 DP Primary procedure® pag.
86)

set TRANSFER STATUS field in the disk CCNTEXT to NOT RESTARTA-
BLE

set the condition tb not restartable

return diagnostic and EXIT

If an error of type 3 occurs, then

disconnect with a suitable reason code
set TRANSFER STATUS field in the disk COBETEXT to RESTARTABLE
return diagnostic aad EXIT

set the condition to BESTARTABLE

FTF implementation specificatioms 73 / 108

2. 2. 2.2 RECEIVE procedure

The RECEIVE procedure issues the VFS operaticns necessary to
receive a file.

- try the local file creation:

s if the operation is successful <conpleted then a *new file®
has been created.

® othervise, if the file already exists then check the desti-
nation effect:

- destination effect = HAKE ==== return a diagnostic
with the reason of failure and EXIT setting a not res-
tartakble condition,.

—— destination effect = REPLACE ====> opemn the existing
iocal file.

— destination effect = APPEND =====)> open the existing
local file and point to the bottom.

- establish a connection with the remote: call the VFS procedure
SELECT PROTOCOL {see "2,2.3.1 SP Primary procedure® pages 79).

- select the remote file: c¢all the VFS procedure SELECTI FILE (see
"2,2.,3-2 SL Primary procedure® rpag. 80).

- read the remote file attributes: call the VFS procedure READ
ATTRIBUTES ({see "2.2.3.4 RA Frimary procedure® pag. 81).

- prepare file attributes and parameters +to act oan the 1local
file: map attributes fros virtual format to real one.

- set the parameter PROCESSING-HODE to READ.

- open the renote file: call the VFS procedure OPEN FILE ({see
%2.2.3.5 OP Primary procedure® pag. 82).

- If the RECEIVE procedure has been called by a RESTART conmmand,
the CONTEXT for the requested file already existed. In this
case, the restart position is specified im the OPEN request,
and the data traansfer starts form that pcsition. Otherwise, the
data transfer starts from the top of the file,

- set the TRANSFER STATUS field in the memory and disk CONTEXT to
BUBHING.

- begin the data transfers calls the YFS procedure BEGIN TBANSFER
{see ¥2.2.3.6 BT Primary procedure®™ pag. £3).

- receive data until end of transfer occurs: calls the procedure
REC DATA, and copy data in the local file {see %2,2.3.14 REC
DATA Primary progcedure® pag. €€).

- at the end of transfer, close the local file.

FIF implementation specificatioans ' 74 s, 108

call the ¥FPS procedure CLOSE FILE (ses

- close the remote file:
y rprocedure®™ pag. 84).

#7,2.3.9 CL Prisar

- release the resmote file: call the YFS progcedure RELEASE FILE
{see "2,2.3.11 EL Primary procedure® pag. 85)

- release the protoccl connection: call the VFS procedure RELEASE
PROTOCOL {see ¥2.2.3.12 EP Primary procedure® pag. 86)-

- set the TRANSPER STATUS field in the disk CONTEXT with SUCCESS-
FUL TERBIHATICH.

e returnr a diagnostic indicating successful termination.

1f during the execution an abnormal condition woccurs, the same
error handling as in the SEBD procedure takes place.

20202.3 RESTART procedure

The RESTART procedure handles the restart operation for am inter-
rupted and restartable file transfer and may be issued canly by the

sape user who imitiated the file transfer.

- get disk CONTEXT <contents and restore all variables necessary
to restart the cperation

- check the operation that has been interrupted:
. If operation was SEND thea call SEND procedure
® If operation was RECEIVE then call RECEIVE procedure

- return the completion code of the reguested operations

2:2:2-8 STOP procedure

The STOP procedure 1is invcked on user's reguest to immediately
abort a File Transfer,

- set the TRANSFER STATUS to HOT RESTARTABLE

- send a Disconnect protocol reguest by calling the VFS procedure
DISCONNECT PROTOCOL {see #2.2.3.13 DP Primary procedure" pags
86},

- return a diagnostic., This may indicate success or failure,

which may only happen when the File Tramnsfer has already been
completed or was pever ianvoked.

202.2.5 STATUS procedure

The STATUS ©procedure provides informaticon c¢n a File Tramsfer, by
using the disk or memory CONTEXT.

FTF implementation specifications 75 s/ 168

- If the File Tramsfer is running, ianformatiom is obtained frosm
the memory CONTEIIL.

- If the File fTramnsfer is suspended, or termimated but the disk
CONTEXT still wexists, information 1is obtained from the disk
COHTELT.

- If no CONTEXT is found, a diagnostic. is returned.

The actual information which is passed as retorn frem the STATUS

procedure is inmplementation dependent.

2:202.6 CABECEL procedure

The CANCEL procedure is used to delete all information related to a

previously interrupted File Transfer. The procedure tries to re-es-

tablish the conditicns as before the transfer was initiated.

- get the disk CONTIXT contemts:

- if the operation was SEND and destination effect = HMAKE then
® establish a connecticn with the remote
® select and delete the remote file whose name is specified

in the disk CONTEXT, by «calling the VFS gprocedure SELECT
and DELEIE file.
» release the connection with the remote

- if +the operatiom ®as RECEIVE and destination effect = HAKE
then erase the file local to Pripary whose name is specified in
the disk CONTELT.

- In any case {both for SEND and RECEIVE) erase the disk CONTEIT

- return a diagnostic

Hote: In case of APPEND or REPLACE the previcus conditions om the

_ destination file cannot be re-established.

202.2.7 DELETE procedure

The DELETE procedure is a File Management service, which is used to
perpanently erase a resmote file.

- establish a connection with the remote: call the VFS procedure
SELECT PROTOCOL {see "2.2.3.7 SP Primary procedure® pag. 79).

- select the remote file to be deleted: call the VFS procedure
SELECT FILE.

- delete the remote file as it is regquired: call the VFS proce-
dure DELETE FILE

FTIF implementation specifications 76 s 108

- releases the connection with the remote: calls the VIS proce-
dure RFELEASE PRCTOCOL (see %2.2.3.12 RP Primary procedure" pag.
: g6} .

- return a diagnostic indicating the successful deletion of the

file

1f during the execution an abnormal condition occurs,; the sanme
error handling as described ipn the SEND pripitive is performed.

2.2.3 3ES Primary Procedures

[€2 e B
wd

<aw@wwmmﬁzm>

’ FILE SYSTEHL====2

Lo e o e e DM s S okt gness ibien Do s S

W e e OO o
fod
Biw dooon diibe e s Bhasie fawen Sews S Gue Hwes Goee M G S

|

o Mo P s DR s Ot gt fie B b o g SN0 i ose Gusie T gnmu G2y
i
his om0 s dusten Gt G o a8 [T SOUR AR TR P ol

Fig. 33s Y¥S Pripary

The YPS Primary implements the protccol aspects of the FIF, as it
interfaces the real file system and the CSIEILE eavironment to pro-
vide the mapping function function from/to real format of attrib-
utes and operation tos/from virtual one, and, through the ISIDE
services, to send protocol messages. The VIS procedures functions
are globally the follcwing:z

- initiate a connection with the remote

- establish an existing file as current file

- create and establish a new file as current file

- retrieve specific attributes of the current file

FTF implementation specifications 77 s 108

- initiate processing of the contents of the current file
- cause transition to file data transfer level

o transfer file data andysor a delimiter

- specify termination of the transfer withcut lcss of data
- terminate processing of the current file

- delete and release the current file

- release the current file

- specify that an abnormal termimation of the transfer bas
occurred, with possible destruction of data in traamsit

- request normal terminaticm of the conmection
- request abnormal tereination of the connection

Each YFS procedure is able tc provide one of these functions, The
calling sequence of the VFS procedures must fcllow the rules set by
the protocol enclosures, waich are the following:

SELECT PROTOCOL = SP
SELECT FILE = 5L
CREATE FILE = CH
READ ATTRIBUTES = EA
CQEEN FILE = 0P
BEGLIN DATA TRANSFEB = BT
DATA TRANSFER = DATZA
ABORT DATA TRANSFER = AT
END DATA TRAHWSFER = ET
CLOSE FILE = CL
DELETE FILE = DL
RELEASE FILE = RL
RELEASE PRCTCCOL = RP
DISCONNECT PROTOCCL = DP

FTF implementation specifications 78 ;s 108

; SEND ? ; SP ; :
| i] SL |]
| RECEIVE |] CE | 1 i
i | i KA]]
| RESTART | | CE] S]
| | } BT | i
| sTOP j{omwmrmemeeeee >1 DATA | 1 i
]] | ET | !
| STATUS | i CL] D]
| 1 i DL] 1
| DELETE |] RL i E |
| |] RP i §
| CANCEL | | DE] |
|
i
& . 3
{File Systen i
FPig. 34, File iransfer Erimary

In the following, the VFS procedures are nased with their acronyams
as ia Fig. 34.

The paraseters?! encoding 1s explained in %3,.1.2.4 Parameter
encoding® pag. 27,
2.2-.3.1 SP Primary procedure
The SP procedure establishes a network connection with the remote.
- send select protocol request:
= codify user data from real format to virtual one

® use the <following ISIDE services tc send request to the
Secondary:

— OPEN {®4,71 CBEN primitive” pag. 100)
—= CONNBCT ("4.2 COENECT primitive® pag. 101)
- receive Select Protocol Lkesponse from the remote

- decode parameters from virtual format to real one and prerare
the variables necessary to access the input tufferis,

17 He call always *user data’ the *data® to be +transferred,
either a transparent data or a real sessage.

FTF implementation specifications 79 7 108~

paraseters filestore-nane
authentication
protocol-identifier
protocol-version
class-of-filestcre
class-of-service

transition protocel state dorpant ==== no file ({see "2,3.2 Select
Protocol reguest (SP)" of "First Part®).
2.2.3.2 SL Primary procedure
The SL procedure establishes a file as the curresnt one
- send Select File reguest:
- codify user data froé real format to virtual one 17
- use the following ISIDE service to sead reguest to Secondary
6 DATA ([see #4,5 DATA primitive®™ pag. 104)

- receive Select File Response by usiang the followipg ISIDE serve
ice:

s RECEIVE {see "4,3 RECEIVE primitive®™ pag. 103)

- decode parameters from virtual format tc¢ real ome and pregare
' the variables necessary to access the input Lufferis,

parameters file-nane
file~passvords
transition protocol state no file ====> file selected {see "2,3,7

Select Pile reguest (SL)" of "Pirst PFart®).

2.2.3.3 CR Primary procedure
_The CR procedure creates a remote file,
- send Create File tregquest:
® codify user data froe real format to virtual one 17

® use the following ISIDE service to send request tc Second-
ary

— DATA {(See %4.5 DATA primitive® pag. 104)

- receive Create File respomnse:

i8 Input buffer = set of imformations permitting the access to
the received mpessages.

FIF implementation specifications 80 s 108

s receive a message from the remote through the fcllowing
ISIDE service:

— RECEIVE {see "4,3 RECEIVE primitive®” pag. 103)

e decode parameters from virtual format to real one and pre-
pare the variables necessary to access the input tkufferts,

paraseters file-nasne
file-gasswords
file=attributes

clash-option
reversitle-mapping

tramsition protocol state: no file ====> file selected {see "2.3.11
create file reguest (CR)" of "First Part¥).
short description of the most significant parameters:

Clash-optiom specifies what to do if the supplied file-name corre=
sponds to an already existing file.

= BBJECT the existing file is kept
- EERP the existing file is kept and selected

- REPLACE the existing file is replaced by the newly defined
file

In OSIRIDE, the parameter value depends on the ‘destination effect?®
specified by the user:

effect = BAKE ====> CLASH-OPTION = KEEP
effect = REPLACE ====> CLASH-OPTION = REPLACE
effect = APPEHD ====> CLASH-CPTION = REJECT

2.2.3.4 BRA Primary procedure

The RA prodedure reads the requested attributes of the currest
file: ‘ '

- send Read Attributes regquest:
& codify user data frcsm real format to virtusal one 17

2 use the following ISIDE service to send reguest to Seccnd-
arys

— DATA {see "4.,5 DATA primitive™ pag. 104)

® receive the Read Attribute response from the remote through
the following ISIDE service: :

—— RECEIVE {see®i4.,3 RECEIVE primitive® pag. 103)

FTF implementaticn specifications 81 4 108

® decode the parameters from virtual format to real one and
prepare the variables necessary to access the input

buffert®,
paraseters requested-attributes
tramsition protocol state: file selected ====> file selected {see

"2-3-15 Read attributes reguest (RBA)® of "rFirst Farthy,

2: 2035 0P Primary procedure
The OP procedure opens the cucrent file.
- send Open File request:
o codify user data from real format to virtual one 17

o use the following ISIDE service %o send request t¢ Second-
arys

— DATA (see "4.5 DATA primitive® pag. 104)

® receive the Open Pile response from the remote through the
following ISILE service:

— RECEIVE {see®U.3 RECEIVE primitive® pag. 103)

® decode the parameters from virtual format to real one and
prepare the variables necessary to access the input
tuffert s,

parapeters accass-gode
processiag-node
lock
failure-coption
open~identification
restart-position

transition protocol state: file selected ====> file gpen {see
#2.3.17 Open File request (OF)" of "First Part®).

Short description of the most significant parameters:

processing—-mode specifies the intended processing of the file con-

tents.
BEAD reading of the file contents
iDAD writing into the file from the beginning {overwriting

any previous contents)

APPEED writing into the file after its curremt end {preserv-
ing any previous contents)

In OSIRIDE, the parameter value depends om the user reguested serv-
ices:

FIF implementation specifications 82 s 108

service = SEHD ====> PROCESSING-#ODE = LOAD or APPEED 1°
service = RECEIVE ====> FROCESSING-HCDE = READ

{

opea—-identificatiocn uniquely identifies within the Primary the
current file-opening. The same identification must be
supplied in case of reopening for restart of as interc-
rupted data transfer. In OSIRIDE the parameter contains
the TID value.

restart-position specifies that this open is for restart and nego-
tiates the position where to resusme data traasfer.

202-3-.6 BT Primary procedure

The BT procedure alerts the secondary that the data transfer phase
is teginning.

- send Beginm Transfer request:
L codify user data froe real format to virtual omne 17

] use the following ISIDE services t¢ send the request to
Secondary:

— DATA {see "4,5 DATA primitive®™ pag. 104)

— SYNC ({see ®4.7 SYHCHEONIZE primitive® pag. 105)

— if the operation is RECEIVE then a CONTROL primitive
(see "4,6 CONTEBOL primitive® pag. 104) is also issued,
to give the DATA & SINC tokens.

- rTeceive Begin Traasfer respoanses

- receive the Begin Transfer response from the remote through
the following ISIDE service:

— RECEIVE (see "4,3 RECEIVE primitive?® pag. 103)

® decode the parameters from virtual format to real cne and
prepare the variables aecessary to access the input

tpfferis,
paraseters special-information
transitiom protocol state: file open ====)> data (see 22,3.,21 Begin

?ransfer reguest {BI)® of "First Part®) .

19 Depending on the user’s specified paranmeter in the SE¥D con-
Band.

FPTIF implementation specifications 83 / 1058

2¢2.3.7 DATA Prisary procedure
The DATA procedure is used to send file datas
- codify user data froam real format to virtual one %7

- use the followiny ISIDE service to transfer data to the Second-
arys: ’

@ DATA ({see %4.5 DATA rrimitive® pag. 104}
paraseters file-data
transition protocol state: data ====> data ({see %2.3.23 Data
reguest (DATA}® of ¥First Part®).
2:2.3.8 BT Primary procedure

The ET procedure alerts the Receiver that the data traansfer phase
is finished,

- send Bnd Data transfer reguest:
® codify user data from real format to victual ome 17

ﬁ use the following ISIDE services to send request to Second-
ary '

— DATA (see ¥U,.,5 DATA primitive"® pag. 104)
— If the Sender is the Seccomdary, them the SYNC and CON-
TROL ISIDE primitive is used, otherwise the SYEC primi-
tive is used {(po tokens are GIVEn from the Prisary to
the Secondary except at the beginmsing of data traasfer
phase if necessary).
- receive End Data transfer response:

@ receive message froe the remote through the following ISIDE
service:

— RECEIVE (see #4,3 RECEIVE primitive® pag. 103)
trapsitiom protocol state: data ==== file cpen ({see "2,3.24 End
Transfer request {EI1)® of ®First Fart¥).
2:2:3.9 €L Primary procedure
The CL procedure closes the current files
- send Close File reguest:

2 codify user data from the real to the virtual format 17

FIF implementation specifications 84 s 108

o use the following ISIDE service to send reguest to the Sec-
gndary:

— DATA {see "U4.5 DATA primitive® pag. 108)

- receive the Clogse File response from +the remote through the
following ISIDE service:

® RECEIVE (see 74,3 RECEIVE primitive® pag. 103)
transitiom protocol state: file «open ==== file selected (see
#2,3,19 Close File reguest (CL)" of ®First Part¥).
202+ 3. 10 DL Primary procedure
The DL procedure is used to delete the current file
- send Delete File request:
® codify user data from real format to virtual ome 17

® use the following ISIDE service to send the reguest to the
Secondarys

— DATA {see "4.5 DATA primitive® pag. 104)

- receive the Delete File response from the remote through the
following ISIDE service:

? RECEIVE {see hdref refid=isrec.)
transition protocol state: file selected ====> no file (see %2, 3,13
Delete File regquest (DL}® of #First Part%).
2.2-3.11 BL Primary procedure
The RL procedure is used to release current file.
- send Release File request:
® codify user data from the real to the virtual format: 17

® use the following ISIDE service to send request toc Second-
arys

— DATA {see "4.5 DATA primitive® pag- 104)

- receive the Release File response from the remote through the
following ISIDE service:

® RECEIVE {see "4.,3 RECEIVE primitive® pag. 103)

transition protocel state: file selected ====> nc file {see "2.3.9
Release File request {RL)" of "First Part®).

FTF implementation specifications 85 ¢/ 108

2w2$3@32 BP Prisary procedure
The RP procedure is used to termisate a connection.
- send @ Release Protocol request:
® codify user data from the real to the virtual format: 17

= use the following ISIDE service to semd the reguest to the
Secondary:

— FINISH ({see %4,10 FINISH primitive® pag. 106)

- receive the Release Protocol response from the remote.
transition protoceol state: no file ==== dormsant {see #2.3.4
Release Protocol tegquest (BP)% of ®WFirst Part¥).
202313 DP Primary procedure
The DP procedure releases a comneciion in an abnormal manner.
- send Disconnect Protocol regquesti:

s codifies user data from the real to the wvirtual format: 17

@ use the follouwing ISIDE service to send request tc Secoand-
arys ‘

— FINISH {see 94,10 FINISH primitive® pag. 106)

—— The Abort mode of FIRISH is selected.
tramsition protocol state: any state ====> {Jormant (see %2,3.6 Dis-
connect Protocol reagquest {(DP)¥ of #First Part®).
2.2.3.1%8 BREC DATA Primary procedure
_Receives data or advice of Eand Transfer fror the Semder. If an
advice of End Transfer is received from the Secondary then an End

Transfer response is sent by using the followiang ISIDE service:

- RESPONSE {see "4,9 RESBORSE primitive® pag. 106)

parameters rec~data-diagnostic
putput paraseter rec-data-diagnostic
tramsition protocel state: data =====)> data

FTP implementation specifications 86 s 108

BSotez This procedure is not imcluded im the ECHA-85 VFP, but is a
local procedure used when the Primary plays the role of tihe °Re-

ceiver? in the File Transfer.

2.3 SECOHDARY SIRUCTIURE

The File Transfer Secondary is lecal to the file where the Primary
action (reading, writing or appending) is addressed. This task
runs independently cof the Primary. As already described, the Sec-
ondary does not communicate with the user, but interfaces its lccal
file-system, and executes all Primary compands, sending or receiv-
ing file data. The Secondary functico is performed by the VFS Sec-
ondary procedures and its structure, which will be explained in the
followiag sections, is composed essentially by a 'mais?' module
which invokes the VFS procedures and by the bodies of these proce-
dures. The Secondary may implement an operator interface, which is
not described in this document because it is local operating systesn
dependent. This operator interface may be useful whenever the
behaviour of the Seccndary has to be subject to operating needs.
For instance, in many cases it is wuseful that the operator has the
capability of stopping the functioning of the secondary im case of
congestion. Similar considerations are also valid for the Primary,
with the difference that the Primary already has a command inter-

face.

e r T 1
{ !] | v |
] i]] F i
1 i ! D ! S |
H 1 1 | 1 | }
l | | 3 | P i
} S | } E | R i
| H i A | 0 l
1 1 j{mmmm— >1 T i C | ¢<=FILE SYSTEH=>
| i | C i E]
R D l 1 H ! D {
| 1 ! E | U]
| E { H B] R l
i i i i E |
] ! H] S !
i i B

Fig. 35 File Transfer Secondary

FTF implementaticn specifications 87 / 108

2.3.1 Secomdary main progras

The main module, called DISPATCHER in Fig. 3% pag. 87, executes the
following set of operations:

- receive messaqges from the Primary, throughk ISIDE services

- check the received messages and call the appropriate VFS proce-
dures:

- if the received message 1s:

2 a COBNECT indication then call the VFS procedure SELECT
PROTOCOL (see %2.3.2.1 SP Secondary procedure® pag. 90).

a SELECT FILB request then «call the VFS procedure SELECT
FILE ("2.3-2.2 SL Secondary procedure® pag. 90)

b

= a CREATE FILE reguest then call the VFS procedure CREATE
FILE ("2.3.2.3 CE Secondary procedure” pag. 91)

= a READ ATTRIBUTES request then <call the VFS procedure RERD
ATTRIBUOTES {"2.3.2.,4 RA Secondary prccedure® pag. 92)

® a OPEN FILE 1reguest then call the VES procedure OPEF FILE
(#2.3.2.5 0P Secomdary procedure® pag. 92)

® a BEGIE TRANSFER request then «call the VFS procedure BEGIH
TRANSFER {"2.3.2.6 BT Seconmdary procedure” pag. 93)

® a EWD TRAESFER reguest then call the VFS procedure EED
TRANSFER (92.3.2.8 ET Secondary procedure® pag. S4)

® a CLOSE FILE request then call the VES procedure CLOSE FILE
{(%2,3,2.9 CL Secondary procedure® pag. 93)

- a DELETE PILE reguest then call the VFS procedure DELETE
PILE ("2.3.2.10 LL Secondary procedure® pag. 93)

® a BELEASE FILE request then «call the VFS procedure RBELEASE
PILE {"2.3.2.11 RL Secondary procedure® pag. 95)

® a RELEASE PROTOCOL request then <call the VFS procedure
RELEASE PROTOCOL {%2.3.2.12 RP Secondary procedure" pag.
396) for a normal conmection termimation

&

a PINISH reguest then

— if the received diagnostic indicates a NOT RESTARTABLE
ercor {type 1 and 2 - see "1.5 Types of interrugtions”
pag. 59) then re-estakblish the previous conditions,
i.e. delete the received file, if any, and only ia the
case of MAKE

FTF implementation specifications g8g s 168

— if the received diagmostic ipmdicates a BESTARTABLE
error {type 3 - see ¥1.5 Types of interruptiocns® pags
59} then the involved files are kept as they are.

— if the received message is different from those above
listed messages, then ap error oCcurs: in this case the
error is catalogued as a ‘protocol error’ and causes a
NOT RESTARTABLE condition (see #1.5 9Types of inter-
ruptions® pag. 59): the Secondary uses a ISIDE service
to disconnect itself from the Primarys.

2-.3.2 9PS Secomdary Procedures

S i e i e i

The notation used for the VIS Secondary procedures is the same as
that imtroduced in "Z.2.3 VFS Primary Procedures™ pag. 77 for the
Y¥S Primary.

|

4

|

5P
51
RA
CR
op
L D | BT

i
]
i
|
!
!
DATA]
]
|
J
!
}
4

R A

£{==>FILE SISTEH

ET
CL
nL
BL
BE

: IR

I I I = I B B S

i
i
|
!
}
i
]
i
I
|
|
]

Fig. 36. Pile Iransfer Secondary Procedures

The VFS procedure functions are globally the fcllowing:
- response to Select Protocol reguest

- response to Select File request

- response to Create File request

o response to Read Attributes teguest

- response to Cpen File reguest

- response to Begin Data Transfer regquest

- Send Data to Primary

- response to End data Transfer reguest

FTF implementation specifications 8% , 108

- response to Close File reguest
- response to Delete File request
- response to Release File request

- response to Release Protocol rTequest

2.3.2.1 SP Secendary procedare

The Select Protocol procedure is used to accept or reject an
incosiag coanection indicaticn.

- control the received parameters if they are consistest with FIF
local version

- send Select Protocol response py using the following ISIDE sex-
vices:

® ACCEPT {see "4.8 ACCEPT primitive® pag. 105)

The resalt parameter of ACCEPT service is set to yes if the
connection request is to be accepted and to 80 gthervissc.

paraseters: protocol-version
class-of-filestore
class~of-service
select-protocol-diagnostic

transitiom protocol states dorsmant =====> nog file

2.3.2.2 SL Secondary procedare

The Select File procedure opens an existing file, ilocal to the Sec-
ondary task.

- decode the input parameters from TLYV format to real one
= interface the local file-systen

- try to open the lccal file whose nanme is specified in the iaput
parameter FILE-BAHNE

- if the file is not found them an €Lror OCCULS: the result is
set to "no restartable® value

- if the open operation terminates correctly the SL procedure
sends a Select File respense:

e map the attributes from real to virtual format
& send response by using the following ISIDE service:

— DATA (see "4.5 DATA primitive® pag. 104)

PTF implementaticn specifications 94 ¢ 108

parameters: select-file-diagnostic

transitiom protocol state: no file =====> file selected

2.302.3 CR Secondary procedure

The Create File procedure is used to build a file, local to the
Secondary task.

o decode the input parameters from TLV to real forsat

- interface the local file-system by mapping the virtual attrib-
gtes on the real format

- check the regumested destination effect, which, at this level,
is expressed as a value cf input parameter 'CLASH-CPTICHN?

- tries to create the local file with the name specified in the
input parameter FILE-NANE:

- if the operation is successful completed, the operation can
proceed only 1f the Destination Effect 1s HAKE and the
CLASH-OPTION is KEEP.

- If the file already exists, then the operation can proceed only
ifs

A. the Destination Effect is REPLACE and the CLASH-QOPTIOHN
is REPLACE.

or

B. the Destination Effect is APPENL and the CLASH-OPTION
is BREJECT.

- Any other condition intercupts the process ia a not restartatle
¥ay.

- if the file creation is successful, the CE procedure sends Cre-
ate File responses

2 map output parameters from real to virtual format
e send the response by using the fcllowing ISIDE service:
—— DATA {see "4.5 DATA primitive" pag. 104)

paraneters: create-file=-diagnostic

transition protocol state: no file =====> file selected

PTF implementation specifications 91 7 108

2.3.2.4 BA Secondary procedure

The Read Attributes procedure reads the reguested attributes of the -
current file, local to the Secondary task.

- decode the input parameters from TLV to real format
- send Read Attributes response:
® map output parameters from real tg¢ virtual format
e send response by using the following ISIDE service:
— DATA {see "4,5 L[ATA primitive®™ pag. 104)

parameters: file-attributes
read-attributes-diagnostic

traansition protocol state: file selected =====> file selected

203.2.5 0P Secondary procedure

The Open File procedure opens the current file, local to the Sec-
ondary task. -

- decode input parameters from TLV to real format

- check the operaticn to be performed, which, at this level, is
expressed as a value of the input parameter S PROCESSING-HODE?®:

® if the operation is SEND and PROCESSING-MODE is ICAD and
transfer status is HNO ACTIVE, then go to the begimning of
the file.

® if the operation is SEND and PROCESSING-MODE is APPEND and
transfer status is NO ACTIVE, thenm go toc the bottom of the

file

® if the operation is SEND and PROCESSING-MODE is 1OAD or
APPEND and transfer status is RESTARTABLE, then

— open the file whose name has been received from the
Primary and on which the transfer is to begin

— go at the interruption point (received by the Primary
in the input parameter RESTART-ECSITION) and continues

the traansfer

ﬂ if the operation is RECEIVE and PROCESSING-MODE is READ and
transfer status is NO ACTIVE, then pcint to the appropriate
position in the file to read its records

@ if the operation is RECEIVE and PROCESSING-MODE is READ and

transfer status = RESTARTABLE, then continues the Heceive
operation from the interruption point

FTF implementation specifications 92 ;s 108

- after completion of the above mentioned cperations, the OGP pro-
cedure sends Open File response:

® map output parameters from real to virtual format
o send response by using the following ISIDE service:
— DATA {see "4.5 DATA primitive®™ pag. 104)

parasmeters: restart-position
open-file-diagnostic

transitios protocol state: file selected =====> file open

20 30.2.6 BT Secondagy procedure

The begim transfer procedure sends data to Primary until end of
file or anm interruption CCCUIS.

- decode input parameters from TLV to real format

- send Begin Data t:aasfez response:s
® map output parameters from real tc virtual format (TILY)
@ send response by using the following ISILE services

— DATA [see ®4,5 LDATA primitive® pag. 104)
RESPONSE ([see ¥4.9 RESPGNSE primitive® pag. 106)

- check the operation to be performed:
® if the operation is RECEIVE
— the Secondary is the 'sender® in the transfer

— Until end of file or an error or a voluntary inter-
ruption from the Primacry OCCULS repeat:

® interface the local file-system Lty reading a record
a time in the file

= map output parameters from real to virtual format

2 send data to Primary by using the following ISIDE
service:

% DATA {see 4,5 DATA primitive® pag. 104)
—— if the transfer has been successfully completed send
tend data transfer? request, i.e. invoke the ET proce=
- dure {"2.3.2.8 EI Secondary procedure® pag. 94)

e if the operation is SEND:

—— the Secondary is the ‘'receiver? in the transfer

FTF implementation specifications 33 s 108

— send a response by using the following ISIDE services:
8 RESPEONSE {see ¥4,9 RESECHNSE rrimitive® pag. 106)

the command rarameter of the RESPONSE operation is
set tc #SYNCHEOWNIZE®

parameters: begin-data-diagnostic

transitiom protocel state: file open =====> data

2:3s2.7 DRTA Secondary procedure
The DATA procedure is used tc transfer file data

- decode input parameters from TLV format tc real and returns a
diagnostic

- interface the local file-systen:
o write into the current file

® ‘ngdaie all elements used to recognize the data location in
the file.

parameters: file-data
transitiom protocol state: data =====> data

2:3.2.8 BT Secomndary procedure

?he End Transfer procedure specifies the termination of the tramns-
fer without loss of data.

- decode input parameters from TLV to real format and return a
diagnostic

| send End Data transfer response:
e map output parameters from real to virtual format
® send response by using the fcllowing ISILE services:
—— 1f the Secondary is Sender:
8 DATA {see ®4.,5 DATA primitive® pag. 104)
& FEESPCNSE {see “4,9 RESPCNSE rrimitive® pag. 106)
a CONTRQL (see "4.6 CONTROL primitive® pag. 104)
-~ 1if the Secondary 41is Beceiver:

a DATA ({see "4.5 LCATA primitive?® pag. 104)

FTF implementation specifications 94 s, 108

parameters: none
transition protocol state: data =====> file open

2:3.2.9 CL Secondary procedure
The Close File procedure closes a file enclosure.
- decode input parameters from TLV to real forsmat
- send Close File response:
® map output parameters from real tc virtual format {TLV)
8 send respcnse by using the following ISITE service:
— DATA {see "#,5 DATA primitive® pag. 104)

parameters: special-information
close~-file=-diagnostic

transition protocol state: file open =====> file selected

2.3.2., 10 DL Secondary procedure
The Delete File procedure erases the current file.
- decode input parameters from TLV to real format
- erase the current file
- send Delete ?ile rTesponse:
@ map output pazamete:s from real to virtual format
® send the response by using the following ISIDE services
— DATA {see %lU4.5 DATA primitive" pag. 100)
parameters delete-file-diagnostic

transition protocol state: file selected =====)> no file

2.3.2.11 BL Secondary proceduare

The Release File procedure releases current file.

- decode input parameters from TLV to real format
- close the current file

- send Release file response:

FTF implementation specifications 95 s 108

e map output parameters from real to virtual format
@ send the response by using the following ISIDE service:
—— DATA {see "4,5 LCATR primitive® pag. 104)
parameters: release-file-diagnostic

transsitiom protocol state: file selected =====> po file

2.3.2.12 BP Secomdary procedure

The Kelease Protocol procedure is used for a normal termination of
a connection.

- send release protococl response:
] map output parameters from real to virtual format (ILV)
® send the response by using the following ISIDE service:
—— RESFONSE (see "4.9 RESPONSE primitiveY pag. 106).
The command parameter of RESFCNSE primitive 1is set to
FINISH. The FT connection is thus released,

parameters: none

transition protoceol state: no file =====)> dcrmant

FTF implementation specifications 96 /s 108

This section describes thbe basic data structures of FTF implenmenta-
tion. The most important structures which are included in the FTF
implementation are:

- information permitting the recognition in an unambiguous way of
the received message and of the message to Le sent.

° input message identifiers set

® output message ideatifiers set
- information about the transfer developrent

e CONTEXT
Botes As far as the CCNIEXT 1is concerned, this is supposedly
located in the Primary. A similar data structure may be developped
also for the Seccndary. In this latter case, the relevant informa-

tion for the Seccandary 1is:

- jdentifier of that specific traansfer {(TiD), as it is received
from the Primary

- transfer status received from the Primary

- remote file name received from the Primaxy

- date and time when the transfer was started

- date and time when the transfer was interrupted or terminated

- punber of transferred records at the mcment of interruption-
time.

The current implementaticn does not foresee the Secondary CONTEXT
use, so this note is only a proposal for further develorments.

3.1 INPUT HESSAGE IDERTIFIERS SET

Any legal input pessage is made of:
- input message code

- - input message lengths integer value, whose limit is estatlished
by the ISIDE services used in conjunction with that message.

- pointer to the input message fields in the —record containing
the message.

Data structures 37 / 108

- input message offset: heading which «can contain some further
information about the message type.

3.2 OUTPUT BESSAGE IDENTIFIERS SET

Any output message is made of:

- output message code

- output message length: integer value, whose 1limit is estab-
lished by the ISIDE services used in conjunction with that mes-

sage.,

- pointer to the output message fields in the record coptaining
the message

- output message offset: heading which can contain some further
information about the message tyre.

3.3 PRIHABY CONTEXT LIST ABD DESCRIPTIOHN FIELDS

The Primary CONTEXT contains the following information:

identifier {?ID): this identifier is supplied bty the Primary and is
unigue for the Frimary.
The value is numeric.

fransfer statuss see "1.6 States of the file transfer™ pag. 60.
The value is character

user identifiers owner of the transfer identifier
The value 1is character.

host identifiers remote 'host name'! specified by the user request
The value is character.

required service: see "l1.4.1 FIF commands™ pag. 55.
The value is character

destination effect: see "1.4.3 Parameters values" pag. 57.
The value is character

local file mamez see "1.4.3 Parameters values™ pags 57. -
The value is character.

resote file name:z =see "1.4.3 Parameters values" pag. 57.
The value is character.

Data structures 38 / 108

date and time
The

date and time
The

when the transfer was started
value is character.

when the transfer was interrupted or terminated
value is character.

transferred records number at interruption time

The

value is nuoBeric.

diagnostic field see "1.8 FIF diagnostic for the user”™ pag. 61.

The

Data structures

vyalue is numeric.

99 , 108

4,0 _ISIDE PRIBITIVES

ISIDE is the access method for Applications c¢n the OSIBIDE network.
An application, in this case the File Transfer, wishing tc¢ exchange
data with a partmer has to:

- Declare itself to ISIDE

- GCpen a connection with the partner
- Exchange data

- Close the connection

- Detach itself fros ISIDE

What follows is the list of the ISIDE prismitives invoked Dby the
FIF, with the related parameters setting.

4, 1 OPEB PRIHBITIVE

The FTF has to declare itself to the OSIRIDE software before start-
ing, This primitive is invoked by the primary in "2.2.3.1 SP Pri-
mary procedure pag, 79.

paraseters

aynage this parameter is a character string 16-character long ,
the local name of FTF.

password is a non mandatory character string, ranging from 1 to 8,
decided at moment of implementation and used to give sonme
access rigths {see™4,2 CCONNECT primitive" pag. 101)

Baxin is a non mandatory number ranging from 1 to 254 20 which
specifies the @maximup number of session connection over
which an ESTABLISH request will be issued. If not speci-
fied the default value is 1. This valuwe is implememnta-
tiomn matter.

Baxout is a non mandatory number ranging fros 1 to 254 290 which
specifies the =@aximup number of session connection over
which an ESTABLISH ipndication will be issued. If not
specified this default value is 1. This value is imple-
mentation matter.

20 in any case the value <mpaxin> ¢ <maxout> may not exceed the
value of 254, '

ISIDE primitives 100 s 1068

address this rarameter 1is used to identify a user routine which
should take contrul at operation ccampletiom. It too is an
implenentation dependent value.

systen this parameter 1S a character string 16-character long,
which uniguely identifies the CSIBIDE systen where the
application prograr runs. It is not used by the FIE.

return parameter that brings the return ccde of the operation.

., 2 COBNECT PRIMITIVE

The connect primitive is the way an OSIRIDE user tries the con-
nection with a partner im the CSIRIDE network and is invoked in
3,2.3,1 SP Primary procedure® pag. 79.

parameters
systen name of the remote OSIRIDE systeu.
user address of the remote application. Value defined is FTP

profile non Bpandatory parameter, which if specified, indicates
that the user has reguested a particular sessicn protile.
This parameter is used to request racticular classes of
throughput , resilience {Yrobustness" of the copnnection
against Dpetwork eIrrorsj, and othker session character-
istics. The File Transfer Applicaticn will require:

A Very High Throughpat in the direction of the data
¢ransfer,

B Low Throughput in the opposite directicn, because
not very urgent npessages are transferred in that
directicn,

C Low Resilience, because the File Transfer Protocol
has a recovery mechanism in case of network e€rrors,

data, mark, symc,term are ©LOD mandatory parameters that specify
the definitions of tokens, These parameters may assume

the value:

- MINE which states that the specified token is ede-
fined
and owned by the issuer of the reguest.

- YOURS which sStates that the specified token is
defined and owned by the receiver ¢f the reguest

ISIDE primitives 101 s 168

type

syataz

cosp

Passsord

buffer

lenght

address

- CBOOSE wvhich states that the specified token is
defined, and the receiver of the reguest should
decide about the ownership of it.

In this case the value for these parameters is:

- DRTA = BINWE

- HABK = HIRE

- SIBC = BIHE

- TERHE = not specified because the terminaticm token

is not used
is a presentation-related parameter, which, if used, spe-
cifies the type of data which will be dealt with during
the session., The possible value is:
— CHARACTER
- CCTET
— BI%

if no value is specified, CHARACTER is the value assuned
by default.

specifies whether transformation of code has to Le per-
formed in user data. This parameter may assume the value:

- YES if translaticn is performed
- B0 if no tramslation is performed
In this implementation the value is: yes

specifies whether data are to be comrressed during the
transmission. The legal value ares:

- YES Compression is performed
- BO Comiression is not performed

In this first version no coampressica is performed, so the
value is no.

This parameter may be locally used to check the validity
of the request for a given profile.

specifies the address of the tuffer wvhere the Select Pro-
tocol rarameters are tc ke put.

specifies the lenght of the previously indicated Ltuffer.

see #4,1 CPEN primitive™ pag. 100

ISIDE primitives 102 7 108

jdeptifier is the ISIDE identifier of the ccunection

“ retura see "4.1 QFEN primitive® pag. 100

4.3 RECEIVE PRIBITIVE

This primitive allows an OSIRIDE user to declare himself ready for
receiving data on a previously established connection. '

It is used by "2.2.3.4 EA Primary procedure® pag. 381, "2.%.3.5 QP
Primary procedure" pag. 82, "2.2.3.6 BT Primary procedure” pag. 83,
#2,2.3.8 ET Primary procedure® pag. 84, "2.2.3.9 CL Primary proce-
dure® pag. 84, ®2,2,3.10 DL Primary procedure" pag. 85 and
n7,2.3.11 RL Primary procedure® pag. 85.

parameters

identifier see 4,2 CCNNECT primitive"™ pag. 101

buffer is the buffer where to receive data
lenght is the length of the Luffer

. address see "4,1 CPEN primitive" pag. 100
return see Mid,1 OPEN primitive® pag. 100
residual is the residual kyte count,

4.4 BEADY PRIHITIVE

This primitive is used by the Secondary in the initialization phase
{which is not described in this document) tc declare its readyness
to accept a connection establishement indication.

parameters
Systen specifies a particular system tc be addressed. If this
: value is not specified any user anywhere may try a con-
nection. It is not used by the ¥TF.
gser specifies a particular remote user residing cn a remote
system, which is the only one allowed to try a con-
nection, It is not used by the ITF,
broadcast specifies whether the ready information has to be

broadcasted through the OSIRIDE petwork. It is not used
by the FTF.

ISIDE primitives 103 , 108

address see ®4,71 CPEN primitive® pag. 100C.

return is the ISIDE return code

8.5 DATA PRIMITIVE

This primitive is used to transfer a data buffer one the previously
estakblished connection.

It is used in "2.2.3.2 SL Primary procedure® pag. 80, "2.2.3.3 CR
Primary procedure' gag. 80, "2.2.3.4 RA Primary procedure® pag. 81,
“2,2.3.5 OP Primary procedure® pag. 82,"2.2.3.6 BT Primary proce-
dure” pag, 83, %2.2.3.7 DATA Primary procedure" pag. 84, "2.2,3.8
ET Primary procedure® pag. 84,%2,2.3.9 CL Primary procedure® pag.
84, %2,2,3,10 DL Primary procedure® pag. 85, "2.2,3.11 RL Primary
procedure" pag. 85,%2.3.2.2 SL Secondary procedure™ pag. 90,
"2,3.2.3 CR Secondary procedure" pag. 91, "2.3.2.4 RA Secondary
procedure” 'pag. 92,%2.3.2.5 OF Secondary procedure" pag. 92,
W2,3.2.6 BT Secondary procedure'" pag. 93, %2.3.,2.8 ETI Secondary .
procedure” pag. 94,"2.3.2.9 CL Secondary procedure" pag. 95,
"2,3.2.10 DL Seccndary procedure" pag. 95 amd "2.3.2.11 RL Second-
ary procedure' pag. 9%.

paraseters
identifier see "“4,2 CONNECT primitive" pag. 101,

buffer specifies the data buffer to be sent and ccntains the
VFS proiocol message.

length specifies the tuffer length,

code see "U4,2 CONNECI primitive" pads. 101 and the value is
llyes i
retursn is the ISIDE return code

4,6 COBTROL PRIKITIVE

This primitive is used to perforr the Tcken management.
1t is used by “2.2.3.6 BT FPFrimary procedure"™ pag. 83 and "2.3.2.8
ET Secondary procedure® pag. 94.

parameters

identifier see "4,2 CCNNECT primitive® pag. 101

ISIDE primitives 104 s 168

rode is a mandatory parameter, which specifies how the
token (s) specified in "4,2 CONNECT primitive” rpag. 101
should be exchanged. The legal value are:

please to request one or more tckens owped by the
partner.
give to release the possession c¢f specific tokens.
type This parameter always has the value give It always
assumes the value DATA+MARK+SYINC.
address see "4.,1 CPEN primitive® pag. 100.
address is the ISIDE return code.

8.7 SYHCHRONIZE PRIHITIVE

This primitive is used to define points in the dialogue Letwueen the
partners., It is used by "2.2.3.6 BT Primary procedure® rags 83 and
"2,2.3.8 ET Primary procedure” pag. 8U.

parameters

identifier see "4.1 CPEN primitive® pag. 100C.

type specifies the type of sinchronization point. In the
OSIKIDE FIF protocol, it always assumes the value
Bayor.

point is the value that the session layer assignes as a mark

serial numkter

return is the 1ISIDE return code

4.8 ACCEPT PRIBITIVE

This primitive 1is used to answer to a CCNNECT (see Wy,2 CONNECT
primitive" pag. 101) regquest, in order to negotiate the session and
presentation parameters. It brings the SP response, and 1is only
used by the Seccndary in "2.3.2.1 SP Secondary procedure® pag. 90.

parameters
jdentifier see "U.,1 CPEN rrimitive" pag. 100

result this parameter krings the result of operation:

ISIDE primitives 105 / 108

yes if connection is accepted
RO if connpection is rejected,

for data, mark, synk, ters comp, buffer, length, address and return
parapeters see "4,2 CCNNECT primitive" pag. 101,

4,9 RESPONSE PRINITIVE

This primitive is used to explicitly apswer %o an indication coming
from the partner, It is used in "2.2.3.14 REC DATA Primary proce-
dure” pag. 86, "2.3.2.6 BT Secondary procedure®™ pag. 93, "2.3.2.3
ET Secondary procedure® gpag. 94 and "2.3.2.12 KP SeconpdaLy proce-
dure" page. 96.

parameters ‘

i@entifier see "4,1 CPEN primitive" pag. 100.

cbauand specifies the indication which is answered to.
point ‘specifies a synch roint to be confirnmed.

data, mark, sync and term are never set.

buffer not used (no parameters are transferred together with
any response€).

leagth not used.
address see "4, 1 CPEN primitive' pag. 100.
retura is the ISIDE return code

8,10 PIHISH PRIMITIVE

This primitive is used to ansver to terminate the FTF connection.
It is used by "2.2.3.12 RE Primary procedure" pag. 86 and 2,260 3. 13
DP Primary procedure® pag. 8¢,

parageters

jdentifier see "4,2 CONNECT primitive" pag. 101,

address see 94,1 CPEN primitive® pag. 100.

ISIDE primitives 166 7 108

rode is the parameter which specifies the type of termi-

pnation, Its values are:

tern for give a "soft" conaopection termination
abozg which means that the session has to Bbe
aborted.
return is the ISIDE return cods

107 , 108

ISIDE primitives

e B S S o i S i i

[1] Standard ECHA 85 - yirtual file Protococls
{2] standard ECEA 84 - Data presentation Protocol.

[3] F. Caneschi, E. 7ucchelli: "The implementation of CSIKIDE File
Transfer over ECMA-85" Lcc. 0SIRIDE/83/F1P,/0U March 1983,

Referencsas 168 / 108

