Machines that Learn how to Code
Open-Ended Survey Data.
Part I. The Basic Approach and a Working System

Preliminary draft, to be used for reviewing purposes only

Andrea Esuli*, Tiziano Fagni’ and Fabrizio Sebastiani®
Istituto di Scienza e Tecnologie dell’Informazione

Consiglio Nazionale delle Ricerche

Via Giuseppe Moruzzi 1 — 56124 Pisa, Italy

Abstract. In the last seven years we have carried out experimental research aimed
at developing software that automatically codes open-ended survey responses. These
projects have led to the generation of an industrial-strength software package now in
operation at the Customer Insight division of a large international banking group,
and now integrated into a widely-used software platform for the management of
open-ended survey data. This software, which can code data at a rate of tens
of thousands of open-ended responses per hour, and that can address responses
formulated in any of five major European languages, is the result of contributions
from different fields of computer science, including Information Retrieval, Machine
Learning, Computational Linguistics, and Opinion Mining. Our approach is based
on a learning metaphor, whereby automated verbatim coders are automatically
generated by a general-purpose process that learns, from a user-provided sample of
manually coded verbatims, the characteristics that new, uncoded verbatims should
have in order to be attributed the codes in the codeframe. In this paper we discuss
the basic philosophy underlying this software. In a forthcoming companion paper we
present the results of experiments we have run on several datasets of real respondent
data in which we have compared the accuracy of the software against the accuracy
of human coders.

Keywords: Survey coding, open-ended questions, open-ended responses, automatic
coding, machine learning, opinion mining, sentiment analysis

1. Introduction

Coding verbatim responses is a bit like doing the dishes after hosting a
dinner party: a somewhat tedious and time-consuming experience, but
ultimately satisfying when you see the results stacked neatly away, ready
for use later. At least, that was the case before dishwashers became com-
monplace.

[Tim Macer, Quirk’s Marketing Research Review, 16(7), 2002.]

* E-mail: andrea.esuli@isti.cnr.it
T E-mail: tiziano.fagni@isti.cnr.it
¥ E-mail: fabrizio.sebastiani@isti.cnr.it

© 2009 by the authors. Printed in Italy.

JournalOfMarketingResearch(1) .tex; 3/03/2009; 10:47; p.1

2 Esuli, Fagni, Sebastiani

Open-ended questions are an important way to obtain informative
data in surveys, and this is so for a variety of applications, including
market research, customer relationship management, enterprise rela-
tionship management, and opinion research in the social and political
sciences (Reja et al., 2003; Schuman and Presser, 1979). Closed ques-
tions generate data that are certainly more manageable, but suffer
from several shortcomings, since they straightjacket the respondent into
conveying her thoughts and opinions into categories that the question-
naire designer has developed a priori; as a result, a lot of information
that the respondent might potentially provide is lost. On the contrary,
open-ended questions allow freedom of thought, and the responses that
are returned may provide perspectives and slants that had not been
anticipated by the questionnaire designer, thus providing far richer
information on the opinions of the respondent. Furthermore, asking
an open question tells the respondent that her opinions are seriously
taken into account and her needs are cared of; the same cannot be said
of closed questions, since these may instead convey the impression that
the interviewers are only interested in orthodox responses and orthodox
respondents. For instance, an unhappy customer certainly knows that
she can threaten to defect to the competition by answering an open
question, but certainly knows that she will never be able to voice such
a discontent through closed questions: no questionnaire designer would
include a question such as “Do you intend to defect to the competition?
(Yes/No)”.

Unfortunately, the price one has to pay for including open-ended
questions in a questionnaire is a much greater difficulty in using the
data obtained by the respondents. Once the designer has developed a
codeframe (aka “codebook”) for the question under consideration, a
human coder needs to read the returned answers one by one in order to
assign them the appropriate codes; this may require a huge investment
in humanpower, depending on the size of the respondents’ pool, and
does not lend itself to fast turnaround of results.

In the recent past, computer-assisted methods of coding open-ended
verbatim responses (henceforth: “verbatims”) have been proposed as a
solution. Unfortunately, they still fall short of truly automating the
coding process, since they all require a lot of human involvement in the
coding process. Some of these systems, such as Confirmit! (O’Hara and
Macer, 2005), Voxco’s Command Center? (Macer, 2007b), SPSS’ mrIn-
terview?, and Snap*, are (as far as open-ended questions are concerned)

http://www.confirmit.com/
http://wuw.voxco.com/
http://www.spss.com/mrinterview/

1
2
3
4 http://www.snapsurveys.com/

JournalOfMarketingResearch(1) .tex; 3/03/2009; 10:47; p.2

Machines that Learn how to Code 3

essentially powerful, user-friendly systems that assist and enhance the
productivity of the user in manually coding the verbatims: the only
difference with coding as it was performed before computers were born,
is that all the objects of interest are in digital form, so that no paper
and pencil is involved. Some other systems such as Language Logic’s
Ascribe™?5 (Macer, 2002), SphinxSurvey® (Macer, 1999), streamBASE
GmbH’s Coding-Modul” (Macer, 2007a), SPSS’ Text Analysis for Sur-
veys®, Provalis Research’s Wordstat? (Macer, 2008), and the no longer
available Verbastat (Macer, 2000), further assist the user by means
of (sometimes sophisticated) word searching, text matching, or “text
mining” capabilities; still, the decision whether a given code should
or should not be attributed to a verbatim ultimately rests with the
user. Other systems, such as iSquare’s i2 SmartSearch!, rely on the
user to engineer rules for automated verbatim coding; while these rules
are indeed capable of automating the coding process, the human effort
involved in writing the rules is still high, and the level of expertise
required for this is high as well.

In this paper we propose instead a radically different approach to
developing automated verbatim coding systems. The approach is based
on a learning metaphor, whereby automated verbatim coders are au-
tomatically generated by a general-purpose process that learns, from a
user-provided sample of manually coded verbatims, the characteristics
that new, uncoded verbatims should have in order to be attributed
the codes in the codeframe. This approach adds a further level of au-
tomation to the methods described above, since no human involvement
is required aside from that of providing a sample of manually coded
verbatims. The net effect is that any human coder, and not necessarily
a computer-savvy one, may set up and operate such a system in full
autonomy.

In the rest of the paper we will exemplify this approach by describing
an industrial-strength software system (dubbed VCS™, for Verbatim
Coding System) that we have developed along these lines. This system
is now in operation at the Customer Insight division of a large interna-
tional banking group, and is now available from within a widely-used
software platform for the management of open-ended survey data. This
software, which can code data at a rate of tens of thousands of open-
ended verbatims per hour, and that can address responses formulated

http://www.languagelogic.info/
http://www.sphinxsurvey.com/en/home/home_sphinx.php
http://www.streambase.de/
http://wuw.spss-sa.com/spss_text_analysis_for_surveys.html
http://www.provalisresearch.com/wordstat/Wordstat.html
http://wuw.isquare.de/i2SmartSearch.htm

© 0 9 O w»

10

JournalOfMarketingResearch(1) .tex; 3/03/2009; 10:47; p.3

4 Esuli, Fagni, Sebastiani

in any of five major European languages, is the result of the authors’
basic research efforts in different fields of computer science, includ-
ing Information Retrieval (see e.g., (Manning et al., 2008)), Machine
Learning and Pattern Recognition (see e.g., (Duda et al., 2001; Hastie
et al., 2001)), Computational Linguistics (see e.g., (Mitkov, 2003)),
and Opinion Mining and Sentiment Analysis (see e.g., (Pang and Lee,
2008)).

The rest of this paper is organized as follows. Section 2 describes the
basic philosophy underlying the machine learning approach to verbatim
coding and the overall mode of operation of the VCS™ system. Section
3 adds further insight into VCS™ by giving, in question and answer
format, a number of clarifications on the workings of VCS™. Section 4
looks at some other features that are available in VCS™ and at some
other features that are going to be available in the next release, while
Section 5 concludes.

2. VCS™, an automated verbatim coding system

2.1. A SHORT HISTORY OF VCS™

The very first ancestor of VCS™ was a fairly primitive system that the
third author and a colleague developed and tested on three datasets
from the 1996 General Social Survey (a continuous social survey that
aims at investigating how people assess their physical and mental health,
external and internal security threats, etc.) run by the US National
Opinion Research Center (NORC); the results of these tests were pub-
lished in (Giorgetti and Sebastiani, 2003). We will refer to this as
version 0.1 of VCS™,

In 2006 the first licence for what had by then become an industrial-
strength system (hereafter dubbed VCS 1.0) was issued to Egg plc!!
(the largest purely online banking group in the world, now part of
Citigroup!?), for use at their Customer Insight division. This version
is still in operation at Egg, where it manages all of Egg’s customer
satisfaction verbatim data, with an estimated amount (as of 2006) of
more than 20,000 verbatims per month, and with huge backlogs being
now processed for retrospective data analysis'®. VCS™ 1.0 operates
as a Web-enabled application which interacts with the Confirmit Web

1 http://www.egg. com/

12 http://www.citigroup.com/

13 yCS™ 1.0 has obtained considerable success in the market research commu-
nity, winning the “2007 Best New Thinking Award” from the Market Research
Society, the “2006 Amerigo Vespucci Award” for Market Research from Confind-
ustria (the Italian Industralists Association), and being nominated for the “2007

JournalOfMarketingResearch(1) .tex; 3/03/2009; 10:47; p.4

Machines that Learn how to Code 5

service, polling Confirmit for the availability of new data (e.g., new
training data, new codes in an existing codeframe, new verbatim data
in need of coding, etc.), fetching these data from Confirmit, processing
them, and uploading them back into Confirmit for reporting and later
use.

In mid 2008 VCS™ was integrated into Language Logic’s Ascribe™
platform, where it is now available to all Ascribe™ customers. We
will refer to this version of VCS™ as version 2.0; this has numerous
enhancements with respect to VCS™ 1.0, including support for ver-
batim data in languages other than English (the languages currently
supported are English, Spanish, French, German, and Italian), accuracy
and accuracy trend estimation, support for proactive validation, and
others; all these features will be described more in detail in the next
sections.

2.2. THE MACHINE LEARNING APPROACH TO AUTOMATED
VERBATIM CODING

VCS™ is an adaptive system for automatically coding verbatim re-
sponses under any user-specified codeframe; given such a codeframe,
VCS™ qutomatically generates an automatic coder for this codeframe.
Actually, the basic unit along which VCS™ works is not the code-
frame but the code: given a codeframe consisting of several codes, for
each such code VCS™ automatically generates a binary coder, i.e., a
system capable of deciding whether a given verbatim should or should
not be attributed the code. The consequence of this mode of operation
is that all binary coders are applied to the verbatim independently of
each other, and that zero, one, or several codes can be attributed to the
same verbatim (however, see Question 5 in Section 3 for exceptions).
VCS is based on a learning metaphor, according to which the sys-
tem learns from manually coded data the characteristics that a new
verbatim should have in order to be attributed the code; the manually
coded verbatims that are fed to the system for the purpose of gener-
ating the binary coders are called the training verbatims. The training
verbatims need to include positive ezamples of the code (i.e., verbatims
to which a human coder has attributed the code) and negative ezamples
of the code (i.e., verbatims to which a human coder has decided not
to attribute the code): by examining both, the system identifies the
discriminating characteristics of the verbatims, i.e., the characteristics
that will help the binary coder in deciding whether to attribute the

Technology Effectiveness Award” from the Association for Survey Computing. The

paper describing it (Macer et al., 2007) was also nominated for “Best Paper Award”
at the 50th Annual Conference of the Market Research Society.

JournalOfMarketingResearch(1) .tex; 3/03/2009; 10:47; p.5

6 Esuli, Fagni, Sebastiani

code or not to a yet uncoded verbatim. In other words, by examining
the training verbatims the system generates a “mental model” of what
it takes for a verbatim to be attributed the code; once these mental
models (namely, the binary coders) are generated, they can be applied
to coding yet uncoded verbatims (from now on the yet uncoded verba-
tims which are automatically coded by the binary coders will be called
test verbatims). It is typically the case that, in a real application, the
training verbatims will be much fewer than the test verbatims, so that
the human coder, after coding a small portion of a survey and training
the system with it, will have the binary coders code automatically the
remaining large part of the survey.

In practice, it is not the case that training proceeds on a code-by-
code basis: in VCS™ a user wanting to provide training examples to
the system typically reads a verbatim and attributes to it the codes
she deems fit; the intended meaning is that for all the codes in the
codeframe that she does not attribute to the verbatim, the verbatim is
to be considered a negative example.

It is important to recognize that VCS™ does not attempt to learn
how to code in an “objectively correct” fashion, since coding is an inher-
ently subjective task, in which different coders often disagree with each
other on a certain coding decision, even after attempts at reconciling
their views. What VCS™ only learns to do is to replicate the subjective
behaviour of the human coder who has coded the training examples. If
two ore more coders have been involved in manually coding the training
examples, each coding a separate batch of verbatims, than VCS™ will
mediate between them, and its coding behaviour will be influenced by
the subjectivities of them all. This means that it is of key importance
to provide training examples that are reliably coded, if possible by an
expert coder (however, see Section 4.2.1 for some computer assistance
in this phase).

Advantages of the learning-based approach are that, unlike with
several other computerised solutions for coding open-ended data:

— No domain-dependent dictionaries are involved; VCS™ can be

called a “plug-and-play” system, where the only input necessary
for the system to work is manually coded data for training.

— There is no need to pay experts for writing coding rules in some
arcane (Boolean, fuzzy, probabilistic, etc.) language; what the sys-
tem does is basically generating those rules automatically, without
human intervention, from the training examples.

— It is easy to update the system to handle a revised codeframe,
a brand new codeframe, or a brand new survey. If a user, after

JournalOfMarketingResearch(1) .tex; 3/03/2009; 10:47; p.6

Machines that Learn how to Code 7

training the system, needs to add a new code to the codeframe,
she only needs to add training examples for the new code (this
may simply mean checking which of the previously coded examples
have the new code too) and have the system generate the binary
coder for the new code; the binary coders for the other codes are
unaffected. If a user, after training the system, needs to set it up
to work on an entirely new question, or an entirely new survey,
she does not need to “reprogram” the system: she only needs to
provide the appropriate training examples for the new question,
or survey (on this, see also Question 6 in Section 3).

Note that VCS™ does not even look (i) at the question which has
elicited the answer, and (ii) at the textual descriptions of the codes in
the codeframe (the codes can thus be numerical codes with no apparent
meaning).

A visual description of the process upon which VCS™ is based is
given in Figure 1. The area at top left represents the training phase:
a human coder manually codes a (typically small) sample of uncoded
verbatims and feeds them to a “trainer” who then generates the binary
coders. The area at the bottom represents the automatic coding phase:
the binary coders generated in the training phase are fed to a general-
purpose coding engine that, once fed with a (typically large) set of yet
uncoded verbatims, automatically codes them. Now these verbatims
are ready for use in reporting (bottom left) or for taking individual
decisions based on the codes automatically attributed to the individual
responses, such as calling up a customer whose response has been given
the code “Very unhappy; may defect to the competition”.

The area at top right represents a phase we have not discussed yet,
i.e., the validation phase. After automatic coding has been performed
the user may wish to take a look at some of the automatically coded
verbatims and correct potential mistakes she spots. If she does so, the
manually corrected verbatims may be used as further training exam-
ples, so that the system can be re-trained with an augmented training
set. It turns out, unsurprisingly, that the re-trained binary coders tend
to be more accurate than the previously generated ones, especially
when coding verbatims that are somehow “similar” to the ones that
have been manually corrected. More than one re-training iteration can
be performed, depending on available humanpower and depending on
whether the desired level of accuracy has been reached or not.

Usually, in a given iteration of the validation process the user will
inspect and correct only a small portion of the automatically coded
verbatims. VCS™ 2.0, upon returning the automatically coded ver-
batims, sorts them in terms of the confidence with which the binary

JournalOfMarketingResearch(1) .tex; 3/03/2009; 10:47; p.7

8 Esuli, Fagni, Sebastiani

N

Uncoded verbatims Training verbatims . Validated verbatims

o7 ~. / Validation
A= \ -

Trainer \

[; 215
N

Training ~ Human coder !

e Hluy Cadlas i Human coder
______________ .. *

Ranked verbatims

f

Uncoded verbatims ; . .
——> | Ranking engine

n!?fz
Reports /Coded verbatims N\ \“'\.\

"Card has good features/benefits"

~

Alerts & e
Customer feedback

&

interest rate decreased

12008 01/06 02/06 03/06 04/06 05/06

Figure 1. A visual description of the process upon which VCS™ is based.

coders have coded them, so that the verbatims that VCS™ has coded
with the smallest confidence will be placed at the top of the list'4.
This has a double advantage, since the user is encouraged to first and
foremost validate (i) the verbatims that have a higher chance of being
miscoded, which allows the coder to remove mistakes from the result
set; and (ii) the verbatims that, being problematic to VCS™, convey
the largest amount of information to VCS™ when provided as training
examples.

3. Frequently asked questions

QUESTION 1. Does VOS™ attribute identical codes to identical ver-
batims?

Yes, as it may be expected, two ore more identical copies of the same
verbatim that are encountered at coding time are attributed exactly the

4 This feature was not available in VOS™ 1.0.

JournalOfMarketingResearch(1) .tex; 3/03/2009; 10:47; p.8

Machines that Learn how to Code 9

same codes. Unless, of course, the binary coders have been retrained af-
ter validation, or have been retrained with a different (e.g., augmented)
set of training verbatims, in which case a verbatim that had been coded
one way before retraining could be coded another way after retraining.

QUESTION 2. What about multiple (consistently coded) training copies
of the same verbatim? Will VCS™ treat them as if a single copy had
been included in the training set?

No, VCS™ is sensitive to the presence of multiple consistently coded
training copies of the same verbatim; these have the effect of “rein-
forcing the point”, e.g., telling the system that this verbatim is an
important positive example of the codes that are attached to it. This
case indeed occurs often, e.g., in “semi-open questions” from market
research questionnaires, in which answers, albeit textual in nature, are
typically very short, often consisting of one or two words. It certainly
seem natural that verbatims frequently encountered in training should
be treated in a “reinforced” way.

QUESTION 3. If two inconsistently coded copies of the same verbatim
are provided for training, does the system fall apart?

Luckily not. VCS™ was designed to handle these types of inconsis-
tency, since it is frequently the case that inconsistently coded copies
of the same verbatim are encountered at training time (especially if
the training set has been generated by two or more human coders,
each working independently of the others and each coding a separate
batch of examples). VCS™ implements a “fail soft” policy, such that,
if two copies of verbatim v are encountered at training time, one a
positive and the other a negative example of code ¢, the binary coder
for code ¢ will simply behave as it had been provided with neither
of these two training examples: i.e., contradictory pieces of training
information neutralize each other. The binary coders for codes other
than ¢ are obviously unaffected.

QUESTION 4. If a given verbatim is provided as a training example,
and an identical copy of it is encountered again, uncoded, in the coding
phase, does this copy receive the same codes that the training copy has?

Not necessarily. The “training” copy of the verbatim can have a set
of codes, and the “uncoded” copy may be automatically attributed
a different set of codes, since the coding behaviour of the system is
determined, holistically, by all the training it has received, and not by
a single training example. Were it not like this, of course, the system
could not “fail soft” as discussed in the answer to Question 3.

JournalOfMarketingResearch(1) .tex; 3/03/2009; 10:47; p.9

10 Esuli, Fagni, Sebastiani

QUESTION 5. Does VCS™ always attribute at least one code to each
verbatim?

No. In the default setting VCS™ may attribute several codes, one code,
or no code at all to a given verbatim, since each code in the codeframe
is treated in isolation of the others. If no code at all is attributed to the
verbatim, this is akin to giving the verbatim the special code “Others”
(which is indeed what VCS™ 1.0 did). Of course this is just cosmetics,
since the interface of VCS™ 2.0 allows to easily spot the verbatims
with no code attached anyway.

However, the user may change this default setting on a question-
by-question basis, i.e., for a given question the user may specify that
one and only one of the following constraints should be enforced: i) at
least n codes must be attached to a verbatim; ii) at most n codes must
be attached to a verbatim; iii) exactly n codes must be attached to a
verbatim. The value of n is 1 by default but can be changed at will.

QUESTION 6. [have trained the system to work for a certain ques-
tion, using a certain codeframe. Now I need to set it up to work on
a different question, but using the same codeframe as before. Can I
use for this new question the binary coders I had trained on the same
codeframe for the previous question?

Yes, or sort of. The best course of action is to use the previously
generated binary coders and then to engage in an accurate validation
effort. The reason is that there are both commonalities and differences
in meaning between the same code as used in two different contexts.
It is our experience that the commonalities are stronger than the dif-
ferences, so this suggests that we should leverage on the previously
generated binary coders; however, careful validation will smooth out
the differences, and will attune the binary coders to the meaning that
the codes take up in the new context. In sum, if the manual effort you
can afford is, say, manually coding 500 (or even less) verbatims, you
can certainly start from scratch, but it is probably better if you run
the binary coders previously generated for the same codeframe on your
verbatims and then validate 500 of the automatically classified ones.

QUESTION 7. Does VCS™ cater for sentiment-related codes / dis-

tinctions, such as “Positive” and “Negative”?
It certainly does. VCS™ was designed with survey research in mind,

i.e., with the awareness that surveys not always attempt to capture
purely topic-related distinctions, but often attempt to capture notions

JournalOfMarketingResearch(1) .tex; 3/03/2009; 10:47; p.10

Machines that Learn how to Code 11

that have to do with the emotions, sentiments, and reactions of respon-
dents. Indeed, one of the main backgrounds of the designers of VCS™
is sentiment analysis and opinion mining. See Section 5 for more details.

QUESTION 8. How much time and money am I going to save on a
project by using VOS™ ?

The answer depends very much on how many training examples are
provided, how many verbatims are then coded automatically, how high
is the per-verbatim cost of human coding, whether fast turnaround
of results is important to you, how accurate the resulting system is
required to be, and many other variables. A detailed study on practical
benefits found in operation was run by the Egg banking group on
VCS™ 1.0; the results of this study can be found in (Macer et al.,
2007, p. 15).

4. Other and upcoming features

Before concluding, we briefly hint at a couple of other features that
VCS™ 2.0 is endowed with, and at some further features that we have
recently developed and that will be integrated in the next release of

VCS™.

4.1. OTHER FEATURES IN VCS™ 2.0

4.1.1. Robustness to ill-formed input

One VCS™ 2.0 feature which is of particular interest in customer
satisfaction and market research applications is robustness to ortho-
graphically, syntactically, or other type of, ill-formed input. Certainly,
we cannot expect verbatims to be conveyed in spotless English (or
other language), since in most cases verbatim text is produced care-
lessly, and by casual users who are anything but professional writers.
So, a system which requires verbatim text to conform to the standard
rules of English grammar and to be free of typographical errors would
be doomed to failure in this application context. VCS™ is instead
devised to be robust to the presence of ill-formed input; to witness, the
results of Table I in (Esuli et al., 2009) were obtained on datasets of
authentic verbatim text, and are indeed fraught with ill-formed text of
any type. Indeed, VCS™ [earns to deal with ill-formed verbatims from
ill-formed training verbatims; in other words, once the binary coders are
trained from a training set that itself contains ill-formed input, they will
tend to outperform, in coding yet uncoded ill-formed verbatims, binary
coders that have instead been trained on well-formed input!, since,

JournalOfMarketingResearch(1) .tex; 3/03/2009; 10:47; p.11

12 Esuli, Fagni, Sebastiani

upon coding, they will encounter ill-formed linguistic patterns they
have encountered in the training stage (e.g., common abbreviations,
common syntactic mistakes, common typos, slang, idioms, etc.).

4.1.2. Dynamic estimation of current and future accuracy levels

A second VCS™ 2.0 feature we have not yet discussed has to do with
letting the user know what accuracy she can expect from VCS™ on a
given set of verbatims, given the amount of training she has performed
already, and letting her know whether it is likely that there are still
margins of improvement by doing further training or validation. Indeed,
once the user submits a set of training examples, VCS™ generates the
binary coders, and returns the (Fy, PDys, PD4) values computed by
10-fold cross-validation on the training set: these figures thus represent
an estimate (actually: a pessimistic estimate, given that only 90% of the
training set has been used for training in each of the 10 experiments)
of the accuracy that the generated binary coders will display on yet
uncoded verbatims. Moreover, VCS™ computes (F}, PDy;, PD4) by
10-fold cross-validation on 80% of the training set, and returns to the
user the percentile difference between this triplet of results and the pre-
viously mentioned triplet; this difference thus represents the difference
in performance that providing the other 20% of training brought about,
and can thus be interpreted as the current “accuracy trend”, i.e., an
indication of whether performing further training or validation is still
going to bring about an improvement in accuracy, and to what degree.

4.1.3. Mock verbatims

Even when the training set is reasonably sizeable it often happens that,
while for some codes there are lots of training examples, other codes are
heavily undersubscribed, to the point that for some of them there may
be a handful, or even no training examples at all. For these latter codes,
generating an accurate binary coder is hardly possible, if at all. In these
cases, hand-coding other verbatims with the intent of providing more
training data for the underpopulated codes may be of little help, since
examples of these codes tend to occur rarely.

In this case, VCS™ 2.0 allows the user to define “mock” training
verbatims for these codes, i.e., examples of these codes that were not
genuinely provided by a respondent but are made up by the user. In
other words, VCS™ allows the user to provide examples of “what a
verbatim that would be assigned this code might look like”. Such a
mock verbatim may take two forms, i.e., (1) a verbatim that is com-
pletely made up by the user, or (2) a verbatim that the user has cropped
away from some other genuine, longer verbatim. VCS™ treats mock
verbatims differently from authentic ones, since (i) it flags them as non-

JournalOfMarketingResearch(1) .tex; 3/03/2009; 10:47; p.12

Machines that Learn how to Code 13

authentic, so that they do not get confused with the authentic ones for
reporting and other similar purposes, and (ii) it gives them extra weight
in the training phase, since it deems that their very nature makes them
“paradigmatic” examples of the codes that are attached to them.

In order to minimize the user’s work in defining mock verbatims,
given a training set VCS™ presents to the user a list of the codes
in the codeframe ranked in increasing number of associated training
examples, so that the user may indeed concentrate in defining mock
verbatims for the codes that are more in need of them

4.2. UPCOMING FEATURES

4.2.1. Training data cleaning

Among the forthcoming features, the first is a facility for training data
cleaning. In many situations it is actually the case that there might
be miscodings in the verbatims that are being provided to the system
for training purposes; this might be a result of the fact that junior,
inexperienced coders have done the coding, of the fact that the coding
had been done under time pressure, or other. Of course, “bad data in,
bad data out”, i.e., you cannot expect the system to code accurately if
it has been trained with inaccurate data. As a result, a user might wish
to have a computerised tool that helps her in “cleaning” the training
data, i.e., in identifying the miscoded training verbatims so as to be
able to correct them. Of course, such a tool should make it so that she
does not need to revise the entire set of training examples.

The tool we have implemented and that we are now testing returns
to the user, as a side-effect of training, a sorted list of the training
verbatims, sorted in order of decreasing likelihood that the verbatim
was indeed miscoded. This allows the user to revise the training set
starting from the top of the list, where the “bad” examples are more
likely to be located, working down the list until she sees fit. The tool
works on a code-by-code basis, i.e., for any given code the tool returns
a list of examples sorted in decreasing likelihood that the verbatim
was indeed miscoded for this code (i.e., it is either a false positive
or a false negative for this code). This allows the user to perform
selective cleaning, e.g., perform a cleaning operation for those codes
whose binary coders have not yet reached the desired level of accuracy,
and forget about codes on which VCS™ is already performing well.

How does the tool work? The basic philosophy underlying it is that
a training verbatim has a high chance of having been miscoded when
the codes manually attributed to it are highly at odds with the codes
manually attributed to the other training verbatims. For instance, a
training verbatim to which a given code has been attributed and which

JournalOfMarketingResearch(1) .tex; 3/03/2009; 10:47; p.13

14 Esuli, Fagni, Sebastiani

is highly similar to many other verbatims to which the same code has
not been attributed, is suspect, and will thus be placed high in the
sorted list for that code. In other words, VCS™ has a notion of the
internal consistency of the training set, and the tool sorts the training
verbatims in terms of how much they contribute to disrupting this
internal consistency.

4.2.2. Computer-assisted codeframe generation

The second feature currently under development is computer-assisted
codeframe generation. Codeframe generation is a time-consuming oper-
ation in survey management, and one that requires expertise. While it
is not feasible to think that an expert survey specialist would entirely
defer the codeframe generation activity to a computerised tool, it is
certainly the case that she might welcome a tool that helps her in
generating the codeframe, by suggesting an initial codeframe that she
can then revise and tune.

The tool that we have implemented and that we are now testing
receives from the user a set of verbatims and an indicative number
n of codes the user would like the codeframe to contain; as a result,
the tool partitions the verbatims into n groups (i.e., each verbatim
is placed in one and only one group) in which the pairwise similarity
between verbatims belonging to the same group is maximized while the
pairwise similarity between verbatims belonging to different groups is
minimized. For each group the tool also returns a description consisting
of a set of representative words or phrases; e.g., in a customer satis-
faction survey the set {“fed up”, “bad service”, “awful”, “competing
product”, “switch” } might suggest to the user that this group is about
respondents threatening to switch to a competing product.

At this point the user might realize that she would like more granu-
larity, and ask the number n of groups to be increased: in this case the
tool splits some of the already generated groups into subgroups and
generates a description for the newly generated subgroups. Conversely,
the user might realize that she would like less granularity, and ask
the number n of groups to be decreased: in this case the tool merges
some of the already generated groups into supergroups and generates
a description for the newly generated supergroups. When the desired
granularity is reached, if the user is not satisfied with the end result
she may want to revise the codeframe, adding or removing or renaming
groups, or moving verbatims from one group to the other, until the
final codeframe is generated.

JournalOfMarketingResearch(1) .tex; 3/03/2009; 10:47; p.14

Machines that Learn how to Code 15

4.2.3. Support for hierarchical codeframes

A third feature currently under development is the support for hierar-
chically organized codeframes. Currently, VCS™ only deals with “flat”
codeframes, i.e., codeframes consisting of a plain set of codes. The
tool that we have implemented and that we are now testing supports
codeframes structured as trees of supercodes (e.g., “Soft drink”) and
subcodes (e.g., “Coke”). At training time, all training examples of the
subcodes will also be, by definition, training examples of the corre-
sponding supercode. At coding time, a given verbatim will be fed to
the binary coder for the subcode only if the binary coder for the corre-
sponding supercode has returned a positive decision; this will ultimately
bring about an exponential increase in coding efficiency, since for each
verbatim to code entire subtrees will be discarded from consideration,
thus allowing VCS™ to operate speedily even on codeframes consisting
of several thousands codes.

5. Concluding remarks

Before concluding, note that we have not given many details on the
internal workings of VCS™. This is partly due to the commercial
nature of the VCS™ project, and partly due to the fact that a descrip-
tion of these workings, to any level of detail, would likely distract the
reader from understanding the important facts about VCS™ i.e., how
a researcher should use it and what she should expect from it. The inter-
ested reader may anyhow reconstruct, if not all details, the main tracts
of how VCS™ works by looking at the authors’ published research
on issues of text analysis for meaning and opinion extraction (Bac-
cianella et al., 2009; Debole and Sebastiani, 2003; Esuli and Sebastiani,
2009b; Nardiello et al., 2003), learning algorithms for text classifica-
tion (Sebastiani et al., 2000; Esuli et al., 2008), and opinion mining
for sentiment analysis (Argamon et al., 2007; Esuli and Sebastiani,
2005; Esuli and Sebastiani, 2006a; Esuli and Sebastiani, 2006b; Esuli
and Sebastiani, 2007a; Esuli and Sebastiani, 2007b). In particular, the
tool used in the validation phase (Section 2.2) draws inspiration from
basic research reported in (Esuli and Sebastiani, 2009a); the training
data cleaning tool (Section 4.2.1) is based on the very recent (Esuli and
Sebastiani, 2009c¢); the tool for computer-assisted codeframe generation
(Section 4.2.2) is based on previous research described in (Geraci et al.,
2008); and the support for hierarchical codeframes is based on insights
obtained in (Fagni and Sebastiani, 2007; Esuli et al., 2008).

Overall, we think that the VCS™ system we have presented has the
potential to revolutionize the activity of coding open-ended responses

JournalOfMarketingResearch(1) .tex; 3/03/2009; 10:47; p.15

16 Esuli, Fagni, Sebastiani

as we know it today, since (i) it allows a user to autonomously create
automatic coding systems for any user-specified codeframe and for any
type of survey conducted (as of now) in any of five major European lan-
guages, with no need for specialized dictionaries or domain-dependent
resources; (ii) it allows to improve the accuracy of the generated coding
systems almost at will, by validating, through a convenient interface,
carefully selected samples of the automatically coded verbatims. Even
more importantly, for doing any of the above it requires on the part of
the user no more skills than ordinary coding skills.

In a forthcoming, companion paper (Esuli et al., 2009) we will show,
by discussing a number of experiments we have run on several datasets
of real respondent data, how the binary coders generated by VCS™ are
characterized by very good accuracy and excellent training and coding
speed.

Acknowledgements

Many people have contributed to the VCS™ project in the course
of these last 7 years. Daniela Giorgetti is to be credited with first
bringing the very existence of “survey coding” to the attention of
the third author, and for first creating with him VCS™ version 0.1,
for designing and implementing which Irina Prodanof provided partial
funding and for testing which Tom Smith provided datasets. Ivano
Luberti has been instrumental in turning all of the ideas discussed in
this paper into an industrial-strength software package. Mark Pearson,
in his then-capacity of Manager of Customer Insight at Egg plc, foresaw
the potential of the machine learning approach for verbatim coding and
had Egg plc invest on it. Tim Macer, on behalf of Egg plc, has been a
constant source of advice, feedback and ideas throughout the duration
of the project that led VCS™ 1.0 to be deployed on Egg’s I'T infrastruc-
ture. Charles Baylis has provided feedback and inspiration throughout
the project that has led to VCS™ 2.0 and to its integration in the
Ascribe™ package. Thanks are also due to Lee Birkett, Rudy Bublitz,
John Jennick, Dean Kotcha, Fabio Nanni, Tara O’Hara, Antonio Pad-
uano, Rino Razzi, Lara Rice, Carol Sheppard, Chrissy Stevens, and
Rich Thoman, for useful discussions, and for ultimately contributing
to making all of this happen.

JournalOfMarketingResearch(1) .tex; 3/03/2009; 10:47; p.16

Machines that Learn how to Code 17

References

Argamon, S., K. Bloom, A. Esuli, and F. Sebastiani: 2007, ‘Automatically Deter-
mining Attitude Type and Force for Sentiment Analysis’. In: Proceedings of the
3rd Language Technology Conference (LTC’07). Poznaii, PL, pp. 369-373.

Baccianella, S., A. Esuli, and F. Sebastiani: 2009, ‘Multi-Facet Rating of Prod-
uct Reviews’. In: Proceedings of the 31st European Conference on Information
Retrieval (ECIR’09). Toulouse, FR, pp. 461-472.

Debole, F. and F. Sebastiani: 2003, ‘Supervised term weighting for automated
text categorization’. In: Proceedings of the 18th ACM Symposium on Applied
Computing (SAC’03). Melbourne, US, pp. 784-788.

Duda, R. O., P. E. Hart, and D. G. Stork: 2001, Pattern Classification. New York,
US: John Wiley & Sons, 2nd edition.

Esuli, A., T. Fagni, and F. Sebastiani: 2008, ‘Boosting Multi-Label Hierarchical Text
Categorization’. Information Retrieval 11(4), 287-313

Esuli, A., T. Fagni, and F. Sebastiani: 2009, ‘Machines that Learn how to Code
Open-Ended Survey Data. Part II: Experiments on Real Respondent Data’.
Journal of Marketing Research p. Submitted for publication.

Esuli, A. and F. Sebastiani: 2005, ‘Determining the semantic orientation of terms
through gloss analysis’. In: Proceedings of the 14th ACM International Confer-
ence on Information and Knowledge Management (CIKM’05). Bremen, DE, pp.
617-624.

Esuli, A. and F. Sebastiani: 2006a, ‘Determining Term Subjectivity and Term Ori-
entation for Opinion Mining’. In: Proceedings of the 11th Conference of the
European Chapter of the Association for Computational Linguistics (EACL’06).
Trento, I'T, pp. 193-200.

Esuli, A. and F. Sebastiani: 2006b, ‘SENTIWORDNET: A Publicly Available Lexical
Resource for Opinion Mining’. In: Proceedings of the 5th Conference on Language
Resources and Evaluation (LREC’06). Genova, IT, pp. 417-422.

Esuli, A. and F. Sebastiani: 2007a, ‘PageRanking WordNet synsets: An applica-
tion to Opinion Mining’. In: Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics (ACL’07). Prague, CZ, pp. 424-431.

Esuli, A. and F. Sebastiani: 2007b, ‘Random-Walk Models of Term Semantics: An
Application to Opinion-Related Properties’. In: Proceedings of the 3rd Language
Technology Conference (LTC’07). Poznan, PL, pp. 221-225.

Esuli, A. and F. Sebastiani: 2009a, ‘Active Learning Strategies for Multi-Label Text
Classification’. In: Proceedings of the 31st European Conference on Information
Retrieval (ECIR’09). Toulouse, FR, pp. 102-113.

Esuli, A. and F. Sebastiani: 2009b, ‘Encoding Ordinal Features into Binary Features
for Text Classification’. In: Proceedings of the 31st FEuropean Conference on
Information Retrieval (ECIR’09). Toulouse, FR, pp. 771-775.

Esuli, A. and F. Sebastiani: 2009¢, ‘Training Data Cleaning for Text Classi-
fication’. Technical Report 2009-TR-005, Istituto di Scienza e Tecnologie
dell’Informazione, Consiglio Nazionale delle Ricerche.

Fagni, T. and F. Sebastiani: 2007, ‘On the Selection of Negative Examples for Hier-
archical Text Categorization’. In: Proceedings of the 3rd Language & Technology
Conference (LTC’07). Poznan, PL, pp. 24-28.

Geraci, F., M. Maggini, M. Pellegrini, and F. Sebastiani: 2008, ‘Cluster Generation
and Labeling for Web Snippets: A Fast, Accurate Hierarchical Solution’. Journal
of Internet Mathematics 3(4), 413-444.

JournalOfMarketingResearch(1) .tex; 3/03/2009; 10:47; p.17

18 Esuli, Fagni, Sebastiani

Giorgetti, D. and F. Sebastiani: 2003, ‘Automating Survey Coding by Multi-
class Text Categorization Techniques’. Journal of the American Society for
Information Science and Technology 54(14), 1269-1277.

Hastie, T., R. Tibshirani, and J. H. Friedman: 2001, The Elements of Statistical
Learning. Heidelberg, DE: Springer Verlag.

Macer, T.: 1999, ‘Designing the survey of the future’. Research (395).

Macer, T.: 2000, ‘Making coding easier’. Research (407).

Macer, T.: 2002, ‘Ascribe from Language Logic’. Quirk’s Marketing Research Review
16(7).

Macer, T.: 2007a, ‘Coding-Modul Reviewed’. Research (490).

Macer, T.: 2007b, ‘Voxco Command Center’. Quirk’s Marketing Research Review
21(1).

Macer, T.: 2008, ‘WordStat from Provalis Research’. Research (507).

Macer, T., M. Pearson, and F. Sebastiani: 2007, ‘Cracking the Code: What customers
say, in their own words’. In: Proceedings of the 50th Annual Conference of the
Market Research Society (MRS’07). Brighton, UK.

Manning, C. D., P. Raghavan, and H. Schiitze: 2008, Introduction to Information
Retrieval. Cambridge, UK: Cambridge University Press.

Mitkov, R. (ed.): 2003, The Ozford handbook of computational linguistics. Oxford
University Press.

Nardiello, P., F. Sebastiani, and A. Sperduti: 2003, ‘Discretizing Continuous
Attributes in AdaBoost for Text Categorization’. In: F. Sebastiani (ed.): Pro-
ceedings of the 25th European Conference on Information Retrieval (ECIR’03).
Pisa, IT, pp. 320-334.

O’Hara, T. J. and T. Macer: 2005, ‘Confirmit 9.0 reviewed’. Research (465).

Pang, B. and L. Lee: 2008, ‘Opinion Mining and Sentiment Analysis’. Foundations
and Trends in Information Retrieval 2(1/2), 1-135.

Reja, U., K. L. Manfreda, V. Hlebec, , and V. Vehovar: 2003, ‘Open-ended vs. Close-
ended Questions in Web Questionnaires’. In: A. Ferligoj and A. Mrvar (eds.):
Developments in Applied Statistics. Ljubljana, SL: Faculty of Social Sciences,
University of Ljubljana, pp. 159-177.

Schuman, H. and S. Presser: 1979, ‘The Open and Closed Question’. American
Sociological Review 44(5), 692-712.

Sebastiani, F., A. Sperduti, and N. Valdambrini: 2000, ‘An improved boosting algo-
rithm and its application to automated text categorization’. In: Proceedings of the
9th ACM International Conference on Information and Knowledge Management
(CIKM’00). McLean, US, pp. 78-85.

Address for Offprints:

Fabrizio Sebastiani

Istituto di Scienza e Tecnologie dell’Informazione
Consiglio Nazionale delle Ricerche

Via Giuseppe Moruzzi 1 — 56124 Pisa, Italy

JournalOfMarketingResearch(1) .tex; 3/03/2009; 10:47; p.18

