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Abstract

OWL ontologies are nowadays a quite popular way to describe structured knowledge in terms of
classes, relations among classes and class instances.

In this paper, given a target class T of an OWL ontology, we address the problem of learning fuzzy
concept inclusion axioms that describe sufficient conditions for being an individual instance of T . To
do so, we present Fuzzy OWL-Boost that relies on the Real AdaBoost boosting algorithm adapted to
the (fuzzy) OWL case. We illustrate its effectiveness by means of an experimentation. An interesting
feature is that the learned rules can be represented directly into Fuzzy OWL 2. As a consequence, any
Fuzzy OWL 2 reasoner can then be used to automatically determine/classify (and to which degree)
whether an individual belongs to the target class T .

1 Introduction

OWL 2 ontologies [88] are nowadays a popular means to represent structured knowledge and its formal
semantics is based on Description Logics (DLs) [4]. The basic ingredients of DLs are concept descriptions
(in First-Order Logic terminology, unary predicates), inheritance relationships among them and instances
of them.

Although an important amount of work has been carried about DLs, the application of machine learning
techniques to OWL 2 ontologies, viz. DL ontologies, is relatively less addressed compared to the Inductive
Logic Programming (ILP) setting (see e.g. [91, 92] for more insights on ILP). We refer the reader to [71, 93]
for an overview and to Section 2

In this work, we focus on the problem of automatically learning fuzzy concept inclusion axioms from
OWL 2 ontologies. More specifically, given a target class T of an OWL ontology, we address the problem of
learning fuzzy EL(D) [3] concept inclusion axioms that describe sufficient conditions for being an individual
instance of T .

Example 1.1 (Running example [68, 70, 114]) Consider an ontology that describes the meaningful
entities of a city. 1 Now, one may fix a city, say Pisa, extract the properties of the hotels from Web sites,
such as location, price, etc., and the hotel judgements of the users, e.g., from Trip Advisor. 2 Now, using
the terminology of the ontology, one may ask about what characterises good hotels in Pisa (our target
class T ) according to the user feedback. Then one may learn from the user feedback that, for instance, ‘An
expensive Bed and Breakfast is a good hotel’ (see also Section 5 later on). �

The objective is essentially the same as in e.g. [70, 114] except that now we propose to rely on the Real
AdaBoost [86] boosting algorithm to be adapted to the (fuzzy) OWL case. Of course, like in [68, 114], we
continue to support so-called fuzzy concept descriptions and fuzzy concrete domains [76, 112, 113] such
as ‘an expensive Bed and Breakfast is a good hotel’. Here, the concept expensive is a so-called fuzzy
concept [123], i.e. a concept for which the belonging of an individual to the class is not necessarily a
binary yes/no question, but rather a matter of degree in [0, 1]. For instance, in our example, the degree of
expensiveness of a hotel may depend on the price of the hotel: the higher the price the more expensive is

1For instance, http://donghee.info/research/SHSS/ObjectiveConceptsOntology(OCO).html
2http://www.tripadvisor.com
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the hotel. Here, the range of the ‘attribute’ hotel price becomes a so-called fuzzy concrete domain [113]
allowing to specify fuzzy labels such as ‘high/moderate/low price’.

We recall that (discrete) AdaBoost [46, 108, 47] uses weak hypotheses with outputs restricted to
the discrete set of classes that it combines via leveraging weights in a linear vote. On the other hand
Real AdaBoost [86] is a generalisation of it as real-valued weak hypotheses are admitted (see [86] for a
comparison to approaches to real-valued AdaBoost).

Besides the fact that (to the best of our knowledge) the use of both (discrete) AdaBoost (with the
notable exception of [44]) and its generalisation to real-valued weak hypotheses in the context OWL 2
ontologies is essentially unexplored, the main features of our algorithm, called Fuzzy OWL-Boost, are
the following:

• it generates a set of fuzzy fuzzy EL(D) inclusion axioms [14], which are the weak hypothesis, possibly
including fuzzy concepts and fuzzy concrete domains [76, 112, 113], where each axiom has a leveraging
weight;

• the fuzzy concept inclusion axioms are then linearly combined into a new fuzzy concept inclusion
axiom describing sufficient conditions for being an individual instance of the target class T ;

• all generated fuzzy concept inclusion axioms can then be directly encoded as Fuzzy OWL 2 ax-
ioms [11, 12].3 As a consequence, a Fuzzy OWL 2 reasoner, such as fuzzyDL [10, 13], can then be
used to automatically determine (and to which degree) whether an individual belongs to the target
class T .

Let us remark that we rely on real-valued AdaBoost as the weak hypotheses Fuzzy OWL-Boost generates
are indeed fuzzy concept inclusion axioms and, thus, the degree to which an instance satisfies them is a
real-valued degree of truth in [0, 1].

In the following, we proceed as follows. In Section 2 we compare our work with closely related work
appeared so far. For completeness, we refer to A in which we provide a much more extensive list of
references related to OWL rule learning, though less related to our setting. In Section 3, for the sake of
completeness, we recap the salient notions we will rely on in this paper. Then, in Section 4 we will present
our algorithm Fuzzy OWL-Boost, which then is evaluated for its effectiveness in Section 5. Section 6
concludes and points to some topics of further research.

2 Related Work

Concepts inclusion axioms learning in DLs stems from statistical relational learning, where classification
rules are (possibly weighted) Horn clause theories from examples (see e.g. [91, 92]) and various methods
have been proposed in the DL context so far (see e.g. [71, 93]). The general idea consists of the exploration
of the search space of potential concept descriptions that cover the available training examples using so-
called refinement operators (see, e.g. [5, 59, 62]). The goal is then to learn a concept description of the
underlying DL language covering (possibly) all provided positive examples and (possibly) not covering any
of the provided negative examples. The fuzzy case (see [67, 70, 114]) is a natural extension in which one
relies on fuzzy DLs [9, 113] and fuzzy ILP (see e.g. [109]) instead.

Closely related to our work are [44, 67, 70, 114]. The works [67, 70], which stem essentially from [68,
69, 72, 73, 74, 75], propose fuzzy Foil-like algorithms and are inspired by fuzzy ILP variants such as [29,
109, 111],4 while here we rely on a real-valued variant of AdaBoost. Let us note that [67, 73] consider the
weaker hypothesis representation language DL-Lite [2], while here we rely on fuzzy EL(D) as in [68, 69,
72, 74, 75, 70]. Fuzzy EL(D) has also been considered in [114], which however differs from [67, 70] by the
fact that a (fuzzy) probabilistic ensemble evaluation of the fuzzy concept description candidates has been
considered. 5 Discrete boosting has been considered in [44], which also shows how to derive a weak learner
—(called wDLF) from conventional learners using some sort of random downward refinement operator
covering at least a positive example and yielding a minimal score fixed with a threshold. Besides that we
deal here with fuzziness in the hypothesis language and a real-valued variant of AdaBoost, the weak learner
we propose here differentiates from the previous one by using a kind of gradient descent like algorithm to

3As Fuzzy OWL 2 supports the linear combination of weighted concepts.
4See, e.g. [19], for an overview on fuzzy rule learning mehtods.
5Also, as far as we were able to figure out, concrete datatypes were not addressed in the evaluation.
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Figure 1: (a) Trapezoidal function trz (a, b, c, d), (b) triangular function tri(a, b, c), (c) left shoulder func-
tion ls(a, b), and (d) right shoulder function rs(a, b).

search for the best alternative. Notably, this also deviates from ‘fuzzy’ rule learning AdaBoost variants,
such as [28, 87, 90, 107, 122] in which the weak learner is required to generate the whole rules search space
beforehand the selection of the best current alternative. Such an approach is essentially unfeasible in the
OWL case due to the size of the search space.

Eventually, [53] can learn fuzzy OWL DL concept equivalence axioms from FuzzyOWL 2 ontologies,
by interfacing with the fuzzyDL reasoner [13]. The candidate concept expressions are provided by the
underlying DL-Learner [57, 15, 16] system. However, it has been tested only on a toy ontology so far.
Last, but not least, let us mention [55], which is based on an ad-hoc translation of fuzzy  Lukasiewicz ALC
DL constructs into fuzzy Logic Programming (fuzzy LP) and then uses a conventional ILP method to learn
rules. Unfortunately, the method is not sound as it has been shown that the mapping from fuzzy DLs to
LP is incomplete [83] and entailment in  Lukasiewicz ALC is undecidable [17].

While it is not our aim here to provide an extensive overview about learning w.r.t. ontologies literature,
nevertheless we refer the interested reader to A for an extensive list of references, which may be the subject
of a survey paper instead.

3 Background

For the sake of self completeness, we first introduce the main notions related to (Mathematical) Fuzzy
Logics and Fuzzy Description Logics we will use in this work (see [113] for a more extensive introduction
to both).

3.1 Mathematical Fuzzy Logic

Fuzzy Logic is the logic of fuzzy sets [123]. A fuzzy set A over a countable crisp set X is a function A : X →
[0, 1], called fuzzy membership function of A. A crisp set A is characterised by a membership function
A : X → {0, 1} instead. The ‘standard’ fuzzy set operations conform to (A ∩ B)(x) = min(A(x), B(x)),
(A ∪ B)(x) = max(A(x), B(x)) and Ā(x) = 1 − A(x) (Ā is the set complement of A), the cardinality of
a fuzzy set is often defined as |A| =

∑
x∈X A(x), while the inclusion degree between A and B is defined

typically as deg(A,B) = |A∩B|
|A| .

The trapezoidal (Fig. 1 (a)), the triangular (Fig. 1 (b)), the L-function (left-shoulder function, Fig. 1
(c)), and the R-function (right-shoulder function, Fig. 1 (d)) are frequently used to specify membership
functions of fuzzy sets.

Although fuzzy sets have a greater expressive power than classical crisp sets, their usefulness depends
critically on the capability to construct appropriate membership functions for various given concepts in
different contexts. We refer the interested reader to, e.g., [54]. One easy and typically satisfactory method
to define the membership functions is to uniformly partition the range of, e.g. salary values (bounded
by a minimum and maximum value), into 5 or 7 fuzzy sets using triangular (or trapezoidal) functions

3



Figure 2: Uniform fuzzy sets over salaries.

Table 1: Combination functions for fuzzy logics.

 Lukasiewicz Gödel Product standard
d1 ⊗ d2 max(d1 + d2 − 1, 0) min(d1, d2) d1 · d2 min(d1, d2)
d1 ⊕ d2 min(d1 + d2, 1) max(d1, d2) d1 + d2 − d1 · d2 max(d1, d2)

d1 ⇒ d2 min(1− d1 + d2, 1)

{
1 if d1 ≤ d2

β otherwise
min(1, d2/d1) max(1− d1, d2)

	 d 1− d

{
1 if d = 0

0 otherwise

{
1 if d = 0

0 otherwise
1− d

(see Figure 2). Another popular approach may consist in using the so-called C-means fuzzy clustering
algorithm (see, e.g. [7]) with three or five clusters, where the fuzzy membership functions are triangular
functions built around the centroids of the clusters (see also [51]).

In Mathematical Fuzzy Logic [48], the convention prescribing that a formula is either true or false
(w.r.t. an interpretation I) is changed and is a matter of degree measured on an ordered scale that
is no longer {0, 1}, but typically [0, 1]. This degree is called degree of truth of the formula φ in the
interpretation I. Here, fuzzy formulae have the form 〈φ, d〉, where d∈ (0, 1] and φ is a First-Order Logic
(FOL) formula, encoding that the degree of truth of φ is greater than or equal to d. So, for instance,
〈Cheap(HotelV erdi), 0.8〉 states that ‘Hotel Verdi is cheap’ is true to degree greater or equal 0.8. From
a semantics point of view, a fuzzy interpretation I maps each atomic formula pi into [0, 1] and is then
extended inductively to all FOL formulae as follows:

I(φ ∧ ψ) = I(φ)⊗ I(ψ) , I(φ ∨ ψ) = I(φ)⊕ I(ψ)

I(φ→ ψ) = I(φ)⇒ I(ψ) , I(¬φ) = 	I(φ)

I(∃x.φ(x)) = sup
y∈∆I

I(φ(y)) , I(∀x.φ(x)) = inf
y∈∆I

I(φ(y)) ,

where ∆I is the domain of I, and ⊗, ⊕,⇒, and 	 are so-called t-norms, t-conorms, implication functions,
and negation functions, respectively, which extend the Boolean conjunction, disjunction, implication, and
negation, respectively, to the fuzzy case.

One usually distinguishes three different logics, namely  Lukasiewicz, Gödel, and Product logics [48], 6

whose truth combination functions are reported in Table 1.
Note that the operators for ‘standard’ fuzzy logic, namely d1⊗d2 = min(d1, d2), d1⊕d2 = max(d1, d2),

	 d = 1 − d and d1 ⇒ d2 = max(1 − d1, d2), can be expressed in  Lukasiewicz logic. More precisely,
min(d1, d2) = d1 ⊗l (d1 ⇒l d2),max(d1, d2) = 1 − min(1 − d1, 1 − d2). Furthermore, the implication
d1 ⇒kd d2 = max(1− d1, d2) is called Kleene-Dienes implication (denoted ⇒kd), while Zadeh implication
(denoted ⇒z) is the implication d1 ⇒z d2 = 1 if d1 ≤ d2; 0 otherwise.

An r-implication is an implication function obtained as the residuum of a continuous t-norm ⊗, 7

6Notably, a theorem states that any other continuous t-norm can be obtained as a combination of them.
7Note that  Lukasiewicz, Gödel and Product implications are r-implications, while Kleene-Dienes implication is not.
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i.e. d1 ⇒ d2 = max{d3 | d1 ⊗ d3 ≤ d2}. Note also, that given an r-implication ⇒r, we may also define its
related negation 	rd by means of d⇒r 0 for every d ∈ [0, 1].

The notions of satisfiability and logical consequence are defined in the standard way, where a fuzzy
interpretation I satisfies a fuzzy formula 〈φ, d〉, or I is a model of 〈φ, d〉, denoted as I |= 〈φ, d〉, iff I(φ) ≥ d.
Notably, from 〈φ, d1〉 and 〈φ→ ψ, d2〉 one may conclude (if → is an r-implication) 〈ψ, d1 ⊗ d2〉 (this
inference is called fuzzy modus ponens).

3.2 Fuzzy Description Logics basics

We recap here the fuzzy DL ALCW(D), which extends the well-known fuzzy DL ALC(D) [112] with the
weighted concept construct (indicated with the letter W) [12, 113]. ALCW(D) is expressive enough to
capture the main ingredients of fuzzy DLs we are going to consider here. Note that fuzzy DLs and fuzzy
OWL 2 in particular, cover many more language constructs than we use here (see, e.g. [9, 12, 113]).

We start with the notion of fuzzy concrete domain, that is a tuple D = 〈∆D, ·D〉 with datatype do-
main ∆D and a mapping ·D that assigns to each data value an element of ∆D, and to every 1-ary
datatype predicate d a 1-ary fuzzy relation over ∆D. Therefore, ·D maps indeed each datatype predicate
into a function from ∆D to [0, 1]. Typical datatypes predicates d are characterized by the well known
membership functions (see also Fig. 1)

d → ls(a, b) | rs(a, b) | tri(a, b, c) | trz(a, b, c, d)

| ≥v | ≤v | =v ,

where e.g. ls(a, b) is the left-shoulder membership function and ≥v corresponds to the crisp set of data
values that are greater than or equal to the value v.

Now, consider pairwise disjoint alphabets I,A and R, where I is the set of individuals, A is the set of
concept names (also called atomic concepts) and R is the set of role names. Each role is either an object
property or a datatype property. The set of concepts are built from concept names A using connectives and
quantification constructs over object properties R and datatype properties S, as described by the following
syntactic rule (n ≥ 1, αi ∈ (0, 1],

∑
i αi ≤ 1):

C → > | ⊥ | A | C1 u C2 | C1 t C2 | ¬C | C1 → C2 |
∃R.C | ∀R.C | ∃S.d | ∀S.d |
α1 · C1 + . . . αn · Cn .

An ABox A consists of a finite set of assertion axioms. An assertion axiom is an expression of the form
〈a:C, d〉 (called concept assertion, a is an instance of concept C to degree greater than or equal to d) or of
the form 〈(a1, a2):R, d〉 (called role assertion, (a1, a2) is an instance of object property R to degree greater
than or equal to d), where a, a1, a2 are individual names, C is a concept, R is an object property and
d ∈ (0, 1] is a truth value. A Terminological Box or TBox T is a finite set of General Concept Inclusion
(GCI) axioms, where a fuzzy GCI is of the form 〈C1 v C2, d〉 (C1 is a sub-concept of C2 to degree greater
than or equal tod), where Ci is a concept and d ∈ (0, 1]. We may omit the truth degree d of an axiom; in
this case d = 1 is assumed and we call the axiom crisp. We also write C1 = C2 as a macro for the two
GCIs C1 v C2 and C2 v C1. We may also call a fuzzy GCI of the form 〈C v A, d〉, where A is a concept
name, a rule and C its body. A Knowledge Base (KB) is a pair K = 〈T ,A〉, where T is a TBox and A is
an ABox. With IK we denote the set of individuals occurring in K.

Concerning the semantics, let us fix a fuzzy logic and a fuzzy concrete domain D = 〈∆D, ·D〉. Now,
unlike classical DLs in which an interpretation I maps e.g. a concept C into a set of individuals CI ⊆ ∆I ,
i.e. I maps C into a function CI : ∆I → {0, 1} (either an individual belongs to the extension of C
or does not belong to it), in fuzzy DLs, I maps C into a function CI : ∆I → [0, 1] and, thus, an
individual belongs to the extension of C to some degree in [0, 1], i.e. CI is a fuzzy set. Specifically, a fuzzy
interpretation is a pair I = (∆I , ·I) consisting of a nonempty (crisp) set ∆I (the domain) and of a fuzzy
interpretation function ·I that assigns: (i) to each atomic concept A a function AI : ∆I → [0, 1]; (ii) to
each object property R a function RI : ∆I × ∆I → [0, 1]; (iii) to each datatype property S a function
SI : ∆I × ∆D → [0, 1]; (iv) to each individual a an element aI ∈ ∆I such that aI 6= bI if a 6= b (the
so-called Unique Name Assumption); and (v) to each data value v an element vI ∈ ∆D. Now, a fuzzy

5



interpretation function is extended to concepts as specified below (where x ∈ ∆I):

>I(x) = 1

⊥I(x) = 0

(C uD)
I
(x) = CI(x)⊗DI(x)

(C tD)
I
(x) = CI(x)⊕DI(x)

(¬C)
I
(x) = 	CI(x)

(C → D)
I
(x) = CI(x)⇒ DI(x)

(∀R.C)
I
(x) = inf

y∈∆I
{RI(x, y)⇒ CI(y)}

(∃R.C)
I
(x) = sup

y∈∆I
{RI(x, y)⊗ CI(y)}

(∀S.d)
I
(x) = inf

y∈∆D
{SI(x, y)⇒ dD(y)}

(∃S.d)
I
(x) = sup

y∈∆D

{SI(x, y)⊗ dD(y)}

(α1 · C1 + . . . αn · Cn)
I
(x) =

∑
i

αi · CiI(x) .

The satisfiability of axioms is then defined by the following conditions: (i) I satisfies an axiom 〈a:C, d〉 if
CI(aI) ≥ d; (ii) I satisfies an axiom 〈(a, b):R, d〉 if RI(aI , bI) ≥ d; (iii) I satisfies an axiom 〈C v D, d〉
if (C v D)

I ≥ d with 8 (C v D)
I

= infx∈∆I{CI(x)⇒ DI(x)}. I is a model of K = 〈A, T 〉 iff I satisfies
each axiom in K. If K has a model we say that K is satisfiable (or consistent). We say that K entails
axiom τ , denoted K |= τ , if any model of K satisfies τ . The best entailment degree of τ of the form C v D,
a:C or (a, b):R, denoted bed(K, τ), is defined as

bed(K, τ) = sup{d | K |= 〈τ, d〉} .

Remark 1 Please note that bed(K, a:C) = 1 (i.e. K |= a:C) implies bed(K, a:¬C) = 0, and similarly,
bed(K, a:¬C) = 1 (i.e. K |= a:¬C) implies bed(K, a:C) = 0. However, in both cases the other way around
does not hold. Furthermore, we may well have that both bed(K, a:C) = d1 > 0 and bed(K, a:¬C) = d2 > 0
hold.

Eventually, consider concept C, a GCI C v D, a KB K, a set of individuals I and a (weight) distribution
w over I. Then the cardinality of C w.r.t. K and I, denoted |C|IK, is defined as

|C|IK =
∑
a∈I

bed(K, a:C) , (1)

while the weighted cardinality C w.r.t. K, w and I , denoted |C|w,IK , is defined as

|C|w,IK =
∑
a∈I

wa · bed(K, a:C) . (2)

The crisp cardinality (denoted dCeIK) and crisp weighted cardinality (denoted dCew,IK ) are defined similarly
by replacing in Eq. 1 and 2 the term bed(K, a:C) with dbed(K, a:C)e.

Furthermore, the confidence degree (also called inclusion degree) of C v D w.r.t. K and I, denoted
cf(C v D, I), is defined as

cf(C v D, I) =
|C uD|IK
|C|IK

. (3)

Similarly, the weighted confidence degree (also called weighted inclusion degree) of C v D w.r.t. K, w and
I, denoted cf(C v D,w, I), is defined as

cf(C v D,w, I) =
|C uD|w,IK
|C|w,IK

. (4)

8However, note that under standard logic v is interpreted as ⇒z and not as ⇒kd.
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Figure 3: Fuzzy sets derived from the datatype property hasPrice.

Example 3.1 (Example 1.1 cont.) Let us consider the following axiom

〈∃hasPrice.High v GoodHotel, 0.569〉 ,

where hasPrice is a datatype property whose values are measured in euros and the price concrete domain
has been automatically fuzzified as illustrated in Figure 3. Now, it can be verified that for hotel verdi,
whose room price is 105 euro, i.e. we have the assertion verdi:∃hasPrice. =105 in the KB, we infer under
Product logic that 9

K |= 〈verdi:GoodHotel, 0.18〉 .
�

4 Learning Fuzzy Concept Inclusions via Real-Valued Boosting

To start with, we introduce our learning problem.

4.1 The Learning Problem

In general terms, the learning problem we are going to address is stated as follows:
Given:

• a satisfiable KB K = 〈T ,A〉 and its individuals IK;

• a target concept name T with an associated unknown classification function fT : IK → {1, 0}, where
for each a ∈ IK, the possible values (labels) correspond, respectively, to K |= a:T (a is a positive
example of T ) and K 6|= a:T (a is a non-positive example of T );

• a hypothesis space of classifiers H = {h : IK → [0, 1]};

• a training set E = E+ ∪E− (the positive and non-positive examples of T , respectively) of individual-
label pairs:

E+ = {(a, 1) | a ∈ IK, fT (a) = 1}
E− = {(a, 0) | a ∈ IK, fT (a) = 0} .

With IE we denote the set of individuals occurring in E . We assume that for all a ∈ IE , 0 =
bed(K, a:T ) = bed(K, a:¬T ), i.e. both K 6|= 〈a:T , d〉 and K 6|= 〈a:¬T , d〉 hold for all d > 0. 10 We
write E(a) = 1 if a is a positive example (i.e., a ∈ IE+), E(a) = 0 if a is a non-positive example (i.e.,
a ∈ IE−).

Learn: a classifier h̄ ∈ H that is the result of Emprical Risk Minimisation (ERM) on E . That is,

h̄ = arg min
h∈H

R(h, E)

= EE [L(h(a), E(a))]

=
1

|E|
∑
a∈IE

L(h(a), E(a)) ,

9Using fuzzy modus ponens, 0.18 = 0.318 · 0.569, where 0.318 = tri(90, 112, 136)(105).
10Essentially we state that K does not already know whether a is an instance of T or not.
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where L is a loss function such that L(l̂, l) measures how different the prediction l̂ of a hypothesis is from
the true outcome l and R(h, E) is the risk associated with hypothesis h over E , defined as the expectation
of the loss function over E .

The effectiveness of the learned classifier h̄ is then assessed by determining R(h̄, E ′) on a a test set E ′,
disjoint from E .

In our setting, we assume that a hypothesis h ∈ H is a fuzzy GCI of the form

〈α1 · C1 + . . . αn · Cn v T, d〉 (5)

where each Ci is a so-called fuzzy EL(D) concept expression 11 defined according to the following syntax:12

C −→ > | A | ∃R.C | ∃S.d | C1 u C2

d → ls(a, b) | rs(a, b) | tri(a, b, c) | trz(a, b, c, d) | bool .

For a ∈ IK, the classification prediction value h(a) of a w.r.t. h, T and K is defined as (for ease, we omit
K and T )

h(a) = bed(K ∪ {h}, a:T ) .

Note that, as stated above, essentially a hypothesis is a sufficient condition (expressed via the weighted
sum of concepts) for being an individual instance of a target concept to some positive degree. So, if
h(a) = 0 then a is a non-positive instance of T , while if h(a) > 0 then a is a positive instance of T to some
degree and, thus, we distinguish between positive and non-positive instances of T only. Furthermore, let
us note that even if K is a crisp KB, the possible occurrence of fuzzy concrete domains in expressions of
the form ∃S.d in the left-hand side of a hypothesis may imply that h(a) 6∈ {0, 1}.

Remark 2 Note that in e.g. [70] a hypothesis is of the form 〈C1 t . . . t Cn v T, d〉 instead. �

Remark 3 Clearly, the set of hypothesis by this syntax is potentially infinite due, e.g., to conjunction
and the nesting of existential restrictions. The set is made finite by imposing further restrictions on the
generation process such as the maximal number of conjuncts and the depth of existential nestings allowed. �

Remark 4 One may also think of further partition the set E− of non-positive examples into a set E¬
of negative and a set Eu of unknown examples (and use as labelling set {−1, 0, 1}, respectively, with 1
–positive, 0 – unknown, −1 – negative), as done in many other approaches (see e.g. [44]). That is, an
individual a is a negative example of T if K |= a:¬T , while a is a unknown example of T if neither
K |= a:T nor K |= a:¬T hold. In that case, usually we are looking for an exact definition of T , i.e. a
hypothesis is of the stronger form T = C instead. 13 That is, we may well have the case D v T and T = C
with D v C. Which one to choose may depend on the application domain and on the effectiveness of the
approach. We do not address this case here. �

It is easily verified that indeed a hypothesis 〈α1 · C1 + . . . αn · Cn v T, d〉 can be rewritten as a set of rules
of the form (with Ti new concept names):

〈C1 v T1, d1〉
...

〈Cn v Tn, dn〉
〈β1 · T1 + . . . βn · Tn v T, d〉

(6)

where, as we will see later on, each fuzzy EL(D) GCI 〈Ci v Ti, di〉 is a weak hypothesis (classifier), while
their aggregation is computed via Real AdaBoost in which each βi = αi/di indicates how much Ci
contributes to the classification prediction value.

Remark 5 Of course, one may also rewrite Eq. 5 directly as (with Ti new concept names)

C1 v T1

...
Cn v Tn
〈α1 · T1 + . . . αn · Tn v T, d〉 .

(7)

However, we prefer to rely on Eq. 6 to maintain the confidence degree of each learned rule. �
11Note that EL is a basic ingredient of the OWL profile language OWL EL [89].
12bool is the concrete domain of boolean values.
13We recall that a hypothesis as in Eq. 5 does not allow us to infer negative instances of T , while T = C does.
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We conclude with the notions of consistent, non-renduntant, sound, complete and strongly complete hy-
pothesis h w.r.t. K, which are defined as follows:

Consistency. K ∪ {h} is a consistent;

Non-Redundancy. K 6|= h.

Soundness. ∀a ∈ IE− , h(a) = 0.

Completeness. ∀a ∈ IE+ , h(a) > 0.

Strong Completeness. ∀a ∈ IE+ , h(a) = 1.

We say that a hypothesis h covers (strongly covers) an example e ∈ E iff bed(K ∪ {h}, e) > 0 (bed(K ∪
{h}, e) = 1). Therefore, soundness states that a learned hypothesis is not allowed to cover a non-positive
example, while the way (strong) completeness is stated guarantees that all positive examples are (strongly)
covered.

In general a learned (induced) hypothesis h has to be consistent, non-renduntant and sound w.r.t. K,
but not necessarily complete, but, of course, these conditions can also be relaxed.

4.2 The Learning Algorithm

We now present our real-valued boosting-based algorithm, which is based on a boosting schema applied
a fuzzy GCI learner. Our learning method creates an ensemble of classifiers made up of fuzzy EL(D)
concept expressions (see Eq. 5), each of which is provided by a fuzzy weak learner, whose predictiveness
is required to be better than randomness. Essentially, at each round the weak learner generates a fuzzy
EL(D) candidate GCI of the form 〈Ci v T, di〉 that determines a change to the distribution of the weights
associated with the examples. The weights of misclassified examples get increased so that a better classifier
can be produced in the next round, indicating the harder examples to focus on. The weak hypotheses
are then eventually combined into a hypothesis (see Eq. 6). We will rely on Real AdaBoost [85, 86] as
boosting algorithm, while we will use a weak learner that is similar to Foil-DL [67, 68, 70], both of which
need to adapted to our specific setting.

Formally, consider a KB, K, a training set E , a set of individuals I with IE ⊆ I ⊆ IK, and a weight
distribution w over I. 14 With u we indicate the uniform distribution over I, i.e. ua = 1/|I| (with a ∈ I).
Furthermore, consider a weak hypothesis hi of the form 〈Ci v T, di〉 returned by the weak learner. Note
that for a ∈ IK, bed(K∪{hi}, a:T ) ∈ [0, 1]. Next, we transform this value into a value in [−1, 1] as required
by Real AdaBoost. So, let let t : [0, 1]→ [−1, 1] be the transformation function

t(x) =

{
−1 if x = 0

x else

and let the classification prediction value hi(a) of a w.r.t. h, T and K be defined as (again for ease, we
omit K and T )

hi(a) = t(bed(K ∪ {hi}, a:T )) ∈ {−1} ∪ (0, 1] .

We also define the examples labelling l over I in the following way: for a ∈ I

l(a) =

{
1 if (a, 1) ∈ E+

−1 else .

Then, the Fuzzy OWL-Boost algorithm calling iteratively a weak learner is shown in 1, which we
comment briefly next. The algorithm is essentially the same as Real AdaBoost, except for few context
dependent parts. In Step 2 we initialise the set of individuals I to be considered as IK. Essentially, all
individuals will be weighted. The main loop (Steps 5 - 11) is the same as for Real AdaBoost with the
particularity that Step 6 we invoke a fuzzy GCI (weak) learner that is assumed to return a GCI of the form
〈Ci v T, di〉. Note that, for ease of presentation, we didn’t include an additional condition that causes a

14The weight of a ∈ I w.r.t. w is denoted wa.
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Algorithm 1 Fuzzy OWL-Boost

Input: KB K, training set E , target concept name T , number of iterations n
Output: Hypothesis H (Fuzzy OWL EL TBox) of the form of Eq. 6

1: H ← ∅;
2: I← IK;
3: w1 ← u; . Initialise the weight distribution over I
4: // Main boosting loop
5: for i = 1 to n do
6: hi ← FuzzyWeakLearner(K, T , E , wi); . hi is of the form 〈Ci v T, di〉
7: h?i ← maxa∈I |hi(a)|; . h?i is the maximal value of hi over I
8: µi ← 1

h?i

∑
a∈I wi,a · l(a) · hi(a); . µi is the normalised margin of hi w.r.t. I

9: αi ← 1
2h?i
· ln 1+µi

1−µi ; . αi is the weight of classifier hiin the ensemble

10: for all a ∈ I do . Update the weight distribution

11: wi+1,a ← wi+1,a · ( 1−(µi·l(a)·hi(a))/h?i
1−µ2

i
);

12: H ← H∪ {〈Ci v Ti, di〉 | Ti new}
13: // Build now the final classifier ensemble
14: for i = 1 to n do . Normalise the αi via the softmax function
15: βi ← eαi∑n

j=1 e
αi

;

16: D ← β1 · C1 + . . . βn · Cn
17: d← cf(D v T, I); . d is the classifier ensemble confidence degree
18: h← 〈β1 · T1 + . . . βn · dn · Tn v T, d〉; . The final classifier ensemble
19: H ← H∪ {h};
20: return H;

break of the loop. In fact, an implicit condition of boosting is that the error of a weak learner is below
0.5. This may implemented in our case by adding another step before Step 12 that computes the error

ε =
∑
a∈I

δ(hi(a), l(a)) · hi(a) ,

where δ(x, y) ∈ {0, 1} is defined as (x ∈ {−1} ∪ (0, 1], y ∈ {−1, 1})

δ(x, y) =

{
1 if x · y < 0

0 else

and determines whether there is a disagreement among the sign of hi(a) and l(a). Then, if ε ≥ 0.5 we
break the loop. In Step 12 we add the (weak) learned fuzzy GCI 〈Ci v T, di〉 to the hypothesis set H. In
Steps 14 - 18 we prepare the final classifier ensemble. To do so, we have to perform a normalisation step.
In fact, since in Real AdaBoost generally αi ∈ R, we have to normalise the set of values αi (1 ≤ i ≤ n)
before building the weighted sum in Step 16. To do so, we rely on the well-known softmax function.
Eventually, in Step 17, we determine the degree to be attached to the ensemble classifier computed as the
confidence value, which resembles the well-known precision measure used in macchine learning. 15

We next describe the weak learner we employ here. As anticipated, will use a Foil-DL [67, 68, 70]
like weak learner, which however needs to be adapted to our specific setting. In general terms the weak
learning algorithm, called wFoil-DL, proceeds as follows:

1. start from concept >;

2. apply a refinement operator to find more specific concept description candidates;

3. exploit a scoring function to choose the best candidate;

4. re-apply the refinement operator until a good candidate is found;

15Precision is also called positive predictive value and roughly is the percentage of positive instances among all retrieved
instances.
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Table 2: Downward Refinement Operator.

ρ(C) =



AK ∪ {∃R.> | R ∈ RK} ∪ {∃S.d | S ∈ SK, d ∈ D}∪
{∃S.true,∃S.false, | S ∈ BK} if C = >

{A′ | A′ ∈ AK,K |= A′ v A} ∪ {A uA′′ | A′′ ∈ ρ(>)} if C = A
{∃R.D′ | D′ ∈ ρ(D)} ∪ {(∃R.D) uD′′ | D′′ ∈ ρ(>)} if C = ∃R.D,R ∈ RK
{(∃S.d) uD | D ∈ ρ(>)} if C = ∃S.d, S ∈ SK, d ∈ D
{(∃S.d) uD | D ∈ ρ(>)} if C = ∃S.d, S ∈ BK, d ∈ {true, false}
{C1 u ... u C′

i u ... u Cn | i = 1, ..., n, C′
i ∈ ρ(Ci)} if C = C1 u ... u Cn

5. iterate the whole procedure until a satisfactory coverage of the positive examples is achieved.

We briefly detail these steps.

Computing fuzzy datatypes. For a numerical datatype S, we allow equal width triangular/trapezoidal
partition of values VS = {v | K |= a:∃S. =v} into a finite number of fuzzy sets (typically, 3 or 5 sets),
which is identical to [67, 70, 114] (see, e.g. Figure 2). However, we additionally, allow also the use of the
C-means fuzzy clustering algorithm over VS with 3 or 5 clusters, where the fuzzy membership function is
a triangular function build around the centroid of a cluster. Note that C-means has not been considered
in [67, 70, 114]. 16

The refinement operator. The refinement operator we employ is the same as in [67, 68, 74, 114] except
that now we add the management of boolean values as well. Essentially, the refinement operator takes as
input a concept C and generates new, more specific concept description candidates D (i.e., K |= D v C).
For the sake of completeness, we recap the refinement operator here. Let K be an ontology, AK be the set
of all atomic concepts in K, RK the set of all object properties in K, SK the set of all numeric datatype
properties in K, BK the set of all boolean datatype properties in K and D a set of (fuzzy) datatypes. The
refinement operator ρ is shown in Table 2.

The scoring function. The scoring function we use to assign a score to each candidate hypothesis is
essentially a weighted gain function, similar to the one employed in [67, 68, 74, 114] and implements an
information-theoretic criterion for selecting the best candidate at each refinement step. Specifically, given
a GCI φ of the form C v T chosen at the previous step, a KB K, a set of individuals I, a weight distribution
w over I, a set of examples E and a candidate GCI φ′ of the form C ′ v T , then

gain(φ′, φ,w, I) = p ∗ (log2(cf(φ′,w, I))− log2(cf(φ,w, I))) , (8)

where p = |C ′uC|w,IE+K is the weighted cardinality of positive examples covered by φ that are still covered
by φ′. Note that the gain is positive if the confidence degree increases.

Stop Criterion. wFoil-DL stops when the confidence degree is above a given threshold θ ∈ [0, 1], or
no better weak learner can be found that does not cover any negative example (in E−) above a given
percentage. Note that in Foil-DL instead, non-positive examples are not allowed to be covered.

The wFoil-DL Algorithm. The wFoil-DL algorithm is defined in Algorithm 2, which we comment
briefly as next. Steps 1 - 3 are simple initialisation steps. Steps 5 - 21. are the main loop from which we
may exit in case there is no improvement (Step. 16), and the confidence degree of the so far determined
weak learner is above a given threshold or it does not cover any negative example above a given percentage
(Step. 18). Note that the latter case guarantees soundness of the weak learner if the percentage is set to
0. In Step 8 we determine all new refinements, which then are scored in Steps 10 -15 in order to determine
the one with the best gain. Eventually, once we exit from the main loop, the best found weak learner is
returned (Step 22 and 23).

Remark 6 As for Foil-DL (and pFoil-DL), the weak learner wFoil-DL also allows to use a backtrack-
ing mechanism (Step 20.), which, for ease of presentation, we omit to include. The mechanism is exactly
the same as for the pFoil-DL-learnOneAxiom described in [114, Algorithm 3]. Essentially, a stack of
top-k refinements is maintained, ranked in decreasing order of the confidence degree from which we pop
the next best refinement (if the stack is not empty) in case no improvement has occurred in Step 19. Cbest
becomes the popped-up refinement.

16Specifically, C-means has not been considered so far in fuzzy GCI learning.
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Algorithm 2 wFoil-DL
Input: KB K, target concept name T , training set E , weight distribution w, confidence threshold θ ∈ [0, 1],

non-positive coverage percentage η ∈ [0, 100]
Output: Weak hypothesis of the form 〈C v T, d〉

1: I← IK;
2: C ← >; . Start from >
3: φ← C v T ;
4: //Loop until no improvement
5: while C 6= null do
6: Cbest ← C;
7: maxgain← 0;
8: C ← ρ(C); . Compute all refinements of C
9: // Compute the score of the refinements and select the best one

10: for all C ′ ∈ C do
11: φ′ ← C ′ v T ;
12: gain← gain(φ′, φ,w, I);
13: if (gain > maxgain) and (cf(φ′,w, I) > cf(φ,w, I)) then
14: maxgain← gain;
15: Cbest ← C ′;

16: if Cbest = C then . No improvement
17: //Stop if confidence degree above threshold or no negative coverage below threshold

18: if (cf(Cbest v T, I) ≥ θ) and
dCbeste

IE−
K

|IE− |
≤ η then break;

19: // Manage backtrack here, if foreseen

20: C ← Cbest;
21: φ← C v T ;

22: d← cf(φ, I); . Compute the weak classifier confidence degree
23: return 〈φ, d〉;
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Table 3: Facts about the ontologies of the experiment.

ontology DL class. obj. prop. data. prop. ind. target T pos neg max d./c./fp

FamilyTree SROIF(D) 22 52 6 368 Uncle 46 156 1/5/0

Hotel ALCOF(D) 89 3 1 88 Good Hotel 12 11 1/5/0

Moral ALC 46 0 0 202 ToLearn Guilty 102 100 1/5/0

SemanticBible (NTN) SHOIN(D) 51 29 9 723 ToLearn Woman 46 3 1/5/0

UBA SHI(D) 44 26 8 1268 Good Researcher 22 113 1/5/0

WineOnto SHI(D) 178 15 7 138 ToLearn DryWine 15 - 1/5/0

Pair50 ALC 3 6 0 311 ToLearn 20 29 2/5/0

Straight ALC 3 6 0 347 ToLearn 4 50 3/5/100

Lymphography ALC 50 0 0 148 ToLearn 81 67 1/5/100

Mammographic ALC(D) 20 3 2 975 ToLearn 445 516 3/5/100

Pyrimidine ALC(D) 2 0 27 74 ToLearn 20 20 1/5/100

Suramin ALC(D) 47 3 1 2979 ToLearn 7 10 3/5/100

Table 4: Datasets considered from the UCI ML Repository.

dataset instances attributes target T pos

Iris 151 4
Iris-setosa

Iris-versicolor
Iris-virginica

51
50
50

Wine 178 13 1, 2, 3 59, 71, 48
Wine Quality 4898 12 GoodRedWine 18

Yeast 1484 8
CYT, ERL, EXC, ME1, ME2
ME3, MIT, NUC, POX, VAC

444, 5, 35, 44, 51
163, 244, 426, 20, 30

5 Evaluation

We have implemented the algorithm within the FuzzyDL-Learner 17 system and evaluated it. All the data
and implementation can be downloaded from the FuzzyDL-Learner home page. If not specified differently,
in all runs we used the HermiT 18 OWL reasoner. Sometimes we also used the jFact 19 reasoner, indicated
with (jF) in the result tables.

5.1 Setup

A number of OWL ontologies from different domains have been selected as illustrated in Tables 3 and 4.
Note that the ontologies in Table 4 are not available as OWL 2 ontologies and, thus, we have translated
them from a a csv format according to the procedure shown in Section 5.2.

For each ontology K a meaning full target concept has been selected such that the conditions of the
learning problem are satisfied. We report also the DL the ontology refers to, the number of concept names,
object properties, datatype properties and individuals in the ontology. We also report the maximal nesting
depth (max d.), maximal number of conjuncts (max c.) and maximal percentage of false positives (max
fp) during the learning phase. The number n of iterations of Fuzzy OWL-Boost is set to 10. We
didn’t consider backtracking. Nevertheless, all configuration parameters for each run are available from
the downloadable data.

We will consider the following performance indices (see also [114] for similar measures), which we report
here for clarity to avoid ambiguity. So, consider the learned fuzzy GCI of the form 〈D v T, d〉, where D
and d are determined by Fuzzy OWL-Boost in Steps 16 and 17, respectively, and the classifier ensemble
H returned by Fuzzy OWL-Boost. 20 Then

Fuzzy True Positives: denoted TPf , is defined as

TPf = |D|IE+K , (9)

Fuzzy False Positives: denoted FPf , is defined as

FPf = |D|IE−K , (10)

17http://www.umbertostraccia.it/cs/software/FuzzyDL-Learner/.
18http://www.hermit-reasoner.com
19http://jfact.sourceforge.net
20Note that the two are the same from a classification point of view.
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Fuzzy True Non-Positive: denoted TNPf , is defined as

TNPf = |IE− | − FPf , (11)

Fuzzy False Non-Positive: denoted FNPf , is defined as

FNPf = |IE+ | − TPf , (12)

Fuzzy Precision: denoted Pf , is defined as

Pf =
TPf

|D|IEK
= cf(D v T, IE) = d , (13)

Fuzzy Recall: denoted Rf , is defined as

Rf =
TPf
|IE+ |

, (14)

Fuzzy F1-score: denoted F1f , is defined as

F1f = 2 · Pf ·Rf
Pf +Rf

,

Mean Squared Error: denoted MSE, is defined as

MSE =
1

|IE |
·
∑
a∈IE

(H(a)− E(a))2 ,

where H(a) ∈ [0, 1] is the classification prediction value of a w.r.t. H, T , which is defined as

H(a) = bed(K ∪H, a:T ) .

Standard fuzzy logic has been chosen to compute the indices. Concerning the fuzzy measures above, we
consider also their well-known crips variants [6] (in the denotation we omit the f subscript), obtained
by replacing in the equations above the cardinality function | · |IKK (see Eq. 1) with the crisp cardinality

function d·eIKK .
A k-fold cross validation design was adopted (specifically, k = 5) to determine the average of the above

described performance indices. For each measure, the (macro) average value over the various folds is
reported in the tables. In all tests, we have that IE = IK and that there is at least one positive example in
each fold, while the other examples of a fold have been randomly been selected. Eventually, we considered
also the extreme case in which the whole set E is used for both learning and testing. This case has
been considered for those ontologies with few positive examples for which k-fold cross validation is not
meaningful and also for the task aiming at “explaining” the target w.r.t. the given data set. This case is
indicated with ? in the results tables. As baseline, we considered Foil-DL, which learns, conceptually,
rules sets of the form (compare with Eq. 6)

〈C1 v T1, d1〉
...

〈Cn v Tn, dn〉
〈T1 t . . . t Tn v T, d〉

(15)

In the result Tables 5-7, for a given ontology, algorithm and clustering method (uniform or C-means 21),
we report only the run with the best effectiveness measure determined by

best = (1−MSE) · F1 , (16)

21For C-means, we fixed the hyper-parameter to m = 0.5, the threshold to ε = 0.05 and number of maximum iterations to
100.
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which minimises the MSE and maximises F1 with the threshold θ ∈ {0.04, 0.34, 0.64, 0.94, 1.0} and
number of fuzzy sets c ∈ {3, 5, 7}. For each table entry, we report also the average number (#r) of rules
learned and the average rule body length (l) of a learned rule computed as

|C| =


1 if C = A
1 + 2 · |D| if C = ∃R.D
|C1|+ |C2|+ . . .+ |Cn| if C = C1 u C2 . . . u Cn
n if C = α1 · T1 + . . . αn · Tn
n if C = max(T1, . . . , Tn) .

The averages #r and l are computed as macro averages among the folds. The intuition of | · | is that the
less rules are leaned, the shorter and less nested they are the easier a rule set is to be interpreted by a
human being. Note that for Foil-DL (resp. for Fuzzy OWL-Boost) we do count the final aggregation
rule as well, except for the case in which the set of of learned rules is 2, i.e. the aggregation rule body
contains one concept name only (n = 1 in Eqs. 6 and 15). For both Foil-DL and Fuzzy OWL-Boost we
report in red the run with the maximal value of best and then compare these two runs w.r.t. #r and l and
report in red the one with the better #r · l score.

5.2 UCI ML conversion algorithm

To start with, we conducted a preliminary experiment that focuses on fuzzy set construction involved in
numerical fuzzy datatypes, i.e. about partitioning the data into 3, 5 or 7 fuzzy sets, considering uniform
partitioning (see Fig. 2) or partitioning via C-means. 22 To this purpose, we considered the well-known
UC Irvine Machine Learning Repository [30] from which selected some popular datasets with numerical
attributes as shown in Table 4. While evaluating ontology-based learning algorithms is untypical on those
data sets 23, we believe it is still interesting to to do so as a main ingredient of our algorithm is the use of
fuzzy concrete datatype properties.

As anticipated, as the the data sets in Table 4 are not available as OWL 2 ontologies, we have translated
them from a csv format a into an OWL 2 ontology in a simple way, which we describe next. The method is
quite general and can be applied to any other dataset with similar specification and a dedicated procedure
is available within our implemented learner for future evaluations.

Consider a dataset D with (functional) attributes S1, . . . , Sn of type t1, . . . , tn. Each data record r is
of then of the form 〈v1, . . . , vn, T 〉, where vi is the value of attribute Si of type ti, while T is the target
class name for record r. For instance, for the iris dataset we have attributes

sepal length, sepal width, petal length, petal width

of type
double, double, double, double

and the first record r is
〈5.1, 3.5, 1.4, 0.2, Iris− setosa〉 .

The knowledge base KD = 〈TD,AD〉 built to describe the data is as follows. Let TD be the set of all target
class names T occurring in D. The TBox TD is

T v class (T ∈ TD)
class v ∃Si.ti (i = 1...n) .

(17)

Additionally, each data property Si has been declared as functional.
The ABox AD is built in the following way. For each record r of the form 〈v1, . . . , vn, T 〉, we create a

new individual ar and add the axioms

ar:T
ar:∃Si. =vi (i = 1...n)

(18)

22Let us also recall that in ontology-based learning rarely datatype properties have been have considered.
23To the best of our knowledge, we are unaware of any evaluation of ontology-based methods on those data sets.
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to AD. For instance, for the iris dataset described above, which has three target classes Iris− setosa,
Iris− versicolor and Iris− virginica, the KB contains the axioms

Iris− setosa v class

Iris− versicolor v class

Iris− virginica v class

class v ∃sepal length.double
class v ∃sepal width.double
class v ∃sepal length.double
class v ∃sepal width.double
a1:Iris− setosa

a1:∃sepal length. =5.1

a1:∃sepal width. =3.5

a1:∃petal length. =1.4

a1:∃sepal width. =0.2 .

It is easily verified that the KB KD constructed for each dataset D (i) belongs to the DL ALEF(D); (ii)
the number of classes is |TD|+ 1; and there are n functional datatype properties.

For each dataset D, we run a k-fold cross validation on ontologies KD for each target class T ∈ TD,
by varying the number of fuzzy sets (3, 5 or 7), selecting uniform partition or C-means, and varying the
confidence threshold θ ∈ {0.04, 0.34, 0.64, 0.94, 1.0}. Non-positive coverage percentage is set to η = 0.0
and the numbers of boosting iterations is n = 10. Maximal number of conjuncts is set to 5, while maximal
nesting depth is set, of course, to 1. We report the parameters used obtained through our grid search
through varying parameters, maximising best (see Eq. 16) (computed as macro average among the folds).

As an analytic per problem would require a lot of space, we report the results succinctly in Tables 5
and 6. Nevertheless, all parameters and results are reported in the downloadable package.

5.3 Succinct discussion

Consider the values in red in Tables 5 and 6 (the UCI ML data set). As we can see, concerning F1,
there seem to be no substantial difference among the best runs for Foil-DL and Fuzzy OWL-Boost.
Surprisingly, there is also no clear winner among uniform clustering (case u) and C-means (case c).
However, interestingly in most cases Fuzzy OWL-Boost learns a smaller ensemble (in terms of #r · l)
w.r.t. Foil-DL (12 wins vs. 4 wins), which roughly means that Fuzzy OWL-Boost learns in general
easier human interpretable rule sets than Foil-DL. Also note that in one case, Yeast - ERL, Foil-DL was
unable to learn a rule set while Fuzzy OWL-Boost was instead.

Interestingly, a similar analysis applies also to the red results in Table 7 with a notable exception
concerning the last four cases Lymphography - Suramin in which Fuzzy OWL-Boost learns striking
smaller ensembles than Foil-DL. We suspect that Foil-DL produces here larger sets as it removes
covered positives and then focuses on the remaining ones producing in this way specialised rules that cover
few positive examples only.

In summary, while there seems no clear winner among uniform clustering vs. C-means, and Fuzzy
OWL-Boost vs. Foil-DL in therms of F1, Fuzzy OWL-Boost seems to learn smaller and, thus,
easier human interpretable ensembles than Foil-DL, which is of utmost importance if the rules sets need
to be analysed by an expert of the field.

6 Conclusions & Future Work

In this work, we addressed the problem of automatically learning fuzzy concept inclusion axioms from
OWL 2 ontologies. That is, given a target class T of an OWL ontology, we address the problem of
inducing fuzzy EL(D) concept inclusion axioms that describe sufficient conditions for being an individual
instance of T . In particular, we have adapted the Real AdaBoost [86] boosting algorithm to the fuzzy
OWL case, by presenting the Fuzzy OWL-Boost algorithm. The main features of our algorithm are
essentially the fact that (i) it generates a set of fuzzy fuzzy EL(D) inclusion axioms, which are the weak
hypothesis, possibly including fuzzy concepts and fuzzy concrete domains; and (ii) all generated fuzzy
concept inclusion axioms can be directly encoded as Fuzzy OWL 2 axioms.
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We have also conducted an extensive evaluation, comparing it with Foil-DL. Our evaluation shows
that, while essentially there seems no clear winner among Fuzzy OWL-Boost vs. Foil-DL in therms of
effectiveness, Fuzzy OWL-Boost seems to learn, however, smaller and, thus, easier human interpretable
ensembles than Foil-DL, which is important if the rules sets need to be analysed by an expert of the field.

Concerning future work, besides investigating about other learning methods, we envisage various as-
pects worth to be investigated in more detail: (i) so far, we noticed nor relevant differences among uniform
clustering and C-means clustering algorithms used in building fuzzy datatypes. This is somewhat surpris-
ing and we would like to investigated that in more detail by considering various alternatives as well, as
proposed recently in a Fuzzy Sets and Systems special issue on fuzzy clustering [1]. Moreover, we would
like to cover more OWL datatypes than those considered here so far (numerical and boolean) such as
strings, dates, etc. possibly in combination with some sub-atomic classical machine learning methods (see,
e.g. [110]); (ii) another aspect we would like to address in more detail is about the human interpretability
of a rule set, i.e. to figure out learning algorithms that are more prone to build “easier” interpretable rule
sets than others and to understand the reason why this happens; (iii) last but not least, we would like to
investigate the computational aspect: so far, for some ontologies, a learning run may take even a week (on
the resource at our disposal). Here, we would like to investigate both parallesization methods as well as
to investigate about the impact, in terms of effectiveness, of efficient, logically sound, but not necessarily
complete, reasoning algorithms.

A References related to learning w.r.t. ontologies

Find below an extensive list of references related to learning w.r.t. ontologies (the grouping is tentative).

Refinement operators: EL-like [18, 59], general [60, 61, 62, 5].

Decision Trees/Random Forests: [39, 41, 98, 97, 99, 95, 106, 102, 104]

Kernel Methods: [8, 33, 35, 42]

FOIL-like: [34, 32, 45]

Boosting: [44]

Genetic Programming: [56]

Relational Learning: [94]

Naive Bayes: [77, 78, 81, 124]

Reinforcement Learning: [84]

Query Answering: [20, 22, 21, 24, 25, 26, 36, 38, 40, 82, 96, 103]

Clustering: [31, 37, 51, 50]

Regression: [43, 100]

Fuzzy: [53, 55, 72, 67, 68, 74, 75, 69, 70, 66, 114]

Others: [23, 27, 49, 52, 58, 63, 65, 64, 71, 79, 80, 93, 101, 105, 115, 116, 118, 120, 119, 117, 121]

Named Algorithms and Systems: AL-Log [65, 64], OCEL [60], YinYang [52], DL-FOIL [34], EL
tree learner [59], DL-Learner [57, 15, 16], CELOE [58], ParCEL [115], SPaCEL [117], DL-
FOCL [105], SoftFoil [73, 67], FuzzyDL-Learner [70], pFOIL [114], BelNet+ [124]
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