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Cost‑effective method 
for computational prediction 
of thermal conductivity in optical 
materials based on cubic oxides
A. Santonocito 1,2, B. Patrizi 2,3*, A. Pirri 4, M. Vannini 2 & G. Toci 2

In this paper we report on a computationally cost‑effective method designed to estimate the thermal 
conductivity of optical materials based on cubic oxide including mixed ones, i.e. solid solutions of 
different oxides. The proposed methodology take advantage from Density Functional Theory (DFT) 
calculations to extract essential structural parameters and elastic constants which represent the 
inputs for revised versions of Slack and Klemens equations relating thermal conductivity to elastic 
constants. Slack equation is modified by the introduction of a corrective factor that incorporates the 
Grüneisen parameter γ, while in the revised Klemens equation a distortion parameter d accounting 
for the impact of point defects on lattice symmetry is added, which is a critical factor in determining 
thermal conductivity in optical materials with mixed compositions. The theoretical results were found 
in good agreement with experimental data, showing the reliability of our proposed methodology.

Keywords Density functional theory, Slack equation, Klemens equation, Thermal conductivity, Thulium 
doped materials, Sesquioxide laser ceramics

The thermal conductivity of a solid-state system quantifies the heat flux through the propagation of vibrational 
energy from one atom to adjacent atoms in the lattice without the transport of matter. In essence, it measures a 
material ability to conduct heat. Thermal transport properties are important for different categories of materi-
als, including thermo-electrics, opto-electronics, photovoltaic and photo-electrochemical cells, batteries. The 
accurate knowledge of thermal properties is particularly crucial for the design of high-intensity laser systems, 
where an ideal gain material should exhibit high thermal conductivity to promote efficient heat removal and 
prevent thermal  stresses1. The incorporation of lasing dopants ions, such as  Yb3+1–7 or  Tm3+8,9, into a host mate-
rial (crystal or ceramics) leads to the formation of localized lattice defects, which can reduce the overall thermal 
conductivity of the material, eventually affecting its laser emission performance. The selection of a host material 
with a high intrinsic thermal conductivity is a critical consideration in the development of mixed laser ceramics, 
as it can mitigate the thermal degradation caused by the presence of these dopants. The material should possess 
sufficient thermal stability and conductivity even in the presence of high concentrations of dopant, so that it can 
maintain a high level of thermal conductivity during the demanding conditions of laser operation.

Of course, thermal properties of materials can be experimentally assessed by direct measurements, but this 
requires the availability of good quality and large samples and the execution of complex and time-consuming 
measurements. For this reason, the availability of accurate computational methods for the prediction of thermal 
properties is attracting attention as a convenient alternative to experimental properties screening, in particular 
when dealing with new, scarcely available and poorly characterized materials and compounds.

Currently, the prediction of thermal conductivity is based on three categories of methods: Anharmonic 
Lattice Dynamics (ALD) in combination with phonon transport calculation using the Boltzmann transport 
equation (BTE) and Fourier’s  law10; Equilibrium Molecular Dynamics (EMD) using the Green– Kubo  formula11 
and the direct evaluation of the heat flux by Non-Equilibrium Molecular Dynamics (NEMD)12,13. These current 
state-of-the-art methods are computationally expensive and time-consuming, limiting their practical applica-
bility especially for complex systems. This is due to the need to solve complex equations and perform multiple 
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simulations. Therefore, there is a pressing need for more efficient methods that can provide accurate predictions 
of thermal conductivity for complex systems in a cost-effective manner.

In this study, we propose a novel computational approach for estimating the thermal conductivity of optical 
materials based on cubic oxides, involving a series of steps including Density Functional Theory (DFT) calcula-
tions to obtain structural parameters and elastic constants. These calculations provide the key inputs for refined 
versions of the Slack and Klemens equations, which are then employed to enhance the accuracy of lattice thermal 
conductivity predictions. Slack equation is modified by introducing a corrective factor that incorporates the Grü-
neisen parameter γ. The Grüneisen parameter takes into account the bonds anharmonicity. On the other hand, 
Klemens equation is revised by introducing a geometrical factor that accounts for the effects of point defects on 
lattice symmetry, which is a key factor in determining thermal conductivity of materials. In order to validate 
our method we have chosen two families of optically active materials, namely Y and Sc mixed sesquioxides, 
(Y,Sc)2O3, doped with Tm, and Lu-doped Yttrium Aluminum Garnet (YAG). This interest stems from a broader 
research activity devoted to assessing the optical, spectroscopic and laser properties of candidate laser materials.

More in detail, we tested the following classes of compositions:

• 5 at.%  Tm3+-doped (Y,Sc)2O3 transparent ceramics with varying  Sc3+ concentrations (0; 12.1, 25.2 and 
49.8 at.%14.

• Lu-doped YAG crystals with varying  Lu3+ concentrations (0, 33.3, 50.0, 66.7, 100 at.%)15.

For sake of simplicity, the  Tm3+ doped mixed  Y2O3/Sc2O3 ceramics at 12.1 at.% 25.1 at.% and 49.8 at.% of 
 Sc2O3 will be named as  Sc12,  Sc25 and  Sc50, while the  Lu3+-doped mixed  Y3Al5O12/Lu3Al5O12 crystals at 33.3 at.%, 
50 at.%, 66,7 at.% of  Lu3Al5O12 will be renamed as  Lu33,  Lu50,  Lu67.

The structural parameters, elastic constants, and thermal conductivity values obtained for the analysed com-
pounds by the proposed model have been compared to experimental data, showing good agreement across 
all the cases. This confirms the accuracy and robustness of the proposed methodology for predicting thermal 
conductivity in mixed composition materials. This work addresses a significant gap in the current literature, as 
there is currently a lack of reliable and cost-effective methods for routine thermal conductivity prediction in 
cubic oxides, used as laser and luminescent materials.

Theoretical approach
Ab initio calculations of lattice structures
The structural calculations were performed using the plane wave periodic DFT implemented in  CASTEP16 
employing the PBEsol exchange–correlation  functional17 with Grimme D3 dispersion  correction18. The ultrasoft 
pseudopotentials from the internal QC5 library of CASTEP were used for the Y, Tm, Lu, Al, Sc, and O atoms, 
with a plane wave cut-off of 410 eV, a Self-Consistent Field convergence threshold equal to 10−8eV/atom , a 
k-point grid with a fine k-point separation of 0.04 Å−1 and a convergence criterion for the maximum force com-
ponent equal to 0.01 eV/Å. The Limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm (LBFGS)19, 
which scales linearly with respect to the system size, was employed to perform the geometric optimization. This 
optimizer utilizes a limited number of inverse Hessian updates to construct a new Hessian, a process which 
requires significantly less computational effort than the traditional BFGS algorithm, which scales quadratically 
with the system  size20.

Furthermore, Periodic Boundary Conditions (PBCs) were employed to account for the long-range periodicity 
inherent to crystalline solid materials.

We started our work from conventional unit cells belonging to the cubic space group Ia3 and containing 
16 cell formula units (Z = 16) for the study of all the systems of our interest. The optimization of the cell is per-
formed by searching for the Potential Energy Surface (PES) local minimum (closest to the starting structure) by 
varying all the parameters of the cell, i.e. unconstrained model, obtaining the optimized sides and angles of the 
cell, as well as the coordinates of all the atoms. The aforementioned computational methodology enabled the 
calculation of the cell dimensions, bond lengths, and inter-ionic distances, as well as the determination of local 
structural distortions of the studied systems. Furthermore, the Vegard’s law was employed to estimate unit cell 
 sides21 according to the following equation:

This empirical rule provides a description of the variation of lattice sides ( ai ) in a solid solution (i = C), which 
is composed of two components (A and B) with relative weights x and (1− x) , respectively. Although this kind 
of empirical rules may provide useful insights it is important to note that they are not rigorously predictive and 
should be utilized with caution. However, in the absence of experimental data, they may serve as a useful point 
of comparison with results from ab initio calculations.

Ab initio calculations of elastic constants
For the elastic constant calculations we used CASTEP software  packages16 performing calculations at DFT level 
with PBEsol functional. The linear response of the stress vector to a given strain vector is described as:

where σ and ε are the symmetric stress and strain tensors respectively, and C is the symmetric 6 × 6 matrix of 
elastic constants. In a cubic crystal, only three elements,  C11,  C12, and  C44, are independent. To obtain the matrix 
C , small deformations, δ (of the order of 1% for cell sides and 2% for cell angles), are applied to the simulation 

(1)aC = xaB + (1− x)aA

(2)σ = C · ε
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cell along the strain vectors, and the resulting stress vectors are calculated. The maximum force and stress are 
set to 0.001 eV/Å and 0.001 eV/Å3 respectively, by employing the LBFGS optimizer. From the  C11,  C12, and  C44 
elastic constants, several important material properties can be calculated using the Voigt–Reuss–Hill  scheme22,23. 
These properties include the Bulk modulus (B), the Voigt Shear modulus  (GV), the Reuss Shear modulus (GR), 
the Voigt–Reuss–Hill Shear modulus (G), Young modulus (E), and Poisson ratio (υ), which can be computed 
using the following Eqs. (3–8):

Using the B and G moduli, the following velocities can be calculated: longitudinal wave velocity ( vL),24,25 shear 
wave velocity ( vS),24,25 and sound velocity ( va).22,24–26 Furthermore, the Grüneisen parameter (γ)27, the Debye 
temperature ( θD)24,25 and acoustic Debye temperature ( θa)28 can be determined from well-established Eqs. (9–14):

where ρ is the density of the system, n  is the number of atoms in the unit cell, np is the number of atoms in the 
primitive cell, β is the volume thermal expansion coefficient,  Vm is the molar volume,  Cv is the molar heat capac-
ity, h is the Plank constant and k is the Boltzmann constant. All these quantities are expressed in International 
System units (SI).

Regarding the Grüneisen parameter γ (which takes into account of the average anharmonicity of the bonds), 
we preferred not to use the original Grüneisen formula (12), because the evaluation of Cv requires the com-
putational evaluation of the whole phonon spectrum, which is a computational intensive and demanding task. 
Rather we took advantage from the Leontiev’s approach, further elaborated by Belomestnykh, and Sanditov in 
 References29–31 that established a relationship between the average value of the Grüneisen parameter γ that char-
acterizes the degree of anharmonicity of interatomic forces and the velocities of sound in an isotropic, spatially 
unbounded elastic medium, i.e.:

(3)B =
C11 + 2C12

3

(4)GV =
C11 − C12 + 3C44

5
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Using this formula, γ can be derived from experimental data of sound velocity, which are much more readily 
available than phonon spectra. The relationship above was verified over a broad range of crystalline  solid29, and 
its validity was recently reviewed  in32. Besides, it was validated against a broad set of experimental  data29,31,32 so 
we deemed it can be reliably adopted as a proxy for the original Grüneisen formula (Eq. 12).

Models for thermal conductivity prediction
Pure crystalline solids
In a crystalline solid, thermal energy can be conveyed through the motion of both electrons and phonons, i.e. 
quasiparticles which describe lattice vibrations. In insulators and semiconductors, lacking free charge carri-
ers, thermal conduction is solely mediated by phonons. As it is well known, while a hypothetical, idealized 
crystal would possess an infinite lattice thermal conductivity, real solids are inevitably imperfect and subject to 
anharmonic oscillations. These factors have a direct impact on the lifespan and behavior of phonons, ultimately 
affecting the thermal conductivity of the material.

In literature we can find a multitude of approaches for calculating lattice thermal conductivity. One of the 
most popular analytical model of lattice thermal conductivity is the Slack  equation33:

where T is the temperature, A =
(

0.849 · 3 3
√
4
)

/(20π3) is an empirical parameter, Mav is the mass in kg of the 
unit formula divided by the number of constituent atoms and Vp

1
3 = δ · np

1
3  with δ3 the volume per atom in m3. 

The Slack equation is a theoretical model that describes the thermal conductivity of a material at various tem-
peratures. It assumes that three-phonon scattering is the dominant mechanism of heat transfer, meaning that 
the heat is transferred through the vibrations of the material atoms. This equation considers the average mass of 
the atoms in the material, the speed of sound in the material, and the Debye temperature, which is a measure of 
the thermal excitation of the material lattice vibrations. Although the Slack formula depends on the empirical 
parameter A (see Eq. 16), it was chosen as a reference for the calculation of the thermal conductivities of pure 
compounds because it is one of the most widely used approximations for the estimation of the thermal conduc-
tivity of non-metallic compounds. However, in this work we propose a functional form for A depending on γ, 
derived from the analysis of the thermal properties of a set of compounds based on cubic oxides reported in 
Table 1. In particular, the experimental values of the thermal conductivity  (kexp) of these compounds have been 
obtained from literature while γ values for each compounds have been calculated from the parameters B and G 

(16)kSlack(T) =
A

1− 0.514γ−1 + 0.228γ−2
·
(

2πkθa

h

)2

·
2πkMavVp

1
3

hγ 2
·
θa

T

Table 1.  Data used for the calculation of the corrective term of Slack equation in cubic oxides. The values of 
γ have been calculated by the bulk (B) and shear modulus (G)34. The thermal conductivities are expressed in 
Wm

−1
K
−1.

Compounds kexp kSlack γ kexp/kSlack

Y2O3 12.7235 3.520 1.815 3.614

Sc2O3 17.0036 5.478 1.733 3.103

Lu2O3 12.5037 3.285 1.653 3.806

In2O3 13.1038 1.970 1.948 6.649

Gd2O3 6.2039 2.137 1.864 2.901

Er2O3 6.5039 2.541 1.812 2.558

Tm2O3 9.6440 2.542 1.749 3.793

Y3Al5O12 12.9015 7.169 1.479 1.799

Lu3Al5O12 9.6015 6.006 1.484 1.598

Y3Fe5O12 7.4041 2.959 1.736 2.501

Ca3Al2Si3O12 7.2042 6.736 1.442 1.069

Yb3Al5O12 6.9042 6.416 1.452 1.076

Y3Ga5O12 9.0042 3.406 1.673 2.642

Gd3Ga5O12 9.0042 2.989 1.745 3.011

Mg3Al2Si3O12 5.5542 4.263 1.616 1.302

Gd3Al5O12 9.8042 4.037 1.703 2.427

Er3Al5O12 7.6042 3.670 1.601 2.071

Ho3Al5O12 9.3042 4.459 1.689 2.086

Ho3Ga5O12 6.5042 1.733 1.972 3.751

Er3Ga5O12 7.0042 1.701 1.974 4.116

Yb3Ga5O12 6.5042 0.956 2.118 6.801

CaO 27.0043 37.481 1.347 0.720

MgO 60.0043 75.057 1.244 0.799

NiO 50.0044 7.401 2.122 6.756
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reported in Material Project  Database34. As it is possible to see by inspecting Fig. 1 there is a correlation between 
 kexp/kSlack and γ for the cubic oxides dataset analysed. This correlation can be modeled as a power function of γ 
giving rise to a revised Slack equation.

The revised version of Slack equation has been applied to the dataset of the compounds reported in Table 1 
which reports the experimental  (kexp) and the Slack  (kSlack) thermal conductivities employed for the estimation 
of the corrective term A, as a function of γ calculated as reported in Eq. 16.

Thus, the modified Slack equation for cubic oxides becomes:

The 0.289003·γ 4.156157 correction considers the influence of phonon scattering processes due to anharmo-
nicity, characteristic of the specific material symmetry, which are not fully captured by the basic Slack model. 
This opens the possibility of using the Grüneisen’s parameter (which depend on crystal symmetry and chemical 
composition) to obtain specific multiplicative function for different symmetry classes of materials.

This approach is reasonable because this parameter describes how the i-th phonon frequencies (ωi) are affected 
by the cell volume (V), indeed:

Equation 18 shows that γ is influenced by the underlying crystal symmetry (i.e. the vibrational modes sym-
metry) and by the chemical composition. Eq. 17 has been applied to the compounds reported in Table 2 demon-
strating a substantial improvement in predictive accuracy with respect to the classic Slack equation. The revised 
Slack equation exhibits a markedly higher Pearson coefficient  (R2 = 0.944), a mean relative percentage error 
of 19.539%, a higher correlation coefficient (μ = 0.972) and a considerably lower Mean Squared Error (MSE 
= 9.987) with respect to the original Slack equation  (R2 = 0.620, μ = 0.788, MSE = 122.862, and mean relative 
percentage error of 56.348%). These results highlight the increased precision and accuracy achieved through 
the refined Slack equation.

Doped solids
The presence of dopant ions in optical materials, such as crystals and ceramics, leads to the creation of lattice 
defects, which can in turn affect the thermal conductivity of the material. For this reason, we developed a method 
to predict thermal conductivity in this kind of doped materials. The method is based on a revised version of 
Klemens formula.

As it is well known, the original version of Klemens  equation45–47 predicts the thermal conductivity of lattice 
having some point defects considering only the mass variation on phonon transport (see Eq. 19). The Klemens 
equation can be expressed as:

(17)krev.Slack(T) =
0.289003·γ 4.156157 ·

(

0.849 · 3 3
√
4
)

20π3 ·
(

1− 0.514γ−1 + 0.228γ−2
) ·

(

2πkθa

h

)2

·
2πkMavVp

1
3

hγ 2
·
θa

T

(18)γ = −
V

ωi

∂ωi

∂V

(19)kLK =
km · tan−1(u)

u

Figure 1.  Fitting (black line) of the ratio between the experimental and the Slack calculated thermal 
conductivities (red points) as a function of the Grüneisen parameters. The exact expression for the fitting curve 
is 0.289003 ·γ 4.156157

.
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where V0 is the volume per atom, Ŵ is the scattering parameter (see Eqs. 21–23) and km = (1− x) · k0 + x · k100 
is a corrective term in which x is the concentration of dopant atoms, k0 and k100 are thermal conductivities of 
solids with the compositions x = 0 and x = 1 respectively. At each composition, the parameters km , va , and V0 
undergo gradual adjustments through linear interpolation, using the properties of pure host A and B. Klemens 
firstly proposed the estimation of the scattering parameter Γ through the following Eq. 48:

where the scattering parameter Ŵ is essentially the average mass variance in the system, (Mi −M)2 , relative to 
the square of the average mass M2 . Another term which can consider the point defect system perturbation is 
the average change in atomic radius (ΔR) and the variation of the harmonic force constant (ΔK) mainly due 
to a change of the bond strengths with respect to the non-perturbed sites. Indeed, the introduction of dopant 
ions creates lattice point defects, which perturb the Hamiltonian of the system, inducing a rearrangement of the 
phonon probability density because of changes in the site mass (ΔM), harmonic force constants (ΔK), ionic radii 
(ΔR), and crystal symmetry, as depicted in Fig. 2 (left). These perturbations affect the potential energy of the 
material, enhancing phonon scattering due to a shortened mean free path, and ultimately decreasing the ther-
mal conductivity. ΔM, ΔK, and ΔR are responsible for specific contributions: ΔM changes the material density, 
ΔK changes the lattice stiffness and ΔR changes the distance between atoms, all together influence the phonon 
propagation and thermal conductivity.

The interplay between these factors creates a complex picture of the material thermal behavior.
The relationships between force constants and atomic volumes could be described by a phenomenological 

fitting parameter. These were initially proposed by  Abeles49 and then modified by Wan et al.50 based on the 
derivation of Klemens and Callaway:

where Ŵi considers the defects due to the atoms of the chemical specie i.
For a mixed compound containing several defect atoms the total scattering parameter is given by:

(20)u =

√

√

√

√

(

6 · π5 · V0
2
)
1
3 · Ŵ · km

2 · k · va

(21)Ŵ =
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i=1
ci

(

Mi −M

M

)2

(22)Ŵi = ci

{

(

Mi −M

M

)2

+
2

9
·
(

6.4 · γ ·
1+ υ

1− υ

)2

·
(

Ri − R

R

)2
}

Table 2.  Experimental  (kexp), original version  (kSlack), revised Slack  (krev.Slack) thermal conductivities expressed 
in Wm

−1
K
−1 and the relative percentage error Δ%.

Compounds kexp kSlack Δ% krev.Slack Δ%

Y2O3 12.7235 3.520 72.330 12.123 4.690

Sc2O3 17.0036 5.478 67.775 15.557 8.489

Lu2O3 12.5037 3.285 73.724 7.662 38.706

In2O3 13.1038 1.970 84.960 9.095 30.572

Gd2O3 6.2039 2.137 65.532 8.217 32.535

Er2O3 6.5039 2.541 60.905 8.679 33.529

Tm2O3 9.6440 2.542 73.634 7.506 22.137

Y3Al5O12 12.9015 7.169 44.424 10.551 18.212

Lu3Al5O12 9.6015 6.006 37.434 8.961 6.651

Y3Fe5O12 7.4041 2.959 60.015 8.461 14.340

Ca3Al2Si3O12 7.2042 6.736 6.439 8.905 23.682

Yb3Al5O12 6.9042 6.416 7.022 8.733 26.566

Y3Ga5O12 9.0042 3.406 62.154 8.349 7.238

Gd3Ga5O12 9.0042 2.989 66.786 8.744 2.842

Mg3Al2Si3O12 5.5542 4.263 23.191 9.049 63.040

Gd3Al5O12 9.8042 4.037 58.803 10.668 8.852

Er3Al5O12 7.6042 3.670 51.705 7.497 1.359

Ho3Al5O12 9.3042 4.459 52.051 11.374 22.301

Ho3Ga5O12 6.5042 1.733 73.342 8.419 29.516

Er3Ga5O12 7.0042 1.701 75.706 8.302 18.604

Yb3Ga5O12 6.5042 0.956 85.297 6.250 3.840

CaO 27.0043 37.481 38.820 37.370 38.407

MgO 60.0043 75.057 25.095 53.768 10.386

NiO 50.0044 7.401 85.199 48.772 2.455
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We insert a term in Ŵ , which considers the symmetry loss due to local distortions, see Fig. 2 (right), as the 
concentration of dopant cations increases and the cohesion of the material changes.

This corrective term is a power function of the parameter d:

where 
∣

∣

∣

−→
�Ri

∣

∣

∣
 with i = A or B is the average displacement of the atoms of the partially doped system C, in compari-

son to the undoped host lattice A or B respectively; σ is the average bond length, for the compound under 
consideration. The variables ai are the average side of the cell with i = A , B , C referring respectively to the pure 
compounds A , B and to the mixed compositions samples, C, with weight x for A and (1− x) for B , that is 
aC = xaA + (1-x)aB. The term aA+aB

2  is used as a normalization factor ensuring the consistency of the model and 
comparability across different materials.

Accordingly,  Ŵi can be written as:

All the corrective terms in the case of pure compound assume a null value. Equation 25 shows that the term 
d is integrated into Ŵi as part of a power function with coefficient a and exponent r . The parameters a and r are 
extrapolated from the fitting of the difference between the value of Ŵ deriving from experimental values and Ŵi 
obtained from original Klemens equation form. Taking advantage from the corrective parameter d , the proposed 
revised Klemens model considers the impact of point defects on lattice symmetry and the impact of the overall 
atoms displacement as depicted in Fig. 2.

The modified Klemens equation is thus given by:

Cost effective method for thermal conductivity prediction: overview 
and applications to mixed composition laser materials
This method provides a cost-effective approach for lattice thermal conductivity predictions in optical materials 
based on cubic oxides.

We start from the pre-relaxed pure compound structure from the Materials Project  database51 that is refined 
through the structural relaxation in the DFT framework with PBEsol functional and Grimme D3 dispersion 
correction, providing a high-accurate representation of the system. The elastic constants, which characterize the 
material mechanical properties, are calculated using the same ab initio approach, providing a comprehensive 
and internally consistent set of parameters. These elastic constants are then utilized to calculate the Grüneisen 
parameter, Debye acoustic temperature, and acoustic velocity, which collectively characterize the thermal proper-
ties of the material (according to Eqs. 9–15). To achieve a more accurate prediction of the thermal conductivities 
of cubic oxide optical materials, a modified Slack equation is employed, which incorporates the multiplicative 
corrective factor of γ, as reported in Eq. 16. Regarding the doped compounds, starting from the pure compound 
optimized geometry, a doped structure is generated, and DFT-PBEsol relaxation is employed to refine its atomic 
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Figure 2.  Left: Schematic representation of lattice perturbation due to the presence of point defects i.e. mass 
difference (ΔM = |M −m| ), constant harmonic force difference (ΔK), radius difference (ΔR); right: Schematic 
representation of the symmetry loss of the site.
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coordinates. The refined structure is then utilized to calculate the corrective geometric factor, which quantifies 
the influence of defects on the crystal lattice symmetry and material cohesion. In order to accurately model the 
effects due to the point defects on thermal conductivity, a modified Klemens equation is applied (see Eq. 26). This 
equation is utilized to accurately predict the impact of point defects on thermal conductivity by also considering 
the distortion parameter d, which is a quantitative measure of the deviations from the ideal lattice symmetry 
due to the presence of defects.

More precisely, the multiplicative factor a and the exponent r results from the best fit obtained by the mini-
mization of the MSE between the experimental and calculated thermal conductivity values of both mixed com-
positions garnets and sesquioxides series of samples. Figure 3 reports in a schematic way the calculation steps 
of our method.

In the following paragraphs we test our method on two classes of cubic oxides materials with different com-
positions. In the first case study we estimate thermal conductivity in binary garnet systems while in the second 
case we analyze a more complex series of ternary mixture of sesquioxides both employed as laser materials.

Prediction of thermal conductivity in Lu‑doped yttrium aluminum garnet
Calculation of the lattice parameters
We calculated structural parameters for the series YAG,  Lu33,  Lu50,  Lu67 and LuAG.

The crystal structures of YAG and LuAG are both cubic, exhibiting the Ia3 ̅d space group symmetry (see 
Fig. 4). The conventional unit cell contains 8 formula units, i.e., 160 atoms in total. There are 16 octahedrally 
coordinated  Al3+ cations (site symmetry  C3i), 24 tetrahedrally coordinated  Al3+ cations (site symmetry  S4), and 
24 dodecahedrally coordinated  Y3+ cations for YAG and 24 dodecahedrally coordinated  Lu3+ cations for LuAG 
(site symmetry  D2) and 96  O2− anions occupying general non symmetric positions.

The arrangement of the ions leads to a specific type of chemical bonding and a distinctive distribution of 
phonon frequencies, which have a significant impact on the thermal transport properties of these materials. As 
already mentioned, the addition of  Lu3+ dopants in YAG host introduces structural distortions and point defects 
(i.e. phonon scattering centers), leading to a decrease in the lattice thermal conductivity. The calculations of 
the unit cell sides are in good agreement with the experimental  data15 as reported in Table S1 (Supplementary 
Information). The substitution of  Y3+ with  Lu3+ ions in YAG structure disrupts the perfect symmetry of the  Y3+ 
ions coordination environment, leading to a modified crystal field symmetry. Also in this case, the structural 
variations are attributed to the difference in radius between  Lu3+ ions (85 pm) and  Y3+ ions (89 pm), leading to a 
contraction of the unit cell and the formation of point defects. There are two types of dodecahedral Y-O (Lu-O) 
bonds which are distinguished with subscripts 1 and 2 (see Table 3). Furthermore, the ions  Al3+ occupy both 
octahedral  (Al1) and tetrahedral  (Al2) sites.

Determination of elastic constants
We calculated the elastic constants of  Lu3+-doped mixed  Y3Al5O12/  Lu3Al5O12 crystals by using the same com-
putational framework.

For the prediction of thermal conductivity of  Y3Al5O12 and  Lu3Al5O12 pure crystals we calculated the mechani-
cal properties reported in Table 4.

The experimental room-temperature values of  Y3Al5O12 single-crystal elastic constants  (C11 = 334 GPa,  C12 = 
111.2 GPa, and  C44 = 115.1 GPa), bulk modulus (B = 185 GPa), shear modulus (G = 114 GPa), Young modulus 

Figure 3.  Schematic representation of the method proposed for the prediction of thermal conductivity in both 
pure and doped cubic oxides.
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(E = 283 GPa) and Poisson ratio (υ = 0.25) reported in ref.52 are in quite good agreement with our calculated 
data (see Table 5) for  Y3Al5O12. As regard  Lu3Al5O12 single-crystal, the reported data in Table 15 are in agree-
ment with data reported in Ref.53  (C11 = 342 GPa,  C12 = 112 GPa, and  C44 = 115 GPa; B = 189 GPa, G = 115 GPa, 
E = 287 GPa and υ = 0.247). Table 5 reports the calculated structural and phonon parameters of the materials 
under study. These parameters were used to calculate the thermal conductivities of pure compounds  (Y3Al5O12, 
 Lu3Al5O12) by modified Slack equation.

Thermal conductivities models
Through the revised Slack equation, we obtained thermal conductivities in quite alignment with experimental 
values as reported in Table 6.

To evaluate the effects of increasing  Lu3+ content in the samples  Lu33,  Lu50,  Lu67, we used for k0 the thermal 
conductivity of YAG and for k100 that of LuAG. For the calculation of the corrective term Ŵ (Eq. 24) we set ci as 
percent fraction of the i-th compound (i = LuAG or YAG), Mi as the molar mass of the i-th compound and Ri−R

R  

Figure 4.  Lattice structure of YAG . Yttrium sites with symmetry  D2 are colored in cyan while Aluminum sites 
with symmetries  C3i and  S4 in light blue, the oxygen atoms in red.

Table 3.  Bond distances (after geometry optimization) for the two types of dodecahedral Y–O (Lu-O) bonds 
which can be identified with subscripts 1 and 2.  Al3+ ions can occupy both octahedral  (Al1) and tetrahedral 
 (Al2) sites.

Bond length Lu1–O Lu2–O Y1–O Y2–O Al1–O Al2-O

YAG 0.000 0.000 2.302 2.407 1.928 1.781

Lu33 2.276 2.383 2.300 2.397 1.925 1.780

Lu50 2.277 2.380 2.299 2.391 1.924 1.779

Lu67 2.279 2.373 2.298 2.389 1.924 1.779

LuAG 2.280 2.370 0.000 0.000 1.923 1.778

Table 4.  Mechanical properties of  Y3Al5O12 and  Lu3Al5O12 pure crystals expressed in GPa.

Cij Y3Al5O12 Lu3Al5O12

C11 330 346

C12 117 112

C44 105 114

B 188 191

G 106 115

E 266 284

υ 0.26 0.25
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was replaced with Ri−Rmx
Rmx

 , where Ri is the average ionic radius in the i-th compound, and  Rmx is the average ionic 
radius in mixed ceramic under study. In Table 7, we report the calculated distortion paramaters dYAG and dLuAG 
(Eq. 24), the average bond length ( σ ) and the average cell side length ( a).

Table 8 reports the thermal conductivity values calculated with Klemens Eq. (19) and modified Klemens 
Eq. (26) compared with experimental data. In Eq. 26 we set a = −0.00505 and r = −0.11348 . We indicate 
with Mod.kLK(d) the revised Klemens equation with YAG and LuAG experimental thermal conductivities and 
rev.kLK(d) the revised Klemens equation with YAG and LuAG thermal conductivities calculated by revised Slack 
equation.

It can be seen from the data of Table 8 and Fig. 5 that Mod.kLK equation provides a more accurate evaluation 
of the thermal conductivity than the original Klemens model. Regarding the method rev.kLK , its accuracy is 
apparently lower, but we have to take into account that in this case both the original Klemens model and Mod.kLK 
are seeded with the experimental data of thermal conductivity of YAG and LuAG, while in rev.kLK relies on 
thermal conductivity values calculated from the elastic constants. We want to point out that, while the evalu-
ation provided by rev.kLK cannot compete in accuracy with the other two, this evaluation scheme can be used 
even when the thermal conductivity data of the pure compounds are not know, as long as the elastic constants 
and lattice parameters are available.

The statistical analysis of the data reported in Table 8 highlights the performance of each model. In particular 
we obtained a Percentage Relative Error of 6.606% for the original Klemens equation, 1.196% for Mod.kLK and 
9.940% for rev.kLK . This data shows a significant accuracy increase of our Mod.kLK . For the rev.kLK it must be 
taken into account that this model is affected by the errors of both revised Klemens and revised Slack equations.

Table 5.  Structural and phonon parameters of the materials under study. The density, ρ is expressed in (kg/
m3), vL , vS and va are expressed in (m/s), θD and θa are expressed in K and γ is dimensionless.

Ceramics ρ vL vS va θD θa γ

Y3Al5O12 4576 8477 4804 5341 720.129 167.127 1.567

Lu3Al5O12 6719 7151 4141 4596 624.32 144.89 1.490

Table 6.  Experimental and calculated thermal conductivities  (Wm−1K−1) for  Y3Al5O12 and  Lu3Al5O12.

Compounds Exp. data Revised slack

Y3Al5O12 12.90015 10.623

Lu3Al5O12 9.60015 8.924

Table 7.  dYAG and dLuAG are the distortions parameters calculated with respect to YAG and LuAG. a is the unit 
cell side average value, σ is the mean bond length. All the reported quantities are reported in Å.

Compound dYAG dLuAG a σ

YAG 0 0.110 11.989 2.105

Lu33 0.043 0.071 11.958 2.098

Lu50 0.061 0.060 11.945 2.094

Lu67 0.075 0.043 11.930 2.091

LuAG 0,110 0 11.898 2.088

Table 8.  Experimental and calculated thermal conductivities (expressed in  Wm−1  K−1).

Compound kLK Mod.kLK(d) Rev.kLK(d) Experimental

YAG 12.900 12.900 10.623 12.90015

Lu33 7.223 7.724 6.858 7.80015

Lu50 6.985 7.449 6.707 7.50015

Lu67 7.178 7.747 7.055 7.60015

LuAG 9.600 9.600 8.924 9.60015
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Prediction of thermal conductivity in 5 at.%  Tm3+‑doped (Y,Sc)2O3 transparent ceramics
Calculation of the lattice parameters
To assess the accuracy of the PBEsol functional with Grimme D3 dispersion correction, we compared the mod-
eled structural parameters of the pure  Y2O3 crystal to the experimental data reported  in54. This data served as an 
established benchmark against which the predictive power of the functional could be evaluated.  Y2O3 exhibits a 
body-centered cubic lattice structure (see Fig. 6) with the space group Ia3 and  Y3+ sites with symmetry  C3i  (Y1) 
and  C2  (Y2), and  O2- ions without symmetry (O).

The PBEsol functional with Grimme D3 dispersion correction produced a cubic unit cell with a lattice side of 
10.61 Å, which is in agreement with experimental  data54. In particular, the mean bond lengths of the three dif-
ferent  Y1-O bonds in the  C3i sites were determined to be 2.33 Å, 2.27 Å, and 2.24 Å, while the mean bond length 
of the  Y2-O bonds in the  C2 sites was 2.28 Å. These results suggest that the PBEsol functional with Grimme D3 
dispersion correction is a reliable tool for accurately modelling the structural properties of  Y2O3 crystals and 
other related materials.

In a preliminary investigation, we performed DFT calculations with PBEsol functional on 5at.%Tm:Y2O3. 
The  Tm3+ cations replace  Y3+ at both  C2  (Y2) and  C3i  (Y1) sites. We observed very small perturbations in lattice 
cell parameters (< 0.1%), bonds lengths and inter-cationic distances (<1%). This result was not unexpected as 
 Tm3+ cations have an ionic radius (85.8 pm) very similar to the ionic radius of  Y3+ (89.3 pm).

To reduce computational time while maintaining structural accuracy, we utilized a structural relaxation 
technique wherein the unit cell angles were fixed at 90°. This approach assumes that deviations from a perfect 

Figure 5.  Experimental (black) and calculated (blue, red and green) values of thermal conductivity for the 
entire set of samples.

Figure 6.  Lattice structure of  Y2O3. Yttrium sites with symmetry  C3i and  C2 are colored in dark green. The 
symmetry of the sites is reported in round brackets.
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cubic lattice are negligible, thus allowing for an efficient optimization of the atomic positions within the crystal 
structure. This assumption is supported by the experimental data reported  in55.

The lattice vector values obtained from the structural relaxation of 5at.%Tm:Y2O3 are shown in Table 9.
In Table 10 the  X1-O  experimental54 and calculated average values of bond lengths are reported.  X1 is referred 

to  Y3+ in  Y1 site for experimental  data54 and to  Tm3+ which replaced  Y3+ in  Y1 site for PBEsol calculated data.
Looking at Table 10 a slight contraction of two bond lengths can be observed when  Tm3+ replaced  Y3+ in the 

 Y1 site. However, the bond lengths variations are smaller than 1% and this is principally due to the similar ionic 
radius between  Y3+ and  Tm3+. PBEsol functional have been used also to study the structural variations when 
an increasing concentration of  Sc3+ is added to the 5 at.%Tm:Y2O3 sample. When  Y3+ is substituted with  Sc3+ a 
notable contraction of both the cell parameters and of the bond lengths (inter-cationic distances) is observed. 
This is mainly due to the differences in ion radius between  Y3+ and  Sc3+ as the ionic radius of  Sc3+ (i.e. 74.5 pm) 
is 19% smaller than  Y3+ (i.e. 89.3 pm). Due to the complexity of these ternary mixture sesquioxides, in this case, 
we performed a more accurate structural analysis of DFT output going to deeply inspect local symmetry losses 
through the Pair Distribution Function (PDF) and X-Ray Diffraction (XRD) simulations (see Fig. S1, Fig. S2 
and Fig. S3 in Supplementary Information). The reported data refer to 5at.%Tm:Y2O3

55,  Sc12,  Sc25 and  Sc50. The 
calculations are carried out with 50%  Sc3+ sample (and not with 49.8%  Sc3+ as in the experiment) only for practi-
cal convenience in the cell construction.

The increasing concentration of  Sc3+ results in a contraction of the lattice vectors and, in turn, of the volume 
(see Table 11). The trends obtained by DFT calculations were compared with Vegard’s  law21. The lattice side of 
5at.%Tm:Y2O3 is a5at.%Tm:Y2O3 =10.60 Å while the lattice side of  Sc2O3 is a Sc2O3 = 9.79 Å56. By using the Vegard’s 
law, we have:

The agreement between the lattice values calculated with Vegard’s law, the ones calculated at DFT theory level 
and experimental values is very good, see Table 12.

aSc12 = 0.12aSc2O3+ (1− 0.12) · a5at.%Tm:Y2O3 = 10.51 Å

aSc25 = 0.25 · aSc2O3+ (1− 0.25) · a5at.%Tm:Y2O3 = 10.41 Å

aSc50 = 0.50 · aSc2O3+ (1− 0.50) · a5at.%Tm:Y2O3 = 10.20 Å

Table 9.  Sides (a, b, c) angles (α, β, γ) and volume (V) of the 5 at.%Tm:Y2O3 unit cell compared with 
experimental structural  parameters55. All sides of the cell are given in Å, the volume in Å3 and the angles in 
degrees. We also report the percentage relative deviation (Δ%) of the calculated data from the experimental 
values.

Unit cell a = b = c α = β = γ V

exp55 10.5989 90° 1190.6

PBEsol 10.5960 90° 1189.7

Δ% 0.0270% 0% 0.08%

Table 10.  Bond lengths  X1-O,  X2-O, angle {X1OY2} and percentage of the relative deviation (Δ%) of the 
calculated data from the experimental values. More precisely,  X1-O refers to 3 different types of bond lengths 
within the  C2 site. All bond lengths are given in Å and the angles in degrees.

Bond length X1–O X1–O X1-O {X1OY2}

exp54,  Y2O3 2.33326 2.27212 2.24472 124.16

PBEsol—Tm:Y2O3 2.32927 2.27731 2.23223 124.49

Δ% 0.17101% 0.66854% 0.55642% 0.02%

Table 11.  Sides (a, b, c), angles (α, β, γ) and volume (V) of the reference unit  cell55 compared with calculated 
unit cell parameters of  Sc12,  Sc25 and  Sc50 samples.

Cell a b c α β γ V

exp55 10.5989 10.5989 10.5989 90.0° 90.0° 90.0° 1190.6

Sc12 10.5151 10.5242 10.5199 89.8° 90.2° 89.9° 1164.1

Sc25 10.4227 10.4249 10.4293 89.7° 90.2° 90.1° 1133.2

Sc50 10.2225 10.2238 10.2222 90.1° 90.1 89.9° 1074.6
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The increase of the concentration of  Sc3+ increase the entropy of the system due to the formation of new Sc-O 
bonds, which add new configurations to the system and increase the number of possible arrangements of the 
atoms (see Fig. S1); in other words, the number of complexions rises. Accordingly, the partial loss of symmetry 
of the  C3i and  C2 sites in Sc-doped 5at.%Tm:Y2O3 can be attributed to the atomic-scale distortions caused by the 
 Sc3+ ions. The substitution of  Y3+ with  Sc3+ introduces local perturbations in the crystal lattice structure, which 
lead to a decrease in the crystal field symmetry around these sites, resulting in a lower degree of the symmetry 
coordination with the surrounding oxygen atoms. Three types of bond lengths in the doped crystal are possible, 
see Table 13.

It is clearly observed a local change of the structure with increasing  Sc3+ concentration through the X-ray 
atomic PDF; the latter is an X-ray scattering technique which can be used to study the local structure of materials 
on an atomic scale. It is based on the concept of radial distribution function, which measures the probability of 
finding an atom at a certain distance from another atom. By analyzing the PDF output, it is possible to extract 
information on the average interatomic distances, bond lengths, bond angles, coordination numbers, as well 
as local symmetry of the material. We simulated PDF with  EXPO57, using as input the optimized structures of 
5at.%Tm:Y2O3,  Sc12,  Sc25 and  Sc50 because PDF is a powerful tool for probing the structural properties of crys-
talline and amorphous materials. In our calculation PDF is used to describe the distribution of ion pairs (Y1-O, 
Y2-O, X-O, Sc-O) within the volume occupied by the system.

We show how the system partially loses the recognition of the  C3i and  C2 sites by increasing the concentration 
of  Sc3+ leading to an intensification of the formation probability of the Sc-O bond with length in the interval 
2.126–2.153 Å (see Fig. S1).

Accordingly, the calculated XRD patterns of the samples  Y2O3 and  Sc50 show the shift of the most intense 
peaks and the appearance of new ones (see Fig. S2).

The comparison between the  experimental58 and calculated spectra of the  Sc50 sample (see Fig. S3) confirms 
the good reliability of the structural data calculated with PBEsol which returns an accurate picture of the local 
disorder introduced by the  Sc3+ cations as well as the effect of contraction of the cell parameters.

Determination of elastic constants
By using the same computational  framework16 we calculated the elastic constants of  Tm3+ doped  Y2O3,  Tm3+ 
doped  Sc2O3 and  Tm3+ doped, mixed  Y2O3 and  Sc2O3.

The experimental room-temperature values of single-crystal  (Y2O3) elastic constants  (C11 = 223.6 GPa,  C12 = 
112.4 GPa, and  C44 = 74.6 GPa), bulk modulus (B = 149.5 GPa), shear modulus (G = 66.3 GPa), Young modulus 
(E = 173.0 GPa) and Poisson ratio (υ = 0.307) reported in Ref.59 are in good agreement with our calculated data 
(see Table 14) for 5at.%Tm:Y2O3; moreover, they are also comparable with data reported in Ref.60 (B = 153.8, G 
= 62.4, E = 165.0 and υ = 0.320). Table 15 summarizes the calculated structural and phonon parameters of the 
materials under study. It is worth to note these parameters will be used to calculate the thermal conductivities 
of pure compounds  (Y2O3,  Sc2O3) by modified Slack equation.

Thermal conductivities models
The results of the thermal conductivities of pure Yttria and Scandia calculated by using the modified Slack 
equation (see Eq. 16) shows a good agreement with the experimental  data36,61. In Table 16 the experimental and 
calculated thermal conductivities of the pure samples are reported.

Hereon, k0 and k100 will label the thermal conductivities of  Y2O3 and  Sc2O3 as reported in Table 16. The ther-
mal conductivity characteristics of 5at.%  Tm3+-doped (Y,Sc)2O3 transparent ceramics present a more intricate 
scenario compared to those of Lu-doped Yttrium Aluminum Garnet. As a matter of fact, in  Sc12,  Sc25 and  Sc50 

Table 12.  Side a values calculated with Vegard’s law and the mean values of the lattice side calculated with 
PBEsol functional both compared with experimental data. All values are expressed in Å.

System Vegard’s law PBEsol exp

a5at.%Tm:Y2O3 10.60 10.60 10.60

aSc12 10.51 10.52 10.50

aSc25 10.41 10.43 10.40

aSc50 10.20 10.22 10.22

Table 13.  Average bond lengths Sc–O, X–O and Y–O (X can be  Y3+ or  Sc3+). These data are extracted from 
PBEsol calculations and are expressed in Å.

Bond lengths Sc–O X–O Y–O

Sc12 2.153 2.252 2.335

Sc25 2.130 2.251 2.330

Sc50 2.126 2.223 2.305
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three compounds are involved, contrasting with the simpler binary systems in Lu-doped Yttrium Aluminum 
Garnet. We utilize a value of a = 0.027855 and r = -0.11352. For the calculation of the corrective term Ŵ (see Eq. 25) 
ci was set as percent fraction of dopant, Mi as the molar mass of the dopant and  Ri−R

R  was replaced with Ri−Rmx
Rmx

 , 
where Ri is the average radius of the ions in the host, Rmx is the average radius of the ions in the mixed ceramic 
under study. In Table 17, the distortion parameters dY2O3 , dSc2O3 and dTm2O3 (calculated according to Eq. 24), 
the average bond length ( σ ) and the average cell side length ( a ) are listed.

Table 18 reports the thermal conductivity values calculated by Klemens equation (see Eq. 19) and modified 
Klemens equation (see Eq. 26) compared with experimental data. With d in round parenthesis, we identify the 
revised Klemens results. To calculate the Eq. 26 a = 0.027858 and r = −0.113485 were set.

Mod.kLK(d) refers to revised Klemens equation with  Y2O3 and  Sc2O3 experimental thermal conductivities 
and rev.kLK(d) refers to revised Klemens equation with  Y2O3 and  Sc2O3 thermal conductivities calculated by 
revised Slack equation.

Table 14.  Mechanical properties of 5 at.%  Tm3+-doped  Y2O3,  Sc2O3,  Sc12,  Sc25,  Sc50 (see section Ab initio 
calculations of elastic constants), expressed in GPa, with the exception of υ, which is a dimensionless number.

Cij

5 at.%
Tm:Y2O3 Sc12 Sc25 Sc50

5 at.%
Tm:Sc2O3

C11 221.58 224.12 228.96 240.84 277.30

C12 114.32 115.14 116.28 119.14 125.88

C44 72.21 71.99 72.57 75.32 88.52

B 150.07 151.47 153.84 159.71 176.35

G 64.10 64.39 65.57 69.15 83.15

E 167.33 169.l9 171.49 181.30 215.57

υ 0.313 0.314 0.315 0.311 0.296

Table 15.  Structural and phonon parameters of the materials under study. ρ is expressed in (kg/m3+), vL , vS 
and va are expressed in (m/s), θD and θa are expressed in K and γ is dimensionless.

Ceramics ρ vL vS va θD θa γ

Y2O3 5021 6849 3573 3998 483.28 141.31 1.815

5at.%Tm:Y2O3 5245 6701 3523 3942 473.24 138.38 1.825

Sc12 5144 6793 3538 3959 482.79 141.32 1.832

Sc25 5016 6933 3606 4035 497.10 145.35 1.837

Sc50 4746 7286 3817 4270 535.41 156.56 1.842

Sc2O3 3819 8672 4666 5210 677.60 198.13 1.750

Table 16.  Experimental and calculated thermal conductivities (expressed in  Wm−1  K−1) for  Y2O3 and  Sc2O3.

Compounds Exp. data Revised slack

Y2O3 12.72035 12.084

Sc2O3 17.00036 16.822

Table 17.  Structural parameters:dY2O3 , dSc2O3 and dTm2O3 are the distortion parameters with respect to 
undoped hosts  (Y2O3 and  Sc2O3); a is the unit cell side average value and σ is the mean bond lengths. All the 
values are reported in Å.

Compound dY2O3 dSc2O3 dTm2O3 a σ

Y2O3 0.000 0.610 0.019 10.6056 2.274

5at.%Tm:Y2O3 0.005 0.592 0.008 10.5960 2.263

Sc12 0.126 0.542 0.089 10.5197 2.247

Sc25 0.206 0.468 0.145 10.4256 2.237

Sc50 0.349 0.328 0.259 10.2428 2.218

Sc2O3 0.613 0.000 0.524 9.8630 2.126
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Figure 7 report the comparison between experimental and calculated values of thermal conductivity obtained 
for 5 at.%  Tm3+ doped mixed  Y2O3/Sc2O3 ceramics.

The modified Klemens and original Klemens models show trends in good agreement with the experimental 
 data61. Anyway both the proposed Mod.Klemens and rev.Klemens method show the best agreement with respect 
to the experimental trend. In our vision, the introduction of the parameter d in the model allows a more accurate 
description of these mixed composition compounds because it takes into account the lattice deformation due 
to the point defects. This is further confirmed by the statistical analysis of the data reported in Table 18. The 
estimation of the Percentage Relative for the original Klemens equation is 16.793% which is significantly higher 
with respect to Mod.kLK (0.687%) and rev.kLK (2.562%). We can confirm that our implemented method allows 
a more accurate prediction of thermal conductivity in this class of materials in comparison with the respective 
classical models.

Conclusions
This study introduces a computational framework designed to estimate the thermal conductivity of optical mate-
rials, specifically targeting cubic oxides. Our methodology encompasses a series of comprehensive steps utilizing 
DFT calculations to extract essential structural parameters and elastic constants. These parameters constitute 
key inputs for refined the Slack and Klemens equations, enhancing the precision of lattice thermal conductivity 
predictions in these materials. Moreover, the above mentioned parameters can be also obtained from free on 
line materials database further shortening the time and the costs of the information achievement. Our approach 
involves the modification of the Slack equation by introducing a corrective factor of the Grüneisen parameter, i.e. 
~ 0.3·γ4. Also, Klemens equation has been revised by the introduction of a distortion parameter, d, accounting for 
the impact of point defects on lattice symmetry, a critical factor significantly influencing the thermal conductivity.

The analysis of the outputs of our revised method in comparison with those of the classical Slack and Klemens 
equations gives rise to a substantial improvement in the accuracy of thermal conductivity prediction for the class 
of compound analyzed in this work.

Our model is intended to provide a good estimation of thermal conductivity of poorly characterized materials 
starting from experimental data that are more readily available than thermal conductivity itself, such as lattice 
parameters and mechanical properties. Thermal properties of the analysed class of materials are particularly 
important for optical applications and specifically for candidate laser hosts. Further investigations addressed 
on testing the proposed model also on materials belonging to different space group symmetry are in progress.

Table 18.  Experimental and calculated values of thermal conductivity (expressed in  Wm−1  K−1).

Compounds kLK Mod.kLK(d) rev.kLK(d) Experimental

Y2O3 12.72035 12.72035 12.084 12.72035

5at.%Tm:Y2O3 8.470 5.964 5.77 5.94761

Sc12 5.731 5.087 4.955 5.17961

Sc25 4.925 4.562 4.465 4.53161

Sc50 4.532 4.300 4.236 4.30058

Sc2O3 17.00036 17.00036 16.822 17.00036

Figure 7.  Experimental (black) and calculated (red, blue and green) values of thermal conductivity for the 
entire set of samples based on 5%  Tm3+ doped mixed  Y2O3/Sc2O3 ceramics.
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Code availability
We implemented a repository on GitHub containing the worksheets used for the calculations reported in the 
paper (https:// github. com/ Babby Matis se/ Therm al- Condu ctivi ty-).
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