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Abstract

The widespread availability of smartphones have enabled the blossom of Mobile

Crowd Sensing (MCS) projects, whose goal is to involve users in participatory

tasks aimed at building large real-world datasets. In this framework, we present

the large-scale experience of the ParticipAct Living Lab, an ongoing experi-

ment at the University of Bologna, which involves about 170 students in MCS

campaigns. Specifically, we originally present the analysis of the large set of

ParticipAct collected results against some primary datasets in the literature;

we present the evaluation and assessment of the original participatory sensing

campaign management aspects of ParticipAct; and we report the lessons learned

from this wide-scale deployment experience.
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1. Introduction

The large availability of mobile devices with sensing capabilities, combined

with the pervasive availability of communication infrastructures, gave rise, in

recent years, to a number of platforms for Mobile Crowd Sensing (MCS). MCS is

commonly referred to as a paradigm for distributed gathering of heterogeneous5

sensing data from pocket devices used by the crowds. Different recent projects

produced various significant datasets by using MCS platforms [1, 2, 3, 4, 5,

6, 7, 8], obtained in different geographical areas, with different objectives and

based on different sensing technologies. Among these, it is worth mentioning

in particular the Cambridge [1] and the MIT reality [2] campaigns (conducted10

in 2005/06), the Mobile Data Challenge Nokia (MDC Nokia) [4, 5] campaign

conducted with more powerful smartphones in 2009 and, more recently, the

ParticipAct one [3] that is currently running since 2013.

These datasets are highly valued for the research community, as they provide

a way to test, assess, and compare differentiated solutions for diverse applica-15

tion scenarios ranging from MCS [9, 10] to mobile social computing [6, 11] and

opportunistic networking [12], based not only on real-world traces of human

mobility but also on evidences of their activities and social behaviors. In partic-

ular, we choose datasets that provide information about the user mobility (either

in the form of co-location traces or GPS coordinates) and datasets providing20

information about the data gathered by user’s devices.

However, most research effort so far has been devoted to dataset production

(including the efficient design of MCS platforms and the optimized conduction

of data collection campaigns), while a relatively minor effort has been devoted

to the assessment of the datasets themselves. Specifically, existing datasets ad-25

dress different scenarios in terms of time span of the experimentation, extension

of the area of data collection, classes of involved users, capabilities of the hard-

ware/software devices and sensing platforms in use, etc. They involve a variable

number of users recruited with different modalities and with different ultimate

goals for the different sensing campaigns. The objective of this work is to exploit30
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the availability of the novel ParticipAct dataset, to make an original further step

towards the assessment and quantitative comparison of primary datasets in the

literature and of interest for the ParticipAct experience.

In particular, the contribution of this work is twofold. We first present a

novel comparative analysis of the Cambridge, MIT Reality, MDC Nokia, and35

ParticipAct datasets with respect to some mobility metrics given along with the

temporal dimension whose goal is to assess the capability of the datasets to re-

flect the human dynamics in real-world MCS scenarios. Second, we focus on the

ParticipAct dataset to assess its performance as crowdsensing platform along

three dimensions: user assignment policies, task acceptance (i.e., how sensing40

tasks are actually accepted and taken into consideration by assigned users), and

task completion rate. Note that our intention is not to rank datasets, rather,

it is to report lessons learned from the ParticipAct experience and from its

comparison against some popular and widely accepted datasets in the related

literature. We believe that this effort could be valuable for the community of re-45

searches and practitioners on the filed, by providing them with useful guidelines

for the planning and implementation of future participatory sensing campaigns,

also not ParticipAct-based.

The reminder of the paper is structured as follows. In Section 2 we provide

a quick overview of the ParticipAct platform, in Section 3 we compare the most50

relevant MCS datasets available in the literature, in Section 4 we present a deep

analysis of the ParticipAct dataset, Section 5 presents an overall discussions of

the datasets analyzed and Section 6 concludes the paper.

2. ParticipAct at a glance

Here, for the sake of self-containment and full understandability of the re-55

mainder of the paper, we provide a very rapid overview of a few central elements

of the ParticipAct MCS platform; interested readers could refer to [3] for addi-

tional details about the efficient design and implementation of ParticipAct.

MCS platforms typically adopt a client-server architecture including a client,
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Figure 1: ParticipAct architecture.

running on user devices to manage tasks and to run all required sensing activities60

interacting with participants via their smartphones, and a server to store and

present collected results [9].

The ParticipAct client (see Figure 1) is the component that takes care of

receiving tasks, asking users whether they want to run them, managing data

collection, and uploading results. Functionally, the ParticipAct client consists65

of two main components: the task management component and the sensing

management component. These components are responsible for both interact-

ing with users and accessing smartphone sensors. In particular, the task man-

agement component takes care of overseeing the whole MCS task life-cycle on

smartphone, from managing tasks to provide users with an interface to control70

task execution, including the possibility to stop any sensing activity to preserve

user privacy, to the final upload of sensed data. Through the sensing man-

agement component, instead, it is possible to efficiently access all the sensors

available on smartphones and collecting/processing their output.

The ParticipAct server provides advanced management, storage, and analy-75

sis features for data gathered during a crowdsensing campaign. At the highest
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level, it comprises two main parts (see Figure 1): the back-end and the crowd-

sensing manager. The back-end takes care of receiving, storing, and processing

sensed data, while the crowdsensing manager provides the administration inter-

face to design, assign, and deploy sensing tasks. In a more detailed view, the80

back-end realizes the needed communication functions to exchange tasks and re-

ceive results, and manages the whole data life-cycle. The crowdsensing manager,

instead, is the administrator-facing part of ParticipAct that exploits back-end

exported functions to provide easy-to-use and highly configurable administra-

tion features. The Web administration interface allows full administration of85

the whole crowdsensing, including management of user profiles, task design and

the definition of their assignment strategies, and data review.

Focusing on the MCS model, ParticipAct supports two main types of sensing

tasks. Passive sensing tasks enable automatic collection of smartphone gener-

ated data without user intervention, such as accelerometer, WiFi scans, and90

ambient noise level. Active sensing tasks, instead, contemplate active user con-

tribution, such as taking a photo, answering a survey, and tagging a place. In

addition, recognizing the importance to link MCS activities to physical places,

ParticipAct enables a highly flexible model that allows defining where the task

will be notified and executed. Geonotification associates tasks to one or more95

geographical areas and automatically notifies them to users as they enter those

areas. Geoexecution, instead, associates tasks to one or more geographical areas

and enables task execution, e.g., data collection, only when users are located

therein.

Additional details about client and server side components of ParticipAct,100

out of the scope of the present paper, are available in [3, 10].

3. Analysis of Mobility Metrics

To validate the ParticipAct dataset, we assess it against a number of metrics

widely used for mobility studies and a selected set of datasets available in the

literature, which are representative of different mobility scenarios [13, 14, 15].105
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Specifically, we consider Cambridge [1], MIT Reality [2] and Mobile Data Chal-

lenge Nokia (MDC Nokia) [4, 5], which are widely used to test social interactions

in mobile applications. In particular, MDC Nokia refers to scenarios very sim-

ilar to those targeted by ParticipAct: it is collected in urban/rural areas over

almost one year, involves a large number of heterogeneous users, and deals with110

crowdsensing tasks and their assignment. Cambridge and MIT Reality instead,

represent quite different scenarios and examples of measurement campaigns:

they are bound in space (limited to university campus) and involve a homoge-

neous set of users (students with similar profiles). Cambridge is also limited in

time (around two weeks), while MIT reality spans for about 8 months.115

As already stated, the original goal of this paper is twofold: i) to characterize

the new ParticipAct dataset by comparing it with the other three datasets

considered, and ii) to draw some general inferences about the usability and

level of realism of those datasets, e.g. to the purpose of their usage as traces for

evaluating research solutions for MCS.120

3.1. Experimental Datasets

Here we briefly summarize the main features of the selected datasets, by

highlighting some aspects related to the co-location of users and to their sensing

capabilities, which are specifically relevant for MCS evaluation and assessment

of MCS task assignment strategies.125

The Cambridge dataset reproduces the mobility of 36 students in the Cam-

bridge University Campus (UK) for 12 days. Each participant carried an Intel

iMote device with a Bluetooth transceiver (with a transmission range of about

30m). Each device performed a sampling scan on the Bluetooth radio with a

periodicity of 120s. The only information provided by this (limited) dataset130

are traces of co-location among users. Note that the dataset also includes some

stationary devices that are not relevant to the purpose of the MCS-oriented

analysis and comparison.

The MIT Reality dataset reproduces the mobility of 94 students in the MIT

University Campus (USA) for 246 days, in the period September 2004–January135
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2005. The participants used a smartphone application that tracked co-location

with other users (by means of the Bluetooth radio) and other data (such as

sent/received SMS, phone calls, and personal data), but no sensor data. The

sampling scan period on the Bluetooth radio is quite coarse-grained, i.e. 300s.

The MDC Nokia dataset, collected from 2009 to 2011, involved 185 users140

in the Lake Geneva region (CH). The users carried a Nokia N95 phone, with

an application that periodically collected several data, such as GPS, Bluetooth

sightings, visited places, SMS and phone calls, and other sensor data. The

sampling period for all the collected data (included GPS and Bluetooth traces)

was 600s.145

We extract the co-location traces from MDC Nokia both from the Bluetooth

sightings and from the GPS coordinates (referred below as MDC Nokia BT and

MDC Nokia GPS). In Section 3.2.1 we discuss how the use of GPS or Bluetooth

affects the considered evaluation metrics.

The ParticipAct dataset reproduces the mobility of 173 students in the150

Emilia Romagna region (Italy). The data collection campaign, which is still

running, began in December 2013. In this work, we consider a period of 15

months, from December 2013 to February 2015. The participants use Android

smartphones with an application that runs dynamically assigned MCS tasks,

as rapidly overviewed in Section 2. The application tracks the location of the155

device by using the Google location APIs (by fusing GPS and WiFi Hot Spot

coordinates for higher precision and accuracy). The sampling scan period is

150s. Differently from the other datasets, we extract the co-location of users

from device position traces: we assume that two devices are co-located and able

to communicate if they are placed within 10m from each other for at least 150s.160

This assumption introduces a certain degree of inaccuracy, since two devices that

are assumed to be co-located with this method might, in fact, not communicate.

Note also that the mobility in ParticipAct is unrestricted: users live in town or

sub-urban areas; some of them commute daily by train, while others walk or

move by bike.165
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3.2. Datasets Analysis

We compare the experimental datasets with respect to several metrics com-

monly used when analyzing human mobility in Mobile Social Networks (MSN)[13,

14, 15]. The evaluation metrics we selected are given along with the temporal

dimension, as for example we compute the number of contacts, contact duration,170

and inter-contact time as evolving over time (functions of time). The selected

metrics are relevant for evaluating people mobility and hence they can be used

to assess the capability of the datasets to capture dynamic human behaviors

in a real-world MCS scenarios. Note that our goal is not that of ranking the

datasets according to these metrics, also because such ranking would be unfair175

since the datasets have been collected in different time frames, with different

sensing technologies and for different purposes. Rather, our aim is to iden-

tify the most important features of the datasets and to summarize which social

sensing scenarios the datasets best describe, for example to the purpose of their

exploitation in the evaluation and assessment of MCS solutions that will address180

specific mobility/social scenarios.

In this analysis, we focus on users co-location that is a compact represen-

tation of the dynamic encounter graph obtained from a dataset, and that is

indicative of both mobility and sociality of users involved in the experimen-

tal datasets. The co-location traces report the start/end time of encounters185

between users (i.e., between their carried devices). In the considered datasets

(with the exception of ParticipAct, as discussed in Section 3.1), the co-location

traces are obtained by identifying other devices in Bluetooth/WiFi radio range.

3.2.1. Evaluation Metrics

The number of contacts represents the distribution of users along the190

time and in particular with hour-grained resolution. It gives an indication of

the social activity of a user, by providing information about when individuals

meet and with how many people. Moreover, as discussed in [6], the number of

contacts among people is a first indicator of the mobility pattern characterizing

the dataset. For example, datasets with a distribution of contacts that is very195
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high during working hours and absent after such hours only partially reflect the

human dynamics. Differently, datasets with a distribution of contacts that are

evenly distributed are more realistic.

The Contact Duration metric measures the average duration of encoun-

ters. Contact duration can be understood as a rough estimator of the famil-200

iarity degree among people. In fact, as a general rule, the more people have

long-lasting contacts, the more they are involved in a non-occasional social re-

lationship. This is the case for friends or relatives that tend to stay in contact

longer with respect to occasional gatherings. Nevertheless, the analysis of the

contact duration only reveals the general trend of the dataset of reproducing205

gathering among unknown people of among acquaintances.

The Inter-Contact Time (ICT) measures the time elapsed between two

consecutive encounters for a pair of individuals. It is a good indicator of the

frequency of encounters and, hence, of how much a dataset can capture a dy-

namic scenario. In datasets with very short ICT, people enter in contact very210

frequently with the same people; this is the case, for example, of datasets bound

to indoor locations and with a restricted number of participants.

The total number of encounters and the unique number of encoun-

ters measure, for each user, the number of other users met in a period and the

number of other users met only once in the same period, respectively. These215

metrics are indicative of the social attitude of a person in entering in contact

with many other people, or conversely to interact only with a few people.

The amount of data points measures the number of active users of Par-

ticipAct and MDC Nokia at very different conditions. In particular, for those

datasets we identified a crowded period during which many users are supposed220

to contribute to the MCS campaign with respect to a more isolated period dur-

ing which few users are active. The goal of such comparison is to assess the

capability of such datasets of reproducing the natural rhythm of humans for a

MCS campaign.
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Figure 2: Number of hourly contacts.

3.2.2. Experimental Results225

Results concerning the number of hourly contacts in a period of 7 days are

shown in Figure 2. The histograms show that all the datasets have a similar

trend in the distribution of the contacts along the day. In particular, people tend

to meet other people in bursts during the daily hours. Moreover, the number

of encounters repeats over the days, giving rise to an intuitive and expected230

pattern of encounters. In the Cambridge and the MIT Reality the bursts are

denser in the first part of the daily hours (consider that these datasets are bound

to university campuses where people interact during specific working hours). In

the ParticipAct and the MDC Nokia datasets, instead, the bursts of contacts

cover all the daily hours. Hence, a first consideration is that MDC Nokia as235

well as the ParticipAct datasets better capture social interactions happening

also after regular working hours.

Figure 3 shows in more detail the number of contacts per hour of ParticipAct
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Figure 3: Average number of contacts along the time.
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Figure 4: CCDF of contacts duration (s).

and MDC Nokia BT/GPS. The co-location traces of MDC Nokia BT better

reflect the encounters among people with respect to MDC Nokia GPS. This240

is motivated by the fact that the traces obtained with GPS do not provide

meaningful information when users are located indoor. On the other hand, the

figure also shows that the limited performance given by the use of GPS can

be partially overcome by benefiting from the fusion of several position systems.

In particular, this occurs in the case of ParticipAct (that exploits both GPS245

and WiFi hotspot coordinates), which achieves an intermediate performance in

terms of number of contacts between MDC Nokia BT and GPS.

Figure 4 reports the complementary cumulative distribution function (CCDF)

of the duration of contacts for all the datasets in a logarithmic scale. The curves

show that as the duration t increases, the probability of having contacts greater250

than t decreases. Such decrease is slow in the [0 − 100]s interval, after which it

follows an exponential decay rule. The dataset with the shortest contact dura-
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Figure 5: CCDF of inter-contact times (s).

tion is MDC Nokia GPS (with an average of 0.82 s), while MDC Nokia BT is

the dataset with the highest (with an average of 296.5 s). The other datasets,

namely Cambridge, MIT Reality and ParticipAct, are bound between Nokia255

datasets. Also in this case, the use of the GPS coordinates only for determining

the co-location traces (as for MDC Nokia GPS) introduces inaccuracy. In Fig-

ure 4 this aspect is particularly evident, since MDC Nokia BT and MDC Nokia

GPS are respectively the upper and lower bound of the contacts duration.

Figure 5 shows the CCDF of the inter-contact times for any pair of devices.260

All the datasets have a similar CCDF trend. In particular, their CCDF follows

a power-low up to roughly 12 hours, after which it decays exponentially (as also

observed in [7]). In all the cases, the inter-contact time is greater than 120s

with high probability, but the curves assume different behaviors after 120s. In

particular, ParticipAct users tend to meet the same people more frequently,265

while users of MDC Nokia (both Bluetooth and GPS) meet the same less often.
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Figure 6: Heterogeneity of encounters.

Cambridge and MIT Reality are sandwiched between ParticipAct and MDC

Nokia.

Figure 6 represents the heterogeneity of encounters [16], by plotting a point

for each user at the coordinates given by the total number of encounters (x axis)270

and the number of unique encounters (y axis). From the figure, it is seen that in

Cambridge and MIT Reality, which are collected in limited geographical areas,

users meet many other users more often. This is confirmed by the distribution of

the points. In fact, many points are placed in the upper part of the diagram that

characterizes people with many unique encounters. In the case of MIT Reality,275

a number of points are also placed in the upper right corner; hence, in this

case, people have also many total encounters. The percentage of the population

visited by every person in Cambridge and MIT Reality datasets is of respectively

83.48% and 67.60%. Differently, ParticipAct and MDC Nokia BT datasets

have a distribution of the points shifted in the lower left corner. This area280
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Figure 7: Geographical extension of ParticipAct and MDC Nokia datasets.

characterizes people who have few total encounters and few unique encounters.

ParticipAct and MDC Nokia BT well reproduce the fact that people, in wide

geographical areas, have encounters with a limited number of individuals (an

average of 28.74% and 28.27% respectively).

Finally, we compare the ParticipAct and the MDC Nokia datasets along285

with two dimensions, namely the geographical extension and the amount of data

points. Concerning the geographical extension we show in Figure 7 the user’s

position of ParticipAct and MDC Nokia during 1 week. As previously described,

the Emilia Romagna and the Lake Geneva regions are the most crowded areas

(denoted as black boxes in Figure 7), however, involved people roam also outside290

such regions. For example, the figure shows that ParticipAct users traveled

along the entire north/center of Italy, covering over 500Km, while the maximum

distance among users in MDC Nokia is limited to around 150Km.

About the amount of data points, we compare the number of active users

of ParticipAct and MDC Nokia during an overloaded time period, with many295

users contributing to the MCS campaign, with respect to time period in which

many users are not so active (i.e., summer break). Figure 8 shows a comparison

between active users in ParticipAct during April and August 2014 with the

number of active users in MDC Nokia during January and August 2011. It is

worth to notice that both of the datasets offer a significant amount of points300

in crowded and non-crowded time periods. This is particularly evident with
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Figure 8: Amount of data points for the ParticipAct and MDC Nokia datasets.

the ParticipAct dataset where the number of available points does not change

significantly in different periods. We consider that such rough analysis confirms

the capability of the datasets of reproducing a real-world scenario independently

from the profiles of users involved in the sensing campaign.305

4. MCS Metrics Analysis on the ParticipAct Dataset

In the previous section, we validated the ParticipAct dataset against other

similar large datasets in the literature to better define it and to clearly show
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some of its main characteristics [1, 2, 3, 4, 5]. This section, instead, focuses

on the unique characteristics of the ParticipAct dataset and, most importantly,310

the effectiveness of the management of socio-technical MCS task assignments,

currently not supported by other existing living labs available in the literature.

The common goal of all experimental results is to quantify the ParticipAct

ability to identify only the users who are more likely to accept and complete a

task based on history of their daily movements. This is a core key performance315

indicator for novel state-of-the-art MCS management platforms because it rel-

evantly impacts on overall MCS campaign efficiently (e.g. completion rate and

task execution latency). In fact, ParticipAct task assignment policies focus on

geo-executed tasks of special interest for smart city managers to involve in the

campaigns the users who are more likely to visit the targeted area and conse-320

quently to accept the associated MCS task. In addition, the section provides

an in-depth discussion about lessons learned in terms of acceptance, completion

rates, and times of assigned tasks (either geo- or non-geo-notified), by consider-

ing tasks with different levels of complexity and duration.

4.1. ParticipAct Assignment Policies325

ParticipAct enables effective scheduling of geo-executed tasks through four

main different policies, specifically designed and optimized for MCS campaigns,

namely, random, recency, frequency, and dbscan, as detailed in the following.

The Random policy selects a random subset of all available users, regardless

of their position history, based on the user ratio parameter, which is defined as330

the percentage of all available users to be assigned to the task, from 0% up to

100%. It is an uninformed policy and we introduce it as the baseline solution,

for the sake of comparison with the other more aware and informed policies.

The Recency policy assigns the task to users who have been recently in

the geo-execution area. This policy relies on the assumption that those users335

may return in the same area in their everyday commuting routine. Moreover,

the recency policy ranks all potential candidates according to how recently they

have been in the geo-execution area, from the most to the least recent. Similarly
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to the random policy, it may be configured with user ratios from 0% up to 100%,

defined as the portion of candidates (starting from higher ranked ones) to select340

for an active role in the MCS campaign.

The Frequency policy assumes that the people who visited more frequently

the geo-execution area of the task are the best candidates to select. This policy

implicitly assumes that those users usually stay or regularly attend the area.

It selects users that have been in the target area in the past and ranks them345

according to the time that they spent there compared to the time spent in other

places. In addition, as for Recency, this policy supports user ratio setting to

further limit the number of assigned candidates.

The Dbscan policy uses the Density-Based Spatial Clustering of Applica-

tions with Noise (DBSCAN) algorithm to cluster past user location traces [17].350

DBSCAN is a density-based clustering algorithm based on the ideas that i)the

density of points inside a cluster is much higher than that of the points out-

side the cluster and ii)the density of points outside a cluster is much lower that

the density of any other cluster. DBSCAN has several properties that make it

well-suited for MCS task assignment problems: it does not require knowing the355

number of clusters to be determined a priori, it can detect arbitrarily-shaped

clusters, it is robust to noise and outliers, and it is optimized to run on GIS-

enabled databases. The dbscan policy runs the DBSCAN algorithm over all past

user positions and clusters those users who actually spend a sizeable amount of

time in the target geo-execution area as potential candidates. Then, it selects360

users in a cluster that intersects the geo-execution area. Like all other policies,

dbscan allows selecting a proper user ratio setting; however, differently from

recency and frequency policies, since dbscan does not provide a ranking, the

dbscan policy determines randomly the final set of selected users.

Note that all task assignment policies are sensitive to the size of location365

history used. As a consequence, in our work we have decided to consider only a

limited window of geolocation history of the last days before task start for each

user (the default value is two weeks). If we consider all the history of a user,

we can select, with higher probability, users who have changed routines and not
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capable to complete that kind of task. Of course, it is possible to modify that370

window size or even specify hours of the day and/or days of the week in order

to determine, with a finer grained approach, users who can complete tasks in a

more specific time window.

Our large-scale ParticipAct experience with in-the-field deployment of MCS

campaigns has demonstrated that the choice of the user-to-task assignment pol-375

icy has a relevant impact on MCS campaign results [3]. Therefore, in the fol-

lowing subsection we discuss some efficiency metrics to assess the performance

of assignment policies;these metrics, and the associated assessment results, can

be valuable elements in designing and tuning MCS platforms and campaigns.

4.2. Experimental Results380

This section first introduces the metrics to compare user assignment poli-

cies, then presents a quantitative assessment of our assignment policies for geo-

executed tasks, and finally shows a comparison of task acceptance and comple-

tion rates/times for different kind of tasks.

4.2.1. MCS Evaluation Metrics385

A widespread and internationally recognized consensus on the evaluation

metrics for the analysis of MCS campaign performance has still to be reached

in the research community, also because of the lack of wide MCS datasets with

real-world results about task assignment policies as well as task acceptance

and completion. This paper contributes in proposing novel and usable MCS390

evaluation metrics.

Let us focus first on the MCS metrics to assess the effectiveness of our

assignment policies. Assigned users represent the number of candidates to whom

different policies assign the task. Precision measures the percentage of success

of a given policy, namely, whether selected users actually executed successfully395

the assigned task. For this evaluation, True Positives (TP) users are the ones

who have been selected by a policy and actually carried out the task, while False

Positives (FP) are the users selected by a policy and not executing the task. We
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define precision as the ratio between TP and TP+FP. Moreover, True Negative

(TN) users are the ones who have not been selected and did not execute the task,400

while False Negatives (FN) the users who have not been selected but did execute

the task anyway. Accuracy is a percentage and accounts for the proportion of

true results (both true positives and true negatives) in the population. More

formally, accuracy is the ratio between TP+TN and TP+FP+TN+FN, that

quantifies how good is each policy in correctly classifying user behavior and405

predicting whether they will (TP) or will not (TN) execute a task.

In addition, we introduce some further metrics to evaluate task acceptance

and completion. Acceptance rate and completion rate represent the percentages

of users (evaluated over all involved people) who, respectively, accepted and

completed the task. Similarly, acceptance time and completion time are the410

times required to, respectively, accept and complete a task.

4.2.2. Assignment Policies Evaluation

Figure 9(a) shows the number of candidate users selected by each policy

for various geo-executed tasks; we considered 4 geo-notified tasks (graphs on

the left) and 4 only geo-executed, but not geo-notified (graphs on the right).415

For all tasks, we have analyzed the ParticipAct collected data to understand

which performance values would have been achieved if users had been selected

by different policies and by using different user ratios in the range [10%, 100%].

In the following, all results represent average values over, respectively, the 4

geo-notified and 4 non-geo-notified tasks. Because they were executed by the420

same population, they have comparable completion/failure rates, and they were

associated to urban areas with similar characteristics.

As expected, the random policy shows the worst performance. Recency, fre-

quency, and dbscan policies always select about 20 users or less, with dbscan

selecting very few users compared to recency and frequency policies, always425

below 5 users as average value. These policies (except the random one) sig-

nificantly limit the number of users assigned to a task but, most relevant, not

affecting the final success of the MCS campaign, thus reducing the workload of
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(a) Number of candidates selected by each policy (geonotified vs. non-

geonotified).

(b) Accuracy on geonotified vs. non-geonotified tasks.

(c) Precision of geonotified vs. non-geonotified tasks.

Figure 9: Policies comparison.
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users and the process costs.

Figure 9(b) and Figure 9(c) report the precision and accuracy indicators430

showing that recency, frequency, and dbscan have strengths and weaknesses of

that can indicate their adoption in different application domains and deployment

scenarios. Recency and frequency perform similarly and it is important to state

that the list of assigned users produced by them contain the same users, but

ranked differently: this is why at 100% they reach always the same results.435

At the same time, let us also rapidly note that some (minor) oscillations in

Figure 10 are due to the fact that, notwithstanding the good number of users

involved in the ParticipAct MCS campaigns, the cardinality of participants

is still sufficiently low to exhibit stochastic fluctuations, especially for recency.

Compared to recency and frequency, the dbscan policy has a higher accuracy and440

shows overall a very stable behavior for all considered metrics. Most important,

it obtains those results with a very low number of assigned users, thus confirming

dbscan ability to capture and cluster user routinely behaviors.

Finally, a very important lesson learned from our analysis is the geo-notification

should be applied whenever possible. Indeed, notifying potential candidates ex-445

actly at the time they enter the geo-execution area allows to boost the task

completion rate and, consequently, precision. We believe that this beneficial

effect is due to the fact that candidates who are notified too in advance tend to

forget completing the task as they reach the geo-execution area; for instance,

that happens for non-geonotified tasks, with the notification completely de-450

tached from the geo-execution, and for geo-notified tasks with a geo-notification

area much wider than the geo-execution area and including it.

4.2.3. Task Acceptance and Completion Analysis

Figure 10 reports results on acceptance and completion for different kinds

of tasks. Figure 10-a shows the difference in geo-notified (on the left) and455

non-geo-notified (on the right); considered tasks are geo-executed and similar

in terms of geo-execution area dimension and probability of user presence in

the considered area. The collected results confirm that geo-notification allows
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Figure 10: Acceptance and completion rate for different types of task.

improving acceptance and completion rates, respectively, by 52% and 423%.

Figure 10-b, instead, reports acceptance and completion rates for different460

types of tasks, from passive and easier to complete (short and simple) on the left,

to more and more complex ones on the right. Users are more willing to accept

and complete passive tasks (without need of explicit user intervention such as

GPS monitoring) and simple active tasks (with limited actions). Instead, in case

of complex task that aggregate multiple actions, users tend to be less willing to465

participate and complete them.

We conclude our analysis showing the CCDF for acceptance (Figure 11-a)

and completion (Figure 11-b) times depending on geo-notification or not, for the

same tasks and users shown in Figure 10. These results are useful to understand

and confirm expectations from crowd behaviors. In fact, acceptance time shows470

to be higher for geo-notified tasks because in this case the user must enter the

task notification area to be notified (and then accept the assignment). At the

same time, completion time is much less in case of geo-notified tasks because

the assigned user is already in the place where to complete the action.

5. Discussion and Lessons Learned475

ParticipAct has the main objective of fostering new forms of participation

for novel e-citizenship models in the Smart Cities environments and local com-
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Figure 11: CCDF of acceptance and completion time (s) for geo-notified and non-geo-notified

tasks.

munities governance. Our experience with the ParticipAct living lab has given

us many insights and allowed us to draw some first conclusions about socio-

technical management aspects of MCS, which we believe can be useful to design480

new campaigns and to refine the whole MCS process.

First of all, let us discuss the characteristics of the ParticipAct dataset com-

pared to the other ones considered in our analysis; Table 1 summarizes the main

features of each dataset along four dimensions:

• mobility in terms of frequency of contacts;485

• heterogeneity of contacts;

• connectivity in terms of contact duration;

• sensing, which indicates the richness of the sensing data available in the

dataset.

As previously discussed, in Cambridge and MIT Reality users tend to meet490

with many other users for medium/long periods. Instead, in ParticipAct and

MDC Nokia (see Table 1) users interact only with a small portion of the whole

population. In particular, ParticipAct people meet often but for short periods,

and we argue that this dataset well captures the occasional encounters among

people in a city. In MDC Nokia people do not meet frequently but the average495
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Table 1: FEATURES OF EXPERIMENTAL DATASETS

Graphics Mobility Heterog. Connectivity Sensing

Cambridge high high medium none

MIT medium high high low

ParticipAct high low low high

MDC BT low low high
medium

MDC GPS low+ low+ low+

contact lasts for longer periods as compared to ParticipAct. Moreover, the

exclusive use of GPS coordinates for extracting the co-location traces introduces

inaccuracy in the contacts among people, hence also in the final results of the

evaluation metrics. Finally, except Cambridge, the other datasets offer some

kind of sensing data, but only ParticipAct provides real-world results on user500

participation to MCS campaigns as thoroughly discussed in Section4.

Second, we analyzed the ParticipAct dataset and the task completion rate

during the working (class/studying) hours (i.e., 9-17) and during the rest of the

day (i.e., 17-9 off hours) for the different types of tasks. The collected results,

depicted in Figure 12, confirm that student participation is well-distributed505

along the day with an average completion rate of about 50% during working

hours and 50% during off hours. Based on these data, we can argue that, after

a first period, ParticipAct users tend to consider MCS activities as all their

other routinely activities and to schedule them evenly along the day; in its turn,

this confirms that the ParticipAct dataset is a realistic living lab able to mimic510

the use of the smartphone along the whole day for a significant population of

users. By focusing on different task types, instead, while sensing activities are

typically kept on all day long, more entertaining-related ones (i.e., riddle) are

preferably completed during working hours, we believe to take a break, while

more complex ones, typically requiring more time and effort, are also preferably515

completed during the day rather that at late afternoon/night

Third, an important aspect that MCS systems should ascertain and manage
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Figure 12: Completion rate of ParticipAct tasks at different time intervals.

is data quality. Crowdsensed data should be refined by keeping into account

user trustworthiness (based on her history and reputation) and by enlarging

the number of selected users for the same time (to polish data via non-minimal520

crowdsourcing). For instance, we have observed a minor number of students

trying to provide fake data: in most cases, we were able to dynamically detect

them for instance when a user completes in a few minutes several tasks that

would require taking a photo in places that are several kilometers away; in

other situations, only human checking could validate the content, such as when525

a user, asked to take a picture of a monument, shoots a picture of her monitor

that displays the asked monument.

Finally, we found that it is important to make MCS tasks as simple as

possible to encourage user participation. In ParticipAct, we have decided to split

MCS campaigns into constituent sub-components by assigning independently530

simple tasks that users can accept more freely. We observed that simple tasks

were definitely more easily accepted than complex ones: the distilled guideline

is that any MCS system should avoid to ask for big changes in user behavior by

soliciting complex tasks that participants are likely to refuse. In particular, we

have practically determined as simple tasks those ones that are not only easy to535

understand, but also require little time and minimal physical effort to complete,

while not disrupting daily routine. Another important topic is how to minimize
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user workload and what kind of incentives is more effective in encouraging users

to execute even more complex tasks.

6. Conclusive Remarks and Future Work540

After some years of intense research in the MCS area, there is still lack

of real-world large-scale MCS datasets and Living Labs able to truly verify

any step in the whole MCS process, from mobility to task scheduling, from

task acceptance to task completion. This paper contributes to fill this gap by

presenting a detailed analysis of the ParticipAct MCS dataset. In particular,545

we originally propose new specific metrics for the analysis of MCS datasets

and distill primary lessons learned from the ongoing and large-scale ParticipAct

experience, claimed to be useful for researchers and practitioners in the field, to

efficiently design new MCS campaigns and to finely tune future crowdsensing

processes.550

The encouraging results achieved so far are stimulating our further research

work, along two primary directions. On the one hand, we are currently extend-

ing this research by considering other recent datasets of emerging popularity.

In fact, the proliferation of different social networks can be exploited in order to

mash-up different sources of information in order to benchmark and integrate555

data gathered within the ParticipAct platform; we reviewed the Web and the

literature of MCS systems and we are currently considering two well-established

datasets, namely, Foursquare and TripAdvisor, and the seminal Crowdsignals.io

initiative. On the one hand, we are currently extending this research by consid-

ering other recent datasets of emerging popularity. In fact, the proliferation of560

different social networks can be exploited to mash-up different sources of infor-

mation in order to benchmark and integrate data gathered within the Partici-

pAct platform. In particular, we are currently considering two well-established

datasets, namely, Foursquare and TripAdvisor, and the seminal Crowdsignals.io

initiative.565

27



References

[1] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, A. Chaintreau, Craw-

dad data set cambridge/haggle, (v. 2006-01-31), http://crawdad.org/

cambridge/haggle/ (2006).

[2] N. Eagle, A. Pentland, Reality mining: Sensing complex social systems,570

Personal and Ubiquitous Computing 10 (4) (2006) 255–268.

[3] G. Cardone, A. Cirri, A. Corradi, L. Foschini, The participact mobile crowd

sensing living lab: The testbed for smart cities, IEEE Communications

Magazine 52 (10) (2014) 78–85.

[4] N. Kiukkonen, B. J., O. Dousse, D. Gatica-Perez, L. J., Towards rich mobile575

phone datasets: Lausanne data collection campaign, in: Proc. ACM Int.

Conf. on Pervasive Services (ICPS), Berlin, 2010.

[5] J. K. Laurila, D. Gatica-Perez, I. Aad, B. J., O. Bornet, T.-M.-T. Do,

O. Dousse, J. Eberle, M. Miettinen, The mobile data challenge: Big data

for mobile computing research, in: Pervasive Computing, 2012.580

[6] P. Hui, J. Crowcroft, E. Yoneki, Bubble rap: Social-based forwarding in

delay-tolerant networks, Mobile Computing, IEEE Transactions on 10 (11)

(2011) 1576–1589. doi:10.1109/TMC.2010.246.

[7] M. Balazinska, P. Castro, Characterizing mobility and network usage in

a corporate wireless local-area network, in: Proceedings of the 1st Inter-585

national Conference on Mobile Systems, Applications and Services, Mo-

biSys ’03, ACM, New York, NY, USA, 2003, pp. 303–316. doi:10.1145/

1066116.1066127.

[8] J. Yeo, D. Kotz, T. Henderson, Crawdad: A community resource for archiv-

ing wireless data at dartmouth, SIGCOMM Comput. Commun. Rev. 36 (2)590

(2006) 21–22. doi:10.1145/1129582.1129588.

28

http://crawdad.org/cambridge/haggle/
http://crawdad.org/cambridge/haggle/
http://crawdad.org/cambridge/haggle/
http://dx.doi.org/10.1109/TMC.2010.246
http://dx.doi.org/10.1145/1066116.1066127
http://dx.doi.org/10.1145/1066116.1066127
http://dx.doi.org/10.1145/1066116.1066127
http://dx.doi.org/10.1145/1129582.1129588


[9] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, A. T. Campbell,

A survey of mobile phone sensing, Comm. Mag. 48 (9) (2010) 140–150.

doi:10.1109/MCOM.2010.5560598.

[10] G. Cardone, A. Cirri, A. Corradi, L. Foschini, R. Ianniello, R. Montanari,595

Crowdsensing in urban areas for city-scale mass gathering management:

Geofencing and activity recognition, IEEE Sensors Journal 14 (12) (2014)

4185–4195.

[11] K. C. . Lin, W. . Lin, C. . Chou, Social-based content diffusion in pocket

switched networks, IEEE Transactions on Vehicular Technology 60 (9)600

(2011) 4539–4548.

[12] A. Passarella, M. Conti, Analysis of individual pair and aggregate inter-

contact times in heterogeneous opportunistic networks, IEEE Transactions

on Mobile Computing 12 (12) (2013) 2483–2495. doi:10.1109/TMC.2012.

213.605

[13] A.-D. Nguyen, P. Senac, M. Diaz, Modelling mobile opportunistic networks

from mobility to structural and behavioural analysis, Ad Hoc Networks 24,

Part B (2015) 161 – 174, modeling and Performance Evaluation of Wireless

Ad-Hoc Networks.

[14] T. Karagiannis, J.-Y. Le Boudec, M. Vojnović, Power law and exponential610
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